Lecture 18

Methods and Operations

Announcements for This Lecture

Assignments Lab this Week
* A4 Due Thursday at midnight ¢ Simple class exercise
= Hopefully you are on Task 4 = Fill in predefined methods
= Extra consultants available = Setting you up for A6...

e Will post AS on Thursday

= Written assignment like A2 Exams

= Needs material from next Tues e Moved to handback room

* Will also post A6 as well " Located in Gates 216
= Not due until November 19 * Open 12-4:30 daily
= Want to avoid exam crunch * Regrades still open this week

10/27/15 Methods and Operations

Important!

YES NO
class Point3(object): class Pointd:

"""Tnstances are 8D points """Tnstances are 8D points
Attributes: Attributes:

X: x-coord [float] X: x-coord [float]

y: y-coord [float] y: y-coord [float]

z: z-coord [float]""" z: z-coord [float]"""

3.0-Style Classes “0Old-Style” Classes
Well-Designed Very, Very Bad

10/27/15 Methods and Operations

Case Study: Fractions

* Want to add a new type class Fraction(object):

= Values are fractions: ¥, 34 ""Instance Is a fraction n/d

Attributes:
numerator: top [int]

= (Operations are standard

multiply, divide, etc.

Example: 15*% = % denominator: bottom [int > 0]
- : 2 4 = 8 1nin

e (Can do this with a class
def init (self,n=0,d=1):
""Tnit: makes a Fraction""

= (Operations are methods self.numerator = n

= Values are fraction objects

o Example: simplefrac.py self.denominator =d

10/27/15 Methods and Operations

Problem: Doing Math is Unwieldy

What We Want What We Get

1 1 1 5 >>>p = Fraction(1,R)
(2 R 4) * 4 >>> (= Fraction(1,3)
>>> p = Fraction(1,4)
>>> g = Fraction(5,4)

>>> (p.add(q.add(r))).mult(s)

@confusing! J

10/27/15 Methods and Operations

Problem: Doing Math is Unwieldy

What We Want What We Get
1 | 1 | 1\ 5 >>> p = Fraction(1,2)
(2 '3 4) “2 >>> = Fraction(1,3)
>>> p = Fraction(1,4)
d A >>> g = Fraction(5,4
Why not use the 5 = Fraction(o,4)
standard Python >>> (p.add(q.add(r))).mult(s)
math operations?

\l

/

10/277/15

@confusing! }

Methods and Operations

Recall: The __init Method

[two underscores

W — WULRGL\ chuua.', 1234, None)

[Called by the constructor]

\
def }init_(self, n, s, b):

""Initializer: creates a Worker i
id8

Has last name n, SSN s, and boss b Worker

Iname | 'Obama'

Precondition: n a string, s an int in

range 0..999999999, and b either ssn | 1234
a Worker or None. oo RS
self.lname = n

self.ssn = s

self.boss =D

10/27/15 Methods and Operations 7

Recall: The __init Method

two underscores
[W — WULRGL\ UUGLLD , 1234, None)

\
def }init_(self, n, s, b):

""Tnitializer: creates a Worker

Has last name n, SSN s, and boss b

Precondition: n a string, s an int in
range 0..999999999, and b either
a Worker or None.

self.Iname = n

self.ssn =8

self.boss =D

-

\l

Are there other
special methods
that we can use’

~

/

10/27/15 Methods and Operations

Example: Converting Values to Strings

str() Function Backquotes

o Usage: str() o Usage:

= Evaluates the expression = Evaluates the expression

= Converts it into a string = Converts it into a string
e How does it convert? e How does it convert?

= str(R) » 2 = 2 272

= str(True) - 'True’ = True - 'True'

= str('True’) = 'True' = "'True'” -> "True"

= str(Pointd()) = '(0.0,0.0,0.0) = "Point3()" =

"<class 'Pointd'> (0.0,0.0,0.0)"

10/27/15 Methods and Operations 9

Example: Converting Values to Strings

str() Function Backquotes
4)
 Usage: str() : Backquotes are
= Evaluates the expression for unambigious
= Converts it into a strin 1
| g _ repre.sentatloil)
e How does it co et e S How does it co
o AL EyP car e The value’s
= str(R) = 2 this value? = "2 52)
type is clear
= gtr(True) = 'True = True =>'T
= gtr('True’) = 'True' = "'True'” = "True"
= str(Pointd()) = '(0.0,0.0,0.0) = "Point3()" =

"<class 'Pointd'> (0.0,0.0,0.0)"

10/27/15 Methods and Operations 10

What Does str() Do On Objects?

e Does NOT display contents class Point3(object):

>>> p = Point3(1,2,3) ""Instances are points in 4d space""

>>> str(p) def _ str (self):

<Pointd object at 0x1007a90>" """Returns: string with contents™"
e Must add a special method return '('+selfx + ', +

= _ str__ for str(self.y +','+

= _ repr__ for backquotes self.z + ")
* Could get away with just one def repr_ (self):

= Backquotes require __repr__ """Returns: unambiguous string™"

= str() canuse __repr__ return str(self. _class_)+

(if __str__ 1s not there) str(self)

10/27/15 Methods and Operations 11

What Does str() Do On Objects?

e Does NOT display contents class Point3(object):

>>> p = Point3(1,2,3) ""Instances are points in 4d space""
>>> gtp
. (p) . def _ str_ (self):
<Point3 object at 0x1007a90> "Returns: string with contents™
e Must add a special method return '('+selfx + ', +
= gtr_ for strQ selfy +','+
= _ repr__ for backquotes self.z + ")’
 Could get away with just one def repr (sel): | CLVes the
. — T " | class name
= Backquotes require __repr_ ""Returns: unamb
= str() canuse __repr__ return str(self. _class_)+
(if __str__ 1s not there) str(self)
repr__ using
10/27/15 Methods and Operations __str__as helper

Special Methods in Python

e Have seen three so far class Point3(object):

. T """Tnstances are points in 8D space™
L init for initializer P P

= str_ for str()
def _ init (self,x=0,y=0,z=0):

= _ repr__ for backquotes
"""Tnitializer: makes new Point3"""

o Start/end with 2 underscores

= This 1s standard in Python
def str_ (self,q):

" Used in all special methods """Returns: string with contents""”

= Also for special attributes

e For a complete list, see

http://docs.python.org/reference
/datamodel.html

10/27/15 Methods and Operations 13

def _ repr__ (self,q):
""Returns: unambiguous string""”

Returning to Fractions

What We Want Operator Overloading
1 1 1\ 5 Python has methods that
(E + 3 + Z) * 4 correspond to built-in ops
= _ add__ corresponds to +
/ \ = _ mul corresponds to *
= Not implemented by default
Why not use the _ | ;
mplementing one allows you
standard Py.thOIl to use that op on your objects
math OperatIOHS? = (Called operator overloading
~ / = Changes operator meaning
10/27/15 Methods and Operations 14

Operator Overloading: Multiplication

class Fraction(object): >>>p = Fraction(1,2)

"""Tnstance attributes:
>>> (1 = Fraction(3,4
numerator: top [int] q actlo (5,)

denominator; bottom [int > 0]""” >>>T=Dp*q
def __mul (self,q): Python
"""Returns: Product of self, q converts to
Makes a new Fraction; does not

modify contents of self or g >>>p=p mul_ (Cl)
Precondition: q a Fraction""" — —
assert type(q) == Fraction
top = self.numerator*q.numerator Operator overloading uses
bot = self.denominator*q.denominator method 1in object on left.

return Fraction(top,bot)

10/27/15 Methods and Operations 15

Operator Overloading: Addition

class Fraction(object):

"""Instance attributes:
numerator: top [int]
denominator: bottom [int > O]""”

def _add__ (self,):

"""Returns: Sum of self, q
Makes a new Fraction
Precondition: q a Fraction"""

assert type(q) == Fraction

bot = self.denominator*q.denominator

top = (self.numerator*q.denominator+
self.denominator*q.numerator)

return Fraction(top,bot)

>>>p = Fraction(1,2)
>>> (= Fraction(3,4)
>>> P =p+Q

Python

v converts to

>>>p=p. add_ (g9

Operator overloading uses
method in object on left.

10/27/15 Methods and Operations 16

Comparing Objects for Equality

e Earlierin course, we saw

compare object contents

= This 1s not the default
= Default: folder names

e Must implement __eq
= Operator overloading!

= Not limited to simple

attribute comparison
= Ex: cross multiplying
4 G I 4

—_

7 "y

10/277/15

class Fraction(object):
"""Instance attributes:

numerator: top [int]
denominator: bottom [int > O]"""

def _ eq (self,q):

"""Returns: True if self, q equal,
False if not, or q not a Fraction""

if type(q) != Fraction:

return False
left = self.numerator*q.denominator
rght = self.denominator*q.numerator
return left == rght

Methods and Operations

Issues With Overloading ==

e Overloading == does not class Fraction(object):

also overload comparison |=
def _ eq (self,q):

. """Returns: True if self, q equal,
= Why? Will see later False if not, or q not a Fraction"""

= But (not x ==y) is okay! if type(q) != Fraction:
return False

* Mustimplement __ne_

* What if you still want to

left = self.numerator*q.denominator
compare Folder names?

rght = self.denominator*q.numerator
= Use is operator on variables return left == rght

" (xisy) True if X, y contain

def If Q)
the same folder name ef _ne_ (self,q)

, .) """Returns: False if self, q equal,
* Check if variable is empty: True if not, or q not a Fraction"””

X is None (X == None 1s bad) return not self ==q

10/27/15 Methods and Operations 18

iS Versus ==

e pis q evaluates to False

* Compares folder names

= Cannot change this

10/277/15

id2

id2

* p == q evaluates to True

= But only because method

__eq__ compares contents

id3

Point

2.2

5.4

6.7

id3
Point
X 2.2
y 5.4
z 6.7

Always use (x is None) not (x == None)

Methods and Operations

19

