
Methods and Operations

Lecture 18



Announcements for This Lecture

10/27/15 2Methods and Operations

• A4 Due Thursday at midnight
§ Hopefully you are on Task 4
§ Extra consultants available

• Will post A5 on Thursday
§ Written assignment like A2
§ Needs material from next Tues

• Will also post A6 as well
§ Not due until November 19
§ Want to avoid exam crunch

• Simple class exercise
§ Fill in predefined methods
§ Setting you up for A6…

• Moved to handback room
§ Located in Gates 216
§ Open 12-4:30 daily

• Regrades still open this week

Lab this WeekAssignments

Exams



Important!

YES

class Point3(object):
"""Instances are 3D points
Attributes:

x: x-coord [float]
y: y-coord [float]
z: z-coord [float]"""

…

NO

class Point3:
"""Instances are 3D points

Attributes:
x: x-coord [float]
y: y-coord [float]
z: z-coord [float]"""

…

“Old-Style” Classes
Very, Very Bad

3.0-Style Classes
Well-Designed

10/27/15 Methods and Operations 3



Case Study: Fractions

• Want to add a new type
§ Values are fractions: ½, ¾ 
§ Operations are standard 

multiply, divide, etc.
§ Example: ½*¾ = ⅜

• Can do this with a class
§ Values are fraction objects
§ Operations are methods

• Example: simplefrac.py

class Fraction(object):
"""Instance is a fraction n/d

Attributes:
numerator:    top       [int]
denominator: bottom [int > 0]

"""

def __init__(self,n=0,d=1):
"""Init: makes a Fraction"""
self.numerator = n
self.denominator = d

10/27/15 Methods and Operations 4



Problem: Doing Math is Unwieldy

What We Want

1
2 +

1
3 +

1
4 ∗

5
4

What We Get

>>> p = Fraction(1,2)
>>> q = Fraction(1,3)
>>> r = Fraction(1,4)
>>> s = Fraction(5,4)
>>> (p.add(q.add(r))).mult(s)

10/27/15 Methods and Operations 5

This is confusing!



Problem: Doing Math is Unwieldy

What We Want

1
2 +

1
3 +

1
4 ∗

5
4

What We Get

>>> p = Fraction(1,2)
>>> q = Fraction(1,3)
>>> r = Fraction(1,4)
>>> s = Fraction(5,4)
>>> (p.add(q.add(r))).mult(s)

10/27/15 Methods and Operations 6

This is confusing!

Why not use the 
standard Python 
math operations?



Recall: The __init__ Method

def __init__(self, n, s, b):
""”Initializer: creates a Worker  

Has last name n, SSN s, and boss b 

Precondition: n a string, s an int in
range 0..999999999, and b either 
a Worker or None.
self.lname = n
self.ssn = s
self.boss = b

10/27/15 Methods and Operations 7

w = Worker('Obama', 1234, None)

id8

lname 'Obama'

ssn

boss

1234

None

Worker

Called by the constructor
two underscores



Recall: The __init__ Method

def __init__(self, n, s, b):
""”Initializer: creates a Worker  

Has last name n, SSN s, and boss b 

Precondition: n a string, s an int in
range 0..999999999, and b either 
a Worker or None.
self.lname = n
self.ssn = s
self.boss = b

10/27/15 Methods and Operations 8

w = Worker('Obama', 1234, None)
two underscores

Are there other 
special methods 
that we can use?



Example: Converting Values to Strings

str() Function

• Usage: str(<expression>)
§ Evaluates the expression
§ Converts it into a string

• How does it convert?
§ str(2) → '2'
§ str(True) → 'True'
§ str('True') → 'True'
§ str(Point3()) → '(0.0,0.0,0.0)'

Backquotes

• Usage: `<expression>`
§ Evaluates the expression
§ Converts it into a string

• How does it convert?
§ `2` → '2'
§ `True` → 'True'
§ `'True'` → "'True'"
§ `Point3()` →

"<class 'Point3'> (0.0,0.0,0.0)"
10/27/15 Methods and Operations 9



Example: Converting Values to Strings

str() Function

• Usage: str(<expression>)
§ Evaluates the expression
§ Converts it into a string

• How does it convert?
§ str(2) → '2'
§ str(True) → 'True'
§ str('True') → 'True'
§ str(Point3()) → '(0.0,0.0,0.0)'

Backquotes

• Usage: `<expression>`
§ Evaluates the expression
§ Converts it into a string

• How does it convert?
§ `2` → '2'
§ `True` → 'True'
§ `'True'` → "'True'"
§ `Point3()` →

"<class 'Point3'> (0.0,0.0,0.0)"
10/27/15 Methods and Operations 10

What type is 
this value? The value’s 

type is clear

Backquotes are 
for unambigious
representation



What Does str() Do On Objects?

• Does NOT display contents
>>> p = Point3(1,2,3)
>>> str(p)
'<Point3 object at 0x1007a90>'

• Must add a special method
§ __str__ for str()
§ __repr__ for backquotes

• Could get away with just one
§ Backquotes require __repr__
§ str() can use __repr__

(if __str__ is not there) 

class Point3(object):
"""Instances are points in 3d space"""
…
def __str__(self):

"""Returns: string with contents"""
return '('+self.x + ',' + 

self.y + ',' +
self.z + ')'

def __repr__(self):
"""Returns: unambiguous string"""
return str(self.__class__)+

str(self)

10/27/15 11Methods and Operations



What Does str() Do On Objects?

• Does NOT display contents
>>> p = Point3(1,2,3)
>>> str(p)
'<Point3 object at 0x1007a90>'

• Must add a special method
§ __str__ for str()
§ __repr__ for backquotes

• Could get away with just one
§ Backquotes require __repr__
§ str() can use __repr__

(if __str__ is not there) 

class Point3(object):
"""Instances are points in 3d space"""
…
def __str__(self):

"""Returns: string with contents"""
return '('+self.x + ',' + 

self.y + ',' +
self.z + ')'

def __repr__(self):
"""Returns: unambiguous string"""
return str(self.__class__)+

str(self)

10/27/15 12Methods and Operations

Gives the 
class name

__repr__ using 
__str__ as helper



Special Methods in Python

• Have seen three so far
§ __init__ for initializer
§ __str__ for str()
§ __repr__ for backquotes

• Start/end with 2 underscores
§ This is standard in Python
§ Used in all special methods
§ Also for special attributes

• For a complete list, see
http://docs.python.org/reference
/datamodel.html

class Point3(object):
"""Instances are points in 3D space"""
…

def __init__(self,x=0,y=0,z=0):
"""Initializer: makes new Point3"""
…

def __str__(self,q):
"""Returns: string with contents""”
…

def __repr__(self,q):
"""Returns: unambiguous string""”
…

10/27/15 Methods and Operations 13



Returning to Fractions

What We Want

1
2
+
1
3
+
1
4
∗
5
4

Operator Overloading

• Python has methods that 
correspond to built-in ops
§ __add__ corresponds to +
§ __mul__ corresponds to *
§ Not implemented by default

• Implementing one allows you 
to use that op on your objects
§ Called operator overloading
§ Changes operator meaning

10/27/15 Methods and Operations 14

Why not use the 
standard Python 
math operations?



Operator Overloading: Multiplication
class Fraction(object):

"""Instance attributes:
numerator:    top       [int]
denominator: bottom [int > 0]""”

def __mul__(self,q):
"""Returns: Product of self, q
Makes a new Fraction; does not   
modify contents of self or q
Precondition: q a Fraction"""
assert type(q) == Fraction
top = self.numerator*q.numerator
bot = self.denominator*q.denominator
return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = Fraction(3,4)
>>> r = p*q

>>> r = p.__mul__(q)

Python 
converts to

Operator overloading uses 
method in object on left.

10/27/15 Methods and Operations 15



Operator Overloading: Addition
class Fraction(object):

"""Instance attributes:
numerator:    top       [int]
denominator: bottom [int > 0]""”

def __add__(self,q):
"""Returns: Sum of self, q
Makes a new Fraction
Precondition: q a Fraction"""
assert type(q) == Fraction
bot = self.denominator*q.denominator
top = (self.numerator*q.denominator+

self.denominator*q.numerator)
return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = Fraction(3,4)
>>> r = p+q

>>> r = p.__add__(q)

Python 
converts to

Operator overloading uses 
method in object on left.

10/27/15 Methods and Operations 16



Comparing Objects for Equality

• Earlier in course, we saw == 
compare object contents
§ This is not the default
§ Default: folder names

• Must implement __eq__
§ Operator overloading!
§ Not limited to simple 

attribute comparison
§ Ex: cross multiplying

1        2
2        4

class Fraction(object):
"""Instance attributes:

numerator:    top       [int]
denominator: bottom [int > 0]"""

def __eq__(self,q):
"""Returns: True if self, q equal, 
False if not, or q not a Fraction"""
if type(q) != Fraction:

return False
left = self.numerator*q.denominator
rght = self.denominator*q.numerator
return left == rght

4 4

10/27/15 Methods and Operations 17



Issues With Overloading ==

• Overloading == does not 
also overload comparison !=
§ Must implement __ne__
§ Why? Will see later
§ But (not x == y) is okay!

• What if you still want to 
compare Folder names?
§ Use is operator on variables
§ (x is y) True if x, y contain 

the same folder name
§ Check if variable is empty:

x is None (x == None is bad)

class Fraction(object):
…
def __eq__(self,q):

"""Returns: True if self, q equal, 
False if not, or q not a Fraction"""
if type(q) != Fraction:

return False
left = self.numerator*q.denominator
rght = self.denominator*q.numerator
return left == rght

def __ne__(self,q):
"""Returns: False if self, q equal, 
True if not, or q not a Fraction"””
return not self == q

10/27/15 Methods and Operations 18



is Versus == 

• p is q evaluates to False
§ Compares folder names
§ Cannot change this

• p == q evaluates to True
§ But only because method 

__eq__ compares contents

id2
Point

id2p id3q

x 2.2

y

z

5.4

6.7

id3
Point

x 2.2

y

z

5.4

6.7

Always use (x is None) not (x == None)
10/27/15 Methods and Operations 19


