Important!

10/23/16

YES

NO

class Point3(object):
""Instances are 3D points
Attributes:
x: x-coord [float]
y: y-coord [float]
z: z-coord [float]"™"

class Point3:
"""Instances are 3D points
Attributes:
x: x-coord [float]
y: y-coord [float]
z: z-coord [float]"™"

3.0-Style Classes
Well-Designed

“Old-Style” Classes
Very, Very Bad

Case Study: Fractions

* Want to add a new type
= Values are fractions: %5, %
= Operations are standard
multiply, divide, etc.
= Example: 2*% =%
* Can do this with a class
= Values are fraction objects

= Operations are methods

* Example: simplefrac.py

class Fraction(object):
""Instance is a fraction n/d

Attributes:
numerator: top [int]
denominator: bottom [int > 0]

def _ init_ (self,n=0,d=1):
""Init: makes a Fraction""
self.numerator = n
self.denominator = d

Problem: Doing Math is Unwieldy

Example: Converting Values to Strings

What We Want What We Get
1 1 1\ 5 >>>p = Fraction(1,2)
—t =+ =) x= _ .
(2 3 4) 4 >>> q = Fraction(1,3)
>>> p = Fraction(1,4)
Why not use the >>>g = Fraction(5,4)
standard Python >>> (p.add(q.add(r))).mult(s)

math operations?

This is confusing!

str (O Function

Backquotes

e Usage: str()
= Evaluates the expression
= Converts it into a string
e How does it convert?
= str(R) > 'R
= gtr(True) = 'True’
= str('True') = 'True'
= ste(Point3()) > '(0.0,0.0,0.0)'

e Usage: °
= Evaluates the expression
= Converts it into a string
e How does it convert?
=R
= “True' - 'True'
= “'True'” - "True"
= “Point3()" =
"<class "Point3"> (0.0,0.0,0.0)"

What Does str()

Do On Objects?

¢ Does NOT display contents
>>>p = Point3(1,2,3)
>>> ste(p)
'<Point3 object at 0x1007a90>"
¢ Must add a special method
= _ str__ for strQ
= _ repr__ for backquotes
e Could get away with just one
= Backquotes require __repr__

= str() can use __repr__
(if __str__ is not there)

class Point3(object):
"""Instances are points in 3d space"""

def __str__(self):
"""Returns: string with contents"""
return '(‘+self.x + ' +

selfy +'' +

self.z + ")’

def __repr__(self):

"""Returns: unambiguous string"""

return str(self.__class__)+
str(self)

Special Methods in Python

e Have seen three so far
= __init__for initializer
= _ str__ for strQ)
= __repr__ for backquotes

e Start/end with 2 underscores
= This is standard in Python
= Used in all special methods
= Also for special attributes

* For a complete list, see

http://docs.python.org/reference
/datamodel.html

class Point3(object):
"""Instances are points in 3D space"""

def __init__(self,x=0,y=0,z=0):

"""Initializer: makes new Point3"""

def __str__(self,q):
"""Returns: string with contents""”

def __repr__(self,q):

"""Returns: unambiguous string""”

Returning to Fractions

10/23/16

What We Want

Operator Overloading

Operator Overloading: Multiplication

<1+1+1) 5
— —_— -_] Kk -
2 3 4/ 4

Why not use the
standard Python
math operations?

* Python has methods that
correspond to built-in ops
= __add__ corresponds to +
= __mul__ corresponds to *
= Not implemented by default
Implementing one allows you
to use that op on your objects
= Called operator overloading
= Changes operator meaning

class Fraction(object):

""Instance attributes:
numerator: top [int]
denominator: bottom [int > 0]""”

>>>p = Fraction(1,2)

>>> q = Fraction(3,4)

>>>p=p*q

def __mul__(self,q): Python
""Returns: Product of self, q

Makes a new Fraction; does not
modify contents of self or q

converts to

>>>p=
Precondition: q a Fraction"" r p._mul_(q)
assert type(q) == Fraction [

top = self.numerator*q.numerator

bot = self.denominator*q.denominator

Operator overloading uses]
return Fraction(top,bot)

method in object on left.

Operator Overloading: Addition

class Fraction(object):

""Instance attributes:
numerator: top [int]
denominator: bottom [int > 0]""”

def __add__ (self,q):
"Returns: Sum of self, q
Makes a new Fraction
Precondition: q a Fraction’
assert type(q) == Fraction
bot = self.denominator*q.denominator
top = (self.numerator*q.denominator+

self.denominator*q.numerator)
return Fraction(top,bot)

>>>p = Fraction(1,2)
>>> q = Fraction(3,4)
>>>p =ptq

Python
converts to

>>>p=p._ add_ (@)

Operator overloading uses
method in object on left.

Comparing Objects for Equality

¢ Earlier in course, we saw == class Fraction(object):
compare object contents ""Instance akributes:
A ——
= Default: folder names
* Must implement __eq_
= Operator overloading!

def __eq (self,q):
"""Returns: True if self, q equal,
imi ; False if not, or q not a Fraction™"
= Not limited to simple if type(a) - Fraction:

attribute comparison

return False
= Ex: cross multiplying left = self.numerator*q.denominator
OS2 4 rght = self.denominator*q.numerator
2 4 return left == rght

Issues With Overloading ==

° Overloading == does not class Fraction(object):

also overload comparison !=
def __eq (self,@):

® Must implement __ne__ ""Returns: True if self, q equal,

is Versus ==

* pis q evaluates to False
= Compares folder names

= Cannot change this

* p == q evaluates to True

= But only because method
__eq__ compares contents

= Why? Will see later
= But (not x ==y) is okay!
* What if you still want to
compare Folder names?
= Use is operator on variables
= (xisy) True if x, y contain
the same folder name

= Check if variable is empty:
x is None (x == None is bad)

False if not, or g not a Fraction""
if type(q) = Fraction:

return False
left = self.numerator*q.denominator
rght = self.denominator*q.numerator
return left == rght

def __ne__ (self,):
"""Returns: False if self, q equal,
True if not, or q not a Fraction"””

return not self == q

Always use (x is None) not (x == None)

