Lecture 16

More Recursion

Announcements for This Lecture

Prelim 1 Assignments and Labs
e Prelim 1 back today! * Need to be working on A4
* Pick up in Gates 216 = [Instructions are posted
= Solution posted in CMS = Just reading it takes a while
* Mean: 78, Median: 83 = Slightly longer than A3
* What are letter grades? = Problems are harder
= A bit too early to tell e Lab Today: lots of practice!
" A: Could be a consultant * First 4 functions mandatory
= B: Could take 2110 = Many optional ones in PDF
= C: Good enough to pass = Exam questions on Prelim 2

10/18/16 More Recursion

Recall: Divide and Conquer

Goal: Solve problem P on a piece of data

data

Idea: Split data into two parts and solve problem

data 1 data 2

Y Y
Solve Problem P Solve Problem P
. J
Y

Combine Answer!
10/18/16 More Recursion

Example: Reversing a String

def reverse(s):
"""Returns: reverse of 8

Precondition: s a string""" @

1. Handle small data

if len(s) <= 1: llo|1|1]e|H
return s

Hliel|l]1]|o]|!

2. Break into two parts H

3. Combine the result

10/18/16 More Recursion

Example: Reversing a String

def reverse(s):
"""Returns: reverse of 8

Precondition: s a string""" g

1. Handle small data

if len(s) <= 1: llo|1|1]e|H
return s

Hliel|l]1]|o]|!

2. Break into two parts H
left =s[0]

right = reverse(s[1:]) g

3. Combine the result

10/18/16 More Recursion

Example: Reversing a String

def reverse(s):
"""Returns: reverse of 8

Precondition: s a string""" g

1. Handle small data

if len(s) <= 1: llo|1|1]e|H
return s

Hliel|l]1]|o]|!

2. Break into two parts H
left =s[0]

right = reverse(s[1:]) g

3. Combine the result
return right+left

10/18/16 More Recursion

Example: Reversing a String

def reverse(s):
"""Returns: reverse of 8

Precondition: s a string™"
1. Handle small data

if len(s) <= I: [Base Case]
return s
2. Break into two parts N
left = s[0]
right = reverse(s[1:]) > Recursive
. Case
3. Combine the result

return right+left Y,

10/18/16 More Recursion

Example: Reversing a String

def reverse(s):
"""Returns: reverse of 8

Precondition: s a string™"
1. Handle small data

if len(s) <= I1: [Base Case]

return s-
Remove 1

9 Breakl recursive call

left = g[O]

right = reverse(s[1:]) > Recursive
. Case

3. Combine the result

return right+left Y,

10/18/16 More Recursion

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 4 digits
e.8. commafy('6341267") = '5,641,267"
Precondition: s represents a non-negative int"""

Approach 1

5 341267

10/18/16 More Recursion

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 4 digits
e.8. commafy('6341267") = '5,641,267"
Precondition: s represents a non-negative int"""

Approach 1
5 341267
commafy
341,267

10/18/16 More Recursion

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 4 digits
e.8. commafy('6341267") = '5,641,267"
Precondition: s represents a non-negative int"""

Approach 1
5 341267

commafy
5 341,267

10/18/16 More Recursion

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 4 digits
e.8. commafy('6341267") = '5,641,267"
Precondition: s represents a non-negative int"""

Approach 1
5 341267
commafy
5 , || 341,267
A
10/18/16 Always? When? More Recursion

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 4 digits
e.8. commafy('6341267") = '5,641,267"
Precondition: s represents a non-negative int"""

Approach 1 Approach 2
5 341267 5341 267
commafy
511, || 341,267
A
10/18/16 Always? When? More Recursion

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 4 digits
e.8. commafy('6341267") = '5,641,267"
Precondition: s represents a non-negative int"""

Approach 1 Approach 2
5 341267 5341 267
commafy commafy
5101, || 341,267 5341
A
10/18/16 Always? When? More Recursion

14

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 4 digits
e.8. commafy('6341267") = '5,641,267"
Precondition: s represents a non-negative int"""

Approach 1 Approach 2
5 341267 5341 267
commafy commafy
511, || 341,267 5,341 267
A
10/18/16 Always? When? More Recursion

15

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 4 digits
e.8. commafy('6341267") = '5,641,267"
Precondition: s represents a non-negative int"""

Approach 1 Approach 2
5 341267 5341 267
commafy commafy
511, || 341,267 5341 (| , || 267
A A
10/18/16 Always? When? More Recursion Always!

16

How to Break Up a Recursive Function?

def commafy(s):

"""Returns: string with commas every 3 digits
e.8. commafy('6341267") = '5,641,267"
Precondition: s represents a non-negative int"""

1. Handle small data.

llf lent(S) <: S [Base Case]
return

2. Break into two parts N
left = commafy(s[:-3]) .
right = s[-3:] # Small part on RIGHT > [Recursive }

3. Combine the result Case
return left + ', + right y

10/18/16 More Recursion

17

How to Break Up a Recursive Function?

def exp(b, ¢)
"""Returns: b°
Precondition: b a float, ¢ 2 0 an int"™

Approach 1 Approach 2
1225 = 12 x 12256 = X
Recursive Recursive | | Recursive
b¢ =b x (b¢!) b¢ = (bxb)“? if ¢ even

10/18/16 More Recursion 18

Raising a Number to an Exponent

Approach 1 Approach 2

def exp(b, ¢) def exp(b, ¢)

"""Returns: b° """Returns: b°

Precond: b a float, ¢ = 0 an int""" Precond: b a float, ¢ = 0 an int"""

#b%1s 1 #b%1s 1

ifc==0: ifc==0:

| return 1 | return 1

b¢ = b(b¢!) #c>0

left=>b ifc % 2 ==0:

right = exp(b,c-1) l return exp(b*b,c/2)

return left*right return b*exp(b*b,(c-1)/2)

10/18/16 More Recursion 19

Raising a Number to an Exponent

Approach 1 Approach 2
def exp(b, ¢) def exp(b, ¢)
"""Returns: b° """Returns: b°
Precond: b a float, ¢ = 0 an int""" Precond: b a float, ¢ = 0 an int"""
#b%is 1 #bYis 1
ifc==0: ifc==0:
| return 1 | return 1
b¢ = b(b¢!) #c>0
left right
left=>b 1f c % L—\r] Lyg—]
right = exp(b,c-1) return exp(b*b,c/2)
return left*right return b*exp(b*b,(c-1)/2)

Raising a Number to an Exponent

def exp(b, ¢)
"""Returns: be

#bVis 1
if c==0:
return 1

#c>0
if ¢ % 2 ==0:
| return exp(b*b,c/2)

return b*exp(b*b,(c-1)/2)

10/18/16

Precond: b a float, ¢ = O an int"""

c # of calls

0 0

1 1

2 2

4 3

8 4

16 5

32 6

20 n+1
32768 1s 215

b327%8 needs only 215 calls!

More Recursion

21

Recursion and Objects

e (Class Person (person.py)

Objects have 3 attributes

name: String

John Sr.

mom: Person (or None)
dad: Person (or None)

e Represents the “family tree”

Goes as far back as known

Attributes mom and dad
are None if not known

e (Constructor: Person(n,m,d)

10/18/16

Or Person(n) if no mom, dad

777 Eva Dan Heather
Pamela 777777
John Jr. Jane Robert Ellen

N/

John III

More Recursion

~.

N/

Alice

John IV

Recursion and Objects

def num_ancestors(p):
"""Returns: num of known ancestors
Pre: p is a Person"""

1. Handle small data.
No mom or dad (no ancestors)

2. Break into two parts
Has mom or dad

Count ancestors of each one
(plus mom, dad themselves)

3. Combine the result

10/18/16

779 Eva Dan Heather
John Sr. || Pamela 77 17?
John Jr. Jane Robert Ellen

N/

John III

N/

Alice

~.

John IV

e

11 ancestors

More Recursion

Recursion and Objects

def num_ancestors(p):

"""Returns: num of known ancestors

Pre: p is a Person"""

1. Handle small data.

if p.mom == None and p.dad == None:
| return O

2. Break into two parts

moms =0

if not p.mom == None:

| moms = 1+num_ancestors(p.mom)
dads =0

if not p.dad== None:

| dads = 1+num_ancestors(p.dad)

3. Combine the result
return moms+dads

10/18/16

m

Eva

Dan

Heather

John Sr.

Pamela

S

M

m

N

John Jr.

Jane

Robert

Ellen

N/

John III

e

11 ancestors

More Recursion

N/

Alice

~.

John IV

Is All Recursion Divide and Conquer?

* Divide and conquer implies two halves “equal”
* Performing the same check on each half

= With some optimization for small halves

* Sometimes we are given a recursive definition
= Math formula to compute that 1s recursive
= String definition to check that is recursive
= Picture to draw that 1s recursive
= Example: n! =n (n-1)!
 In that case, we are just implementing definition

10/18/16 More Recursion 25

Example: Palindromes

e String with = 2 characters 1s a palindrome if:

" its first and last characters are equal, and

* the rest of the characters form a palindrome

. Example°
have to be the same

CMANAPLANACANALZANAVIA
has to be a palindrome
 Function to Implement:

def ispalindrome(s):
"""Returns: True if s is a palindrome"™"

10/18/16 More Recursion

26

Example: Palindromes

e String with = 2 characters 1s a palindrome if:
" its first and last characters are equal, and

" the rest of the characters form a palindrome

def ispalindrome(s):
"""Returns: True if s is a palindrome™""
if len(s) < 2:

. peturn True

Recursive
Definition

Base case

Halves not the same; not divide and conquer
ends = s[0] == s[-1]

middle = ispalindrome(s[1:-1]) Recursive case
return ends and middle

10/18/16 More Recursion 27

Recursive Functions and Helpers

def ispalindrome?(s):

""Returns: True if s is a palindrome

Case of characters is ignored."""

if len(s) < 2:

. return True

Halves not the same; not divide and conquer
ends = equals_ignore_case(s[0], s[-1])

middle = ispalindrome(s[1:-1])

return ends and middle

10/18/16 More Recursion

28

Recursive Functions and Helpers

def ispalindrome?(s):

"""Returns: True if s is a palindrome

Case of characters is ignored}""

if len(s) < 2:

. return True

Halves not the same; not divide and conquer
ends 9 equals_ignore_case(s[0], s[-1])
middle = ispalindrome(s[1:-1])
return ends and middle

10/18/16 More Recursion

29

Recursive Functions and Helpers

def ispalindrome?(s):

Case of characters is ignored

if len(s) < &:
. return True

"""Returns: True if s is a palindrome

Use helper functions!

* Pull out anything not
part of the recursion

* Keeps your code simple
and easy to follow

middle = ispalindrome(s[1:-1])
return ends and middle

def equals_ignore_case(a, b):

Halves not the same; not divide and conquer
ends 9 equals_ignore_case(s[0], s[-1])

"""Returns: True if a and b are same ignoring case™""

return a.upper() == b.upper()

10/18/16 More Recursion

30

Example: More Palindromes

def ispalindromed(s):

"""Returns: True if 8 is a palindrome

Case of characters and non-letters ignored."""
return ispalindrome?(depunct(s))

def depunct(s):
"""Returns: s with non-letters removed"""
ifg=="
- return s Use helper functions!
Combine left and right * Sometimes the helper is
if s[0] in string.letters: a recursive function

. return s[0]+depunct(s[1:])
Ignore left if it is not a letter

* Allows you break up
problem in smaller parts

return depunect(s[1:])
10/18/16 More Recursion 31

Example: Space Filling Curves

Challenge

* Draw a curve that
= Starts in the left corner
* Ends in the right corner
= Touches every grid point

= Does not touch or cross
itself anywhere

O S O e Useful for analysis of
Starts Ends 2-dimensional data
Here Here

10/18/16 More Recursion 32

Hilbert’s Space Filling Curve

Hilbert(1):

2n

211

10/18/16 More Recursion

Hilbert(2):

['1

=
[T 1

Hilbert(n):

H(n-1) H(n-1)
down down
I [52
¢ 5 & b
= C E 'E

33

Hilbert’s Space Filling Curve

Basic Idea

e Gi1ven a box | | ;_E_E

e Draw 2nX2n

grid in box

* Trace the curve

1]
(]
03

un
{r)

]
(]

Ay
naen

na
U
V)

olnd
%V

o

dps &y
ene

_g‘;J

G4

el

[=
=
L
]

* Asn goes to o,

falea s

bty

T TORSer (UASes (RS
(]
G107

curve fills box

‘Ga"
[-

[+
oAy

u25upg

] cu
en.e
o © o~
u
ol
heoo n
o ©
d [
U u

LT
1') U

-
h82n 88 [s

EYpoegYasyeyt
2985

;
(503

L3

10/18/16 More Recursion

PRI

045, 6A0) HBThGa i

SHEH

yasy
L'}

“Turtle’” Graphics: Assignment A4

Turn Draw Line

&-

‘
o

Move Change Color

10/18/16 I

More Recursion

o

&

35

