
Recursion

Lecture 15

Announcements for Today

Prelim 1

• Tonight at 7:30-9pm
§ A–J (Uris G01)
§ K-Z (Statler Auditorium)

• Graded by noon on Sun
§ Scores will be in CMS
§ In time for drop date

• Make-ups were e-mailed
§ If not, e-mail Jessica NOW

Other Announcements

• Reading: 5.8 – 5.10
• Assignment 3 now graded

§ Mean 94, Median 99
§ Time: 7 hrs, StdDev: 3 hrs
§ Unchanged from last year

• Assignment 4 posted Friday
§ Parts 1-3: Can do already
§ Part 4: material from today
§ Due two weeks from today

10/15/15 Recursion 2

Recursion

• Recursive Definition:
A definition that is defined in terms of itself

• Recursive Function:
A function that calls itself (directly or indirectly)

• Recursion: If you understand the definition, stop;
otherwise, see Recursion

• Infinite Recursion: See Infinite Recursion

10/15/15 Recursion 3

A Mathematical Example: Factorial

• Non-recursive definition:
n! = n× n-1 ×… × 2 × 1

= n (n-1 ×… × 2 × 1)

• Recursive definition:
n! = n (n-1)!
0! = 1

10/15/15 Recursion 4

for n ≥ 0 Recursive case
Base case

What happens if there is no base case?

Factorial as a Recursive Function

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

• n! = n (n-1)!
• 0! = 1

10/15/15 Recursion 5

What happens if there is no base case?

Recursive case

Base case(s)

Example: Fibonnaci Sequence
• Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ...

a0 a1 a2 a3 a4 a5 a6

§ Get the next number by adding previous two
§ What is a8?

10/15/15 Recursion 6

A: a8 = 21
B: a8 = 29
C: a8 = 34
D: None of these.

Example: Fibonnaci Sequence
• Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ...

a0 a1 a2 a3 a4 a5 a6

§ Get the next number by adding previous two
§ What is a8?

10/15/15 Recursion 7

A: a8 = 21
B: a8 = 29
C: a8 = 34
D: None of these.

correct

Example: Fibonnaci Sequence
• Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ...

a0 a1 a2 a3 a4 a5 a6

§ Get the next number by adding previous two
§ What is a8?

• Recursive definition:
§ an = an-1 + an-2 Recursive Case
§ a0 = 1 Base Case
§ a1 = 1 (another) Base Case

10/15/15 Recursion 8

Why did we need two base cases this time?

Fibonacci as a Recursive Function

def fibonacci(n):
"""Returns: Fibonacci no. an

Precondition: n ≥ 0 an int"""
if n <= 1:

return 1

return (fibonacci(n-1)+
fibonacci(n-2))

10/15/15 Recursion 9

Recursive case

Base case(s)

Note difference with base case conditional.

Fibonacci as a Recursive Function

def fibonacci(n):
"""Returns: Fibonacci no. an

Precondition: n ≥ 0 an int"""
if n <= 1:

return 1

return (fibonacci(n-1)+
fibonacci(n-2))

• Function that calls itself
§ Each call is new frame
§ Frames require memory
§ ∞ calls = ∞ memory

10/15/15 Recursion 10

n

fibonacci 3

5

n

fibonacci 1

4 n

fibonacci 1

3

Fibonacci: # of Frames vs. # of Calls

• Fibonacci is very inefficient.
§ fib(n) has a stack that is always ≤ n
§ But fib(n) makes a lot of redundant calls

fib(5)

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(0)

fib(0)

fib(1)

fib(1) 11Recursion

fib(3)

fib(2) fib(1)

fib(0)fib(1)

Fibonacci: # of Frames vs. # of Calls

• Fibonacci is very inefficient.
§ fib(n) has a stack that is always ≤ n
§ But fib(n) makes a lot of redundant calls

fib(5)

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(0)

fib(0)

fib(1)

fib(1) 12Recursion

fib(3)

fib(2) fib(1)

fib(0)fib(1)

Path to end =
the call stack

Two Major Issues with Recursion

• How are recursive calls executed?
§ We saw this with the Fibonacci example
§ Use the call frame model of execution

• How do we understand a recursive function
(and how do we create one)?
§ You cannot trace the program flow to understand

what a recursive function does – too complicated
§ You need to rely on the function specification

10/15/15 Recursion 13

How to Think About Recursive Functions

1. Have a precise function specification.
2. Base case(s):

§ When the parameter values are as small as possible
§ When the answer is determined with little calculation.

3. Recursive case(s):
§ Recursive calls are used.
§ Verify recursive cases with the specification

4. Termination:
§ Arguments of calls must somehow get “smaller”
§ Each recursive call must get closer to a base case

10/15/15 Recursion 14

Understanding the String Example

def num_es(s):
"""Returns: # of 'e's in s"""
s is empty
if s == '':

return 0

s has at least one 'e'
if s[0] == 'e':

return 1+num_es(s[1:])

return num_es(s[1:]))

• Break problem into parts

• Solve small part directly

s
0 1 len(s)

H ello World!

Recursive case

Base case
number of e’s in s =

number of e’s in s[0]
+ number of e’s in s[1:]

number of e’s in s =
number of e’s in s[1:]
(+1 if s[0] is an 'e')
(+0 is s[0] not an 'e')

10/15/15 Recursion 15

Understanding the String Example

• Step 1: Have a precise specification
def num_es(s):

"""Returns: # of 'e's in s"""
s is empty
if s == '':

return 0

return # of 'e's in s[0]+# of 'e's in s[1:]
if s[0] == 'e':

return 1+num_es(s[1:])

return num_es(s[1:]))

• Step 2: Check the base case
§ When s is the empty string, 0 is (correctly) returned.

Recursive case

Base case

“Write” your return
statement using the

specification

10/15/15 Recursion 16

Understanding the String Example

• Step 3: Recursive calls make progress toward termination
def num_es(s):

"""Returns: # of 'e's in s"""
s is empty
if s == '':

return 0

return # of 'e's in s[0]+# of 'e's in s[1:]
if s[0] == 'e':

return 1+num_es(s[1:])

return num_es(s[1:]))

• Step 4: Check the recursive case
§ Does it match the specification?

argument s[1:]

parameter s
argument s[1:] is smaller than
parameter s, so there is progress
toward reaching base case 0

10/15/15 Recursion 17

Exercise: Remove Blanks from a String

1. Have a precise specification
def deblank(s):

"""Returns: s but with its blanks removed"""

2. Base Case: the smallest String s is ''.
if s == '':

return s

3. Other Cases: String s has at least 1 character.
return (s[0] with blanks removed) + (s[1:] with blanks removed)

10/15/15 Recursion 18

Exercise: Remove Blanks from a String

1. Have a precise specification
def deblank(s):

"""Returns: s but with its blanks removed"""

2. Base Case: the smallest String s is ''.
if s == '':

return s

3. Other Cases: String s has at least 1 character.
return (s[0] with blanks removed) + (s[1:] with blanks removed)

10/15/15 Recursion 19

('' if s[0] == ' ' else s[0])

What the Recursion Does

a b cdeblank

10/15/15 Recursion 20

What the Recursion Does

a b cdeblank

a b cdeblank

10/15/15 Recursion 21

What the Recursion Does

a b c

a

deblank

a b cdeblank

b cdeblank

10/15/15 Recursion 22

What the Recursion Does

a b c

a

deblank

a b cdeblank

b cdeblank

b cdeblank

10/15/15 Recursion 23

What the Recursion Does

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

10/15/15 Recursion 24

What the Recursion Does

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

10/15/15 Recursion 25

What the Recursion Does

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

10/15/15 Recursion 26c

What the Recursion Does

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

10/15/15 Recursion 27c c

What the Recursion Does

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

10/15/15 Recursion 28c c

c✗

What the Recursion Does

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

10/15/15 Recursion 29c c

c✗

cb

What the Recursion Does

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

10/15/15 Recursion 30c c

c✗

cb

cb✗

What the Recursion Does

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

10/15/15 Recursion 31c c

c✗

cb

cb✗

cba

What the Recursion Does

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

10/15/15 Recursion 32c c

c✗

cb

cb✗

cba

cba✗

What the Recursion Does

a b c

a

b

c c

c

cb

cb

cba

cba

cba

✗

✗

✗

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

10/15/15 Recursion 33

Exercise: Remove Blanks from a String
def deblank(s):

"""Returns: s with blanks removed"""
if s == '':

return s

s is not empty
if s[0] is a blank:

return s[1:] with blanks removed

s not empty and s[0] not blank
return (s[0] +

s[1:] with blanks removed)

• Sometimes easier to break
up the recursive case
§ Particularly om small part
§ Write recursive case as a

sequence of if-statements
• Write code in pseudocode

§ Mixture of English and code
§ Similar to top-down design

• Stuff in red looks like the
function specification!
§ But on a smaller string
§ Replace with deblank(s[1:])

10/15/15 Recursion 34

Exercise: Remove Blanks from a String
def deblank(s):

"""Returns: s with blanks removed"""
if s == '':

return s

s is not empty
if s[0] in string.whitespace:

return deblank(s[1:])

s not empty and s[0] not blank
return (s[0] +

deblank(s[1:]))

• Check the four points:
1. Precise specification?
2. Base case: correct?
3. Progress towards

termination?
4. Recursive case: correct?

10/15/15 Recursion 35

Module string has special
constants to simplify

detection of whitespace
and other characters.

Example: Reversing a String

• Precise Specification:
§ Returns: reverse of s

• Solving with recursion
§ Suppose we can reverse

a smaller string
(e.g. less one character)

§ Can we use that solution
to reverse whole string?

• Often easy to understand
first without Python
§ Then sit down and code

10/15/15 Recursion 36

H e l l o !

! o l l e H

e l l o !H

Example: Reversing a String

• Precise Specification:
§ Returns: reverse of s

• Solving with recursion
§ Suppose we can reverse

a smaller string
(e.g. less one character)

§ Can we use that solution
to reverse whole string?

• Often easy to understand
first without Python
§ Then sit down and code

10/15/15 Recursion 37

H e l l o !

! o l l e H

H e l l o !

Example: Reversing a String

• Precise Specification:
§ Returns: reverse of s

• Solving with recursion
§ Suppose we can reverse

a smaller string
(e.g. less one character)

§ Can we use that solution
to reverse whole string?

• Often easy to understand
first without Python
§ Then sit down and code

10/15/15 Recursion 38

H e l l o !

! o l l e H

e l l o !H

! o l l e

Example: Reversing a String

• Precise Specification:
§ Returns: reverse of s

• Solving with recursion
§ Suppose we can reverse

a smaller string
(e.g. less one character)

§ Can we use that solution
to reverse whole string?

• Often easy to understand
first without Python
§ Then sit down and code

10/15/15 Recursion 39

H e l l o !

! o l l e H

e l l o !

! o l l e H

Example: Reversing a String

def reverse(s):
"""Returns: reverse of s

Precondition: s a string"""
s is empty
if s == '':

return s

s has at least one char
(reverse of s[1:])+s[0]
return reverse(s[1:])+s[0]

10/15/15 Recursion 40

e l l o !

! o l l e

H

1. Precise specification?
2. Base case: correct?
3. Recursive case:

progress to termination?
4. Recursive case: correct?

✔

✔

✔

✔

Next Time: Recursion vs. For-Loops

10/15/15 Recursion 41

