Lecture 15

Recursion

Announcements for Today

Prelim 1

- Tonight at 7:30-9pm
 - **A–J** (Uris G01)
 - **K-Z** (Statler Auditorium)
- Graded by noon on Sun
 - Scores will be in CMS
 - In time for drop date
- Make-ups were e-mailed
 - If not, e-mail Jessica NOW

Other Announcements

- Reading: 5.8 5.10
- Assignment 3 now graded
 - **Mean** 94, **Median** 99
 - Time: 7 hrs, StdDev: 3 hrs
 - Unchanged from last year
- Assignment 4 posted Friday
 - Parts 1-3: Can do already
 - Part 4: material from today
 - Due two weeks from today

Recursion

Recursive Definition:

A definition that is defined in terms of itself

• Recursive Function:

A function that calls itself (directly or indirectly)

- **Recursion**: If you understand the definition, stop; otherwise, see Recursion
- Infinite Recursion: See Infinite Recursion

A Mathematical Example: Factorial

• Non-recursive definition:

$$n! = n \times n-1 \times ... \times 2 \times 1$$

= $n (n-1 \times ... \times 2 \times 1)$

• Recursive definition:

$$n! = n (n-1)!$$
 for $n \ge 0$ Recursive case $0! = 1$ Base case

What happens if there is no base case?

Factorial as a Recursive Function

def factorial(n):

"""Returns: factorial of n.

Pre: $n \ge 0$ an int"""

if n == 0:

return 1

n! = n (n-1)!0! = 1

Base case(s)

return n*factorial(n-1)

Recursive case

What happens if there is no base case?

Example: Fibonnaci Sequence

• Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ... $a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ a_6$

- Get the next number by adding previous two
- What is a_8 ?

A: $a_8 = 21$ B: $a_8 = 29$ C: $a_8 = 34$ D: None of these.

Example: Fibonnaci Sequence

• Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ... $a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ a_6$

- Get the next number by adding previous two
- What is a_8 ?

A: $a_8 = 21$ B: $a_8 = 29$ C: $a_8 = 34$ **correct** D: None of these.

Example: Fibonnaci Sequence

• Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ... $a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ a_6$

- What is a_8 ?
- Recursive definition:

$$a_n = a_{n-1} + a_{n-2}$$

Recursive Case

$$a_0 = 1$$

Base Case

•
$$a_1 = 1$$

(another) Base Case

Why did we need two base cases this time?

Fibonacci as a Recursive Function

```
def fibonacci(n): 

"""Returns: Fibonacci no. a_n

Precondition: n \ge 0 an int""" 

if n <= 1: 

| return 1
```

```
return (fibonacci(n-1)+ fibonacci(n-2))
```

Recursive case

Note difference with base case conditional.

Fibonacci as a Recursive Function

def fibonacci(n):

```
"""Returns: Fibonacci no. a_n
Precondition: n \ge 0 an int"""

if n \le 1:

return 1
```

return (fibonacci(n-1)+ fibonacci(n-2))

- Function that calls itself
 - Each call is new frame
 - Frames require memory
 - ∞ calls = ∞ memory

Fibonacci: # of Frames vs. # of Calls

- Fibonacci is very inefficient.
 - fib(n) has a stack that is always $\leq n$
 - But fib(n) makes a lot of redundant calls

Fibonacci: # of Frames vs. # of Calls

- Fibonacci is very inefficient.
 - fib(n) has a stack that is always $\leq n$
 - But fib(n) makes a lot of redundant calls

Two Major Issues with Recursion

- How are recursive calls executed?
 - We saw this with the Fibonacci example
 - Use the call frame model of execution
- How do we understand a recursive function (and how do we create one)?
 - You cannot trace the program flow to understand what a recursive function does – too complicated
 - You need to rely on the function specification

How to Think About Recursive Functions

1. Have a precise function specification.

2. Base case(s):

- When the parameter values are as small as possible
- When the answer is determined with little calculation.

3. Recursive case(s):

- Recursive calls are used.
- Verify recursive cases with the specification

4. Termination:

- Arguments of calls must somehow get "smaller"
- Each recursive call must get closer to a base case

Understanding the String Example

```
def num_es(s):
  """Returns: # of 'e's in s"""
  # s is empty
  if s == ":
                         Base case
     return 0
  # s has at least one 'e'
  if s[0] == 'e':
                    Recursive case
     return 1+num_es(s[1:])
   return num_es(s[1:]))
                            len(s)
      ello World!
```

Break problem into parts

```
number of e's in s =

number of e's in s[0]

+ number of e's in s[1:]
```

Solve small part directly

```
number of e's in s =
number of e's in s[1:]
(+1 if s[0] is an 'e')
(+0 is s[0] not an 'e')
```

Understanding the String Example

• **Step 1:** Have a precise specification

"Write" your return statement using the specification

- Step 2: Check the base case
 - When s is the empty string, 0 is (correctly) returned.

Understanding the String Example

• Step 3: Recursive calls make progress toward termination

- **Step 4:** Check the recursive case
 - Does it match the specification?

Exercise: Remove Blanks from a String

1. Have a precise specification

2. Base Case: the smallest String s is ".

```
if s == ":
    return s
```

3. Other Cases: String s has at least 1 character.

```
return (s[0] with blanks removed) + (s[1:] with blanks removed)
```

Exercise: Remove Blanks from a String

1. Have a precise specification

2. Base Case: the smallest String s is ".

```
if s == ":
    return s
```

3. Other Cases: String s has at least 1 character.

```
return (s[0] with blanks removed) + (s[1:] with blanks removed)

(" if s[0] == ' ' else s[0])
```

deblank a b c

deblank
a
b
c

deblank
a
b
c

a
deblank
b
c

del	olank		a	b	c
	debla	ınk	a	b	c
a	deblank			b	c
		c			
b		c			

deblank		a		b		c	
debla	deblank			b		c	
a	deblank					c	
	deblank					c	
b	deblank						
	deblank						

10/15/15 C

Recursion

10/15/15

32

33

Exercise: Remove Blanks from a String

def deblank(s):

```
"""Returns: s with blanks removed"""
if s == '':
  return s
# s is not empty
if s[0] is a blank:
  return s[1:] with blanks removed
# s not empty and s[0] not blank
return (s[0] +
       s[1:] with blanks removed)
```

- Sometimes easier to break up the recursive case
 - Particularly om small part
 - Write recursive case as a sequence of if-statements
- Write code in *pseudocode*
 - Mixture of English and code
 - Similar to top-down design
- Stuff in red looks like the function specification!
 - But on a smaller string
 - Replace with deblank(s[1:])

Exercise: Remove Blanks from a String

def deblank(s):

```
"""Returns: s with blanks removed"""
if s == ":
  return s
# s is not empty
if s[0] in string.whitespace:
  return deblank(s[1:])
# s not empty and s[0] not blank
return(s[0] +
       deblank(s[1:]))
```

• Check the four points:

- 1. Precise specification?
- 2. Base case: correct?
- 3. Progress towards termination?
- 4. Recursive case: correct?

Module string has special constants to simplify detection of whitespace and other characters.

- Precise Specification:
 - Returns: reverse of s
- Solving with recursion
 - Suppose we can reverse a smaller string (e.g. less one character)
 - Can we use that solution to reverse whole string?
- Often easy to understand first without Python
 - Then sit down and code

• Precise Specification:

- Returns: reverse of s
- Solving with recursion
 - Suppose we can reverse a smaller string (e.g. less one character)
 - Can we use that solution to reverse whole string?
- Often easy to understand first without Python
 - Then sit down and code

• Precise Specification:

- Returns: reverse of s
- Solving with recursion
 - Suppose we can reverse a smaller string (e.g. less one character)
 - Can we use that solution to reverse whole string?
- Often easy to understand first without Python
 - Then sit down and code

• Precise Specification:

- Returns: reverse of s
- Solving with recursion
 - Suppose we can reverse a smaller string (e.g. less one character)
 - Can we use that solution to reverse whole string?
- Often easy to understand first without Python
 - Then sit down and code


```
def reverse(s):
    """Returns: reverse of s

    Precondition: s a string"""
    # s is empty
    if s == ":
        return s

# s has at least one char
```

(reverse of s[1:])+s[0]

return reverse(s[1:])+s[0]

- ✓ 1. Precise specification?
- ✓ 2. Base case: correct?
- 3. Recursive case: progress to termination?
 - 4. Recursive case: correct?

Next Time: Recursion vs. For-Loops