A Mathematical Example: Factorial

• Non-recursive definition:

```
n! = n \times n-1 \times ... \times 2 \times 1
= n (n-1 \times ... \times 2 \times 1)
```

• Recursive definition:

```
n! = n \ (n-1)! for n \ge 0 Recursive case 0! = 1 Base case
```

What happens if there is no base case?

```
Factorial as a Recursive Function

def factorial(n):

| """Returns: factorial of n.
| Pre: n ≥ 0 an int"""

if n == 0:
| return 1

Base case(s)

return n*factorial(n-1)

Recursive case

What happens if there is no base case?
```

Example: Fibonnaci Sequence

- Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ... $a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ a_6$
 - Get the next number by adding previous two
 - What is a_8 ?
- Recursive definition:

• $a_n = a_{n-1} + a_{n-2}$ **Recursive Case**

• $a_0 = 1$ **Base Case**

• $a_1 = 1$ (another) Base Case

Why did we need two base cases this time?

Fibonacci as a Recursive Function def fibonacci(n): Precondition: $n \ge 0$ an int if n <= 1: return 1 return (fibonacci(n-1)+ fibonacci(n-2)) Function that calls itself Each call is new frame Frames require memory calls = ∞ memory fibonacci 3 n 5

Fibonacci: # of Frames vs. # of Calls • Fibonacci is very inefficient. • fib(n) has a stack that is always ≤ n • But fib(n) makes a lot of redundant calls Fib(1) Fib(2) Fib(1) Fib(2) Fib(1) Fib(1) Fib(1) Fib(1) Fib(1) Fib(2) Fib(1) Fib(1) Fib(1) Fib(2) Fib(1) Fib(1) Fib(1) Fib(2) Fib(1) Fib(1) Fib(2) Fib(3)

Three Steps for Divide and Conquer

- 1. Decide what to do on "small" data
 - Some data cannot be broken up
 - Have to compute this answer directly
- 2. Decide how to break up your data
 - Both "halves" should be smaller than whole
 - Often no wrong way to do this (next lecture)
- 3. Decide how to combine your answers
 - Assume the smaller answers are correct
 - Combining them should give bigger answer

