
More with Sequences

Lecture 14

Announcements for This Lecture

Readings
• Today: Chapter 11
• Next Week: Sec. 5.8-5.10

Assignments
• A3 is due today

§ Survey is posted in CMS
§ Late penalty 10%/day

• Opportunities for help
§ Consultants 4:30-9:00
§ Josselyn has OH 2-3

• No lab next week
§ Tuesday is part of fall break
§ No special lab for Wed

10/6/16 More Sequences 2

• Prelim, Oct 13th 7:30-9:00
§ Material up to TUESDAY
§ Study guide is posted

• Review session Wednesday
§ Still checking place/time
§ Announcement on Piazza

Processing Lists: builtins

• sum(x) adds up all the elements in the list x
§ They must all be numbers!

• min(x) or max(x) find the min/max value in list x
§ They use the same ordering as sort()

• range(a,b,c) produces [a,a+c,a+2*c,…,a+c*((b-a)/c)]
§ Starts at a, increases by c each time, until b (or less)
§ The argument c is optional; c = 1 by default

• list(x) converts x (such as a string) to a list
§ Example: list('mimsy') produces ['m', 'i', 'm', 's', 'y']

10/6/16 More Sequences 3

The Map Function

• map(⟨function⟩, ⟨list⟩)
§ Function has to have

exactly 1 parameter
§ Otherwise, get an error
§ Returns a new list

• Does the same thing as
def map(f,x):

result = [] # empty list
for y in x:

result.append(f(y))
return result

10/6/16 More Sequences 4

map(f, x)

[f(x[0]), f(x[1]), …, f(x[n–1])]

calls the function f
once for each item

map(len, ['a', 'bc', 'defg'])
returns [1, 2, 4]

Lists of Objects

• List positions are variables
§ Can store base types
§ But cannot store folders
§ Can store folder identifiers

• Folders linking to folders
§ Top folder for the list
§ Other folders for contents

• Example:
>>> r = colormodel.RED
>>> b = colormodel.BLUE
>>> g = colormodel.GREEN
>>> x = [r,b,g]

10/6/16 More Sequences 5

id10

red 255

green 0

blue 0

RGB id11

red 0

green 255

blue 0

RGB

id12

red 0

green 0

blue 255

RGB

id13x

id13

x[0]
x[1]
x[2]

id10
id11
id12

list

id12g

id11b

id10r

Lists of Objects

• List positions are variables
§ Can store base types
§ But cannot store folders
§ Can store folder identifiers

• Folders linking to folders
§ Top folder for the list
§ Other folders for contents

• Example:
>>> r = colormodel.RED
>>> b = colormodel.BLUE
>>> g = colormodel.GREEN
>>> x = [r,b,g]

10/6/16 More Sequences 6

id10

red 255

green 0

blue 0

RGB id11

red 0

green 255

blue 0

RGB

id12

red 0

green 0

blue 255

RGB

id13x

id13

x[0]
x[1]
x[2]

id10
id11
id12

list

id12g

id11b

id10r

Nested Lists

• Lists can hold any objects
• Lists are objects
• Therefore lists can hold other lists!

x = [1, [2, 1], [1, 4, [3, 1]], 5]
x[0] x[1][1] x[2][2][1]x[2][0]

x[1] x[2] x[2][2]a = [2, 1]
b = [3, 1]
c = [1, 4, b]
x = [1, a, c, 5]

10/6/16 More Sequences 7

Two Dimensional Lists

Table of Data Images

10/6/16 More Sequences 8

5 4 7 3

4 8 9 7

5 1 2 3

4 1 2 9

6 7 8 0

0 1 2 3

0

1

4

2

3

Store them as lists of lists (row-major order)
d = [[5,4,7,3],[4,8,9,7],[5,1,2,3],[4,1,2,9],[6,7,8,0]]

0 1 2 3 4 5 6 7 8 9 101112

0
1
2
3
4
5
6
7
8
9
10
11
12

Each row, col
has a value Each row, col has

an RGB value

Overview of Two-Dimensional Lists

• Access value at row 3, col 2:

d[3][2]

• Assign value at row 3, col 2:

d[3][2] = 8

• An odd symmetry

§ Number of rows of d: len(d)

§ Number of cols in row r of d: len(d[r])

10/6/16 More Sequences 9

5 4 7 3

4 8 9 7

5 1 2 3

4 1 2 9

6 7 8 0

d

0 1 2 3

0
1

4

2

3

How Multidimensional Lists are Stored

• b = [[9, 6, 4], [5, 7, 7]]

• b holds name of a one-dimensional list
§ Has len(b) elements
§ Its elements are (the names of) 1D lists

• b[i] holds the name of a one-dimensional list (of ints)
§ Has len(b[i]) elements

10/6/16 More Sequences 10

id2

9
6
4

id3

5
7
7

id1

id2
id3

id1b

9 6 4
5 7 7

Image Data: 2D Lists of Pixels

10/6/16 More Sequences 11

0 1 2 3 4 5 6 7 8 9 101112

0
1
2
3
4
5
6
7
8
9

10
11
12

id1b id1

id2
id3

list

…

id2

id23
id24

list

…

id23

red 255

green 255

blue 255

RGB

b[0][0] is a
white pixel

Ragged Lists: Rows w/ Different Length

10/6/16 More Sequences 12

• b = [[17,13,19],[28,95]]

• Will see applications of this later

id2

17
13
19

id3

28
95

id1
id1b

id2
id3

0
1
2

1 1
0

0

Slices and Multidimensional Lists

• Only “top-level” list is copied.
• Contents of the list are not altered
• b = [[9, 6], [4, 5], [7, 7]]

10/6/16 More Sequences 13

id2

9
6

id1

id2
id3

id1b

id4

id3

4
5id4

7
7

x = b[:2]

id5x

id5

id2
id3

Slices and Multidimensional Lists

• Only “top-level” list is copied.
• Contents of the list are not altered
• b = [[9, 6], [4, 5], [7, 7]]

10/6/16 More Sequences 14

id2

9
6

id1

id2
id3

id1b

id4

id3

4
5id4

7
7

x = b[:2]

id5x

id5

id2
id3

Slices and Multidimensional Lists

• Create a nested list
>>> b = [[9,6],[4,5],[7,7]]

• Get a slice
>>> x = b[:2]

• Append to a row of x
>>> x[1].append(10)

• x now has nested list
[[9, 6], [4, 5, 10]]

• What are the contents of
the list (with name) in b?

10/6/16 More Sequences 15

A: [[9,6],[4,5],[7,7]]
B: [[9,6],[4,5,10]]
C: [[9,6],[4,5,10],[7,7]]
D: [[9,6],[4,10],[7,7]]
E: I don’t know

Slices and Multidimensional Lists

• Create a nested list
>>> b = [[9,6],[4,5],[7,7]]

• Get a slice
>>> x = b[:2]

• Append to a row of x
>>> x[1].append(10)

• x now has nested list
[[9, 6], [4, 5, 10]]

• What are the contents of
the list (with name) in b?

10/6/16 More Sequences 16

A: [[9,6],[4,5],[7,7]]
B: [[9,6],[4,5,10]]
C: [[9,6],[4,5,10],[7,7]]
D: [[9,6],[4,10],[7,7]]
E: I don’t know

Functions and 2D Lists

def transpose(table):
"""Returns: copy of table with rows and columns swapped
Precondition: table is a (non-ragged) 2d List"""
numrows = len(table)
numcols = len(table[0]) # All rows have same no. cols
result = [] # Result accumulator
for m in range(numcols):

row = [] # Single row accumulator
for n in range(numrows):

row.append(table[n][m]) # Build up row
result.append(row) # Add result to table

return result

10/6/16 More Sequences 17

1 2

3 4

5 6

1 3 5

2 4 6

Dictionaries (Type dict)

Description

• List of key-value pairs
§ Keys are unique
§ Values need not be

• Example: net-ids
§ net-ids are unique (a key)
§ names need not be (values)
§ js1 is John Smith (class ’13)
§ js2 is John Smith (class ’16)

• Many other applications

Python Syntax

• Create with format:
{k1:v1, k2:v2, …}

• Keys must be non-mutable
§ ints, floats, bools, strings
§ Not lists or custom objects

• Values can be anything
• Example:

d = {'js1':'John Smith',
'js2':'John Smith',
'wmw2':'Walker White'}

10/6/16 More Sequences 18

Using Dictionaries (Type dict)

• Access elts. like a list
§ d['js1'] evaluates to 'John'
§ But cannot slice ranges!

• Dictionaries are mutable
§ Can reassign values
§ d['js1'] = 'Jane'
§ Can add new keys
§ d['aa1'] = 'Allen'
§ Can delete keys
§ del d['wmw2']

d = {'js1':'John','js2':'John',
'wmw2':'Walker'}

10/6/16 More Sequences 19

'wmw2'

id8

'John'

'John'

'Walker'

dict

'js2'

'js1'

Key-Value order in
folder is not important

id8d

Using Dictionaries (Type dict)

• Access elts. like a list
§ d['js1'] evaluates to 'John'
§ But cannot slice ranges!

• Dictionaries are mutable
§ Can reassign values
§ d['js1'] = 'Jane'
§ Can add new keys
§ d['aa1'] = 'Allen'
§ Can delete keys
§ del d['wmw2']

d = {'js1':'John','js2':'John',
'wmw2':'Walker'}

10/6/16 More Sequences 20

'wmw2'

id8

'John' 'Jane'

'John'

'Walker'

dict

'js2'

'js1'

Key-Value order in
folder is not important

✗

id8d

Using Dictionaries (Type dict)

• Access elts. like a list
§ d['js1'] evaluates to 'John'
§ But cannot slice ranges!

• Dictionaries are mutable
§ Can reassign values
§ d['js1'] = 'Jane'
§ Can add new keys
§ d['aa1'] = 'Allen'
§ Can delete keys
§ del d['wmw2']

d = {'js1':'John','js2':'John',
'wmw2':'Walker'}

10/6/16 More Sequences 21

'wmw2'

id8

'Jane'

'John'

'Walker'

dict

'js2'

'js1'

'aa1' 'Allen'

id8d

Using Dictionaries (Type dict)

• Access elts. like a list
§ d['js1'] evaluates to 'John'
§ But cannot slice ranges!

• Dictionaries are mutable
§ Can reassign values
§ d['js1'] = 'Jane'
§ Can add new keys
§ d['aa1'] = 'Allen'
§ Can delete keys
§ del d['wmw2']

d = {'js1':'John','js2':'John',
'wmw2':'Walker'}

10/6/16 More Sequences 22

'wmw2'

id8

'Jane'

'John'

'Walker'

dict

'js2'

'js1'

'aa1' 'Allen'
✗ ✗

Deleting key deletes both

id8d

Dictionaries and For-Loops

• Dictionaries != sequences
§ Cannot slice them

• Different inside for loop
§ Loop variable gets the key
§ Then use key to get value

• Has methods to convert
dictionary to a sequence
§ Seq of keys: d.keys()
§ Seq of values: d.values()
§ key-value pairs: d.items()

for k in d:
Loops over keys
print k # key
print d[k] # value

To loop over values only
for v in d.values():

print v # value

10/6/16 More Sequences 23

See grades.py

