
More with Sequences

Lecture 14



Announcements for This Lecture

Readings
• Today: Chapter 11
• Next Week: Sec. 5.8-5.10

Assignments
• A3 is due today

§ Survey is posted in CMS
§ Late penalty 10%/day

• Opportunities for help
§ Consultants 4:30-9:00
§ Josselyn has OH 2-3

• No lab next week
§ Tuesday is part of fall break
§ No special lab for Wed
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• Prelim, Oct 13th 7:30-9:00
§ Material up to TUESDAY
§ Study guide is posted

• Review session Wednesday
§ Still checking place/time
§ Announcement on Piazza



Processing Lists: builtins

• sum(x) adds up all the elements in the list x
§ They must all be numbers!

• min(x) or max(x) find the min/max value in list x
§ They use the same ordering as sort()

• range(a,b,c) produces [a,a+c,a+2*c,…,a+c*((b-a)/c)]
§ Starts at a, increases by c each time, until b (or less)
§ The argument c is optional; c = 1 by default 

• list(x) converts x (such as a string) to a list
§ Example: list('mimsy') produces ['m', 'i', 'm', 's', 'y']
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The Map Function

• map(⟨function⟩, ⟨list⟩)
§ Function has to have 

exactly 1 parameter
§ Otherwise, get an error
§ Returns a new list

• Does the same thing as
def map(f,x):

result = [] # empty list
for y in x:

result.append(f(y))
return result
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map(f, x)

[f(x[0]), f(x[1]), …, f(x[n–1])]

calls the function f
once for each item

map(len, ['a', 'bc', 'defg'])
returns [1, 2, 4]



Lists of Objects

• List positions are variables
§ Can store base types
§ But cannot store folders
§ Can store folder identifiers

• Folders linking to folders
§ Top folder for the list
§ Other folders for contents

• Example:
>>> r = colormodel.RED
>>> b = colormodel.BLUE
>>> g = colormodel.GREEN
>>> x = [r,b,g]
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Nested Lists

• Lists can hold any objects
• Lists are objects
• Therefore lists can hold other lists!

x = [1, [2, 1], [1, 4, [3, 1]], 5]
x[0] x[1][1] x[2][2][1]x[2][0]

x[1] x[2] x[2][2]a = [2, 1]
b = [3, 1]
c = [1, 4, b]
x = [1, a, c, 5]
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Two Dimensional Lists

Table of Data Images
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Store them as lists of lists (row-major order)
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Overview of Two-Dimensional Lists

• Access value at row 3, col 2:

d[3][2]

• Assign value at row 3, col 2:

d[3][2] = 8

• An odd symmetry

§ Number of rows of d:              len(d)

§ Number of cols in row r of d:  len(d[r])
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How Multidimensional Lists are Stored

• b = [[9, 6, 4], [5, 7, 7]]

• b holds name of a one-dimensional list
§ Has len(b) elements
§ Its elements are (the names of) 1D lists

• b[i] holds the name of a one-dimensional list (of ints) 
§ Has len(b[i]) elements
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Image Data: 2D Lists of Pixels
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Ragged Lists: Rows w/ Different Length
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• b = [[17,13,19],[28,95]]

• Will see applications of this later
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Slices and Multidimensional Lists

• Only “top-level” list is copied.
• Contents of the list are not altered
• b = [[9, 6], [4, 5], [7, 7]]
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Slices and Multidimensional Lists

• Create a nested list
>>> b = [[9,6],[4,5],[7,7]]

• Get a slice
>>> x = b[:2]

• Append to a row of x
>>> x[1].append(10)

• x now has nested list
[[9, 6], [4, 5, 10]]

• What are the contents of 
the list (with name) in b?
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A: [[9,6],[4,5],[7,7]]
B: [[9,6],[4,5,10]]
C: [[9,6],[4,5,10],[7,7]]
D: [[9,6],[4,10],[7,7]]
E: I don’t know
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A: [[9,6],[4,5],[7,7]]
B: [[9,6],[4,5,10]]
C: [[9,6],[4,5,10],[7,7]]
D: [[9,6],[4,10],[7,7]]
E: I don’t know



Functions and 2D Lists

def transpose(table):
"""Returns: copy of table with rows and columns swapped
Precondition: table is a (non-ragged) 2d List"""
numrows = len(table)
numcols = len(table[0]) # All rows have same no. cols
result = [] # Result accumulator 
for m in range(numcols):

row = [] # Single row accumulator
for n in range(numrows):

row.append(table[n][m]) # Build up row
result.append(row) # Add result to table

return result
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Dictionaries (Type dict)

Description

• List of key-value pairs
§ Keys are unique
§ Values need not be

• Example: net-ids
§ net-ids are unique (a key)
§ names need not be (values)
§ js1 is John Smith (class ’13)
§ js2 is John Smith (class ’16)

• Many other applications

Python Syntax

• Create with format:
{k1:v1, k2:v2, …}

• Keys must be non-mutable
§ ints, floats, bools, strings
§ Not lists or custom objects

• Values can be anything
• Example:

d = {'js1':'John Smith',
'js2':'John Smith',
'wmw2':'Walker White'}
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Using Dictionaries (Type dict)

• Access elts. like a list
§ d['js1'] evaluates to 'John'
§ But cannot slice ranges!

• Dictionaries are mutable
§ Can reassign values
§ d['js1'] = 'Jane'
§ Can add new keys
§ d['aa1'] = 'Allen'
§ Can delete keys
§ del d['wmw2']

d = {'js1':'John','js2':'John',
'wmw2':'Walker'}
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Dictionaries and For-Loops

• Dictionaries != sequences
§ Cannot slice them

• Different inside for loop 
§ Loop variable gets the key
§ Then use key to get value

• Has methods to convert
dictionary to a sequence
§ Seq of keys: d.keys()
§ Seq of values: d.values()
§ key-value pairs: d.items()

for k in d:
# Loops over keys
print k      # key
print d[k]  # value

# To loop over values only
for v in d.values():

print v      # value
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See grades.py


