10/2/16

Example: Summing the Elements of a List

def sum(thelist):
"""Returns: the sum of all elements in thelist

Precondition: thelist is a list of all numbers
(either floats or ints)""

result =0
result = result + thelist[0]
result = result + thelist[1]

N
return result _Problem here

Working with Sequences

» Sequences are potentially unbounded
= Number of elements inside them is not fixed
* Functions must handle sequences of different lengths
= Example: sum([1,2,3]) vs. sum([4,5,6,7,8.9,10])
* Cannot process with fixed number of lines
= Each line of code can handle at most one element

= What if # of elements > # of lines of code?

* We need a new control structure

For Loops: Processing Sequences

Print contents of seq The for-loop:
x = seq[0

print :{l[] for x in seq:

x = seql1] | print x
print x

* Key Concepts

x = seq[len(seq)-1]
= loop sequence: seq

print x
= loop variable: x

* Remember: = body: print x

= We cannot program = Also called repetend

For Loops: Processing Sequences

* loop sequence: seq
* loop variable: x

The for-loop:

for x in seq:

print x * body: print x

To execute the for-loop:

1. Check if there is a “next”
element of loop sequence

2. If not, terminate execution

put next
eltinx

3. Otherwise, put the element
in the loop variable

4. Execute all of the body
5. Repeat as long as 1 is true

seq has_True
more elts

False

Example: Summing the Elements of a List

def sum(thelist):

"""Returns: the sum of all elements in thelist
Precondition: thelist is a list of all numbers
(either floats or ints)"""

result = 0 Accumulator
variable :
* loop sequence: thelist

for x in thelist:
| result = result + x |°® loop variable: x

e body: result=result+x

return result

For Loops and Conditionals

def num_ints(thelist):
"""Returns: the number of ints in thelist
Precondition: thelist is a list of any mix of types""

result = 0
for x in the list:
if type(x) == int:

result = result+1

return result

Modifying the Contents of a List

10/2/16

def add_one(thelist):
""(Procedure) Adds 1 to every element in the list

Precondition: thelist is a list of all numbers
(either floats or ints)""

for x in thelist:

| _ [DOES NOT WORK!]
X =x+1

procedure; no return

For Loops and Call Frames

Loop back
to line 1

def add_one(thelist):
""Adds 1 to every elt
Pre: thelist is all numb."""
1| for x in thelist:

add_one(seq):

thelist

2f | x=x+1 x o]
idd
seq 0 5 Increments x in frame
1 4 Does not affect folder
2

On The Other Hand

def copy_add_one(thelist):
"""Returns: copy with 1 added to every element

Precondition: thelist is a list of all numbers
(either floats or ints)""

mycopy =[] # accumulator

for x in thelist:
X =x+1

Accumulator keeps
result from being lost

mycopy.append(x) # add to end of accumulator
return mycopy

For Loops: Processing Ranges of Integers

total = 0; The for-loop:

add the squares of ints
in range 2..200 to total
total = total + 8*2
total = total + 8*3

for x in range(2,201):
| total = total + x*x

¢ The range function:
= range(X):
List of ints O to x-1

= range(a,b):
List of ints a to b-1

total = total + 200*200

* For each x in the range
2..200, add x*x to total

Modifying the Contents of a List

def add_one(thelist):
""(Procedure) Adds 1 to every element in the list
Precondition: thelist is a list of all numbers

(either floats or ints)""
WORKS!

size = len(thelist)

for k in range(size):
thelist[k] = thelist[k]+1

procedure; no return

Important Concept in CS:
Doing Things Repeatedly

1. Process each item in a sequence

= Compute aggregate statistics for a dataset,
such as the mean, median, standard deviation, etc.

= Send everyone in a Facebook group an appointment time
2. Perform n trials or get n samples.

= Ad4: draw a triangle six times to make a hexagon

= Run a protein-folding simulation for 10° time steps

APPILANY Nty
i

3. Do something an unknown
number of times

= CUAUV team, vehicle keeps
moving until reached its goal

