
Asserts and
Error Handling

Lecture 11

Announcements for Today

Reading

• Reread Chapter 3
• 10.0-10.2, 10.4-10.6 for Thu

Assignments

• Assignment 1 now complete
§ Unless we gave extension

• Assignment 2 in progress
§ Ready for pick-up Thurs
§ Solutions posted in CMS

• Assignment 3 due next week
§ Before you leave for break
§ Same “length” as A1
§ Get help now if you need it

9/27/16 Asserts & Error Handling 2

• Prelim, Oct 13th 7:30-9:00
§ Material up October 4th
§ Study guide next week

• Conflict with Prelim time?
§ Submit to Prelim 1 Conflict

assignment on CMS
§ Do not submit if no conflict

Using Color Objects in A3

• New classes in colormodel
§ RGB, CMYK, and HSV

• Each has its own attributes
§ RGB: red, blue, green
§ CMYK: cyan, magenta,

yellow, black
§ HSV: hue, saturation, value

• Attributes have invariants
§ Limits the attribute values
§ Example: red is int in 0..255
§ Get an error if you violate

>>> import colormodel
>>> c = colormodel.RGB(128,0,0)
>>> r = c.red
>>> c.red = 500 # out of range
AssertionError: 500 outside [0,255]

9/27/16 Asserts & Error Handling 3

id1c

128r

id1

red 128

green 0

blue 0

RGB

Using Color Objects in A3

• New classes in colormodel
§ RGB, CMYK, and HSV

• Each has its own attributes
§ RGB: red, blue, green
§ CMYK: cyan, magenta,

yellow, black
§ HSV: hue, saturation, value

• Attributes have invariants
§ Limits the attribute values
§ Example: red is int in 0..255
§ Get an error if you violate

>>> import colormodel
>>> c = colormodel.RGB(128,0,0)
>>> r = c.red
>>> c.red = 500 # out of range
AssertionError: 500 outside [0,255]

9/27/16 Asserts & Error Handling 4

id1c

128r

id1

red 128

green 0

blue 0

RGB

Constructor function.
To make a new color.

Accessing
Attribute

How to Do the Conversion Functions

def rgb_to_cmyk(rgb):
"""Returns: color rgb in space CMYK
Precondition: rgb is an RGB object"""
DO NOT CONSTRUCT AN RGB OBJECT
Variable rgb already has RGB object
1. Access attributes from rgb folder
2. Plug into formula provided
3. Compute the new cyan, magenta, etc. values
4. Construct a new CMYK object
5. Return the newly constructed object

9/27/16 Asserts & Error Handling 5

Only time you
will ever call a

constructor

Recall: The Call Stack

• Functions are “stacked”
§ Cannot remove one above

w/o removing one below
§ Sometimes draw bottom up

(better fits the metaphor)
• Stack represents memory

as a “high water mark”
§ Must have enough to keep the

entire stack in memory
§ Error if cannot hold stack

9/27/16 Asserts & Error Handling 6

Frame 1

Frame 2

Frame 3

Frame 4

Frame 6

calls

calls

calls

calls

Errors and the Call Stack
error.py

def function_1(x,y):
return function_2(x,y)

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

if __name__ == '__main__':
print function_1(1,0)

9/27/16 Asserts & Error Handling 7

calls

calls

calls

Errors and the Call Stack
error.py

def function_1(x,y):
return function_2(x,y)

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

if __name__ == '__main__':
print function_1(1,0)

Crashes produce the call stack:
Traceback (most recent call last):
File "error.py", line 20, in <module>
print function_1(1,0)

File "error.py", line 8, in function_1
return function_2(x,y)

File "error.py", line 12, in function_2
return function_3(x,y)

File "error.py", line 16, in function_3
return x/y

9/27/16 Asserts & Error Handling 8

Make sure you can see
line numbers in Komodo.

Preferences è Editor

Errors and the Call Stack
error.py

def function_1(x,y):
return function_2(x,y)

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

if __name__ == '__main__':
print function_1(1,0)

9/27/16 Asserts & Error Handling 9

Make sure you can see
line numbers in Komodo.

Preferences è Editor

Where error occurred
(or where was found)

Script code.
Global space

Crashes produce the call stack:
Traceback (most recent call last):
File "error.py", line 20, in <module>
print function_1(1,0)

File "error.py", line 8, in function_1
return function_2(x,y)

File "error.py", line 12, in function_2
return function_3(x,y)

File "error.py", line 16, in function_3
return x/y

Assert Statements

• Way to force an error
§ Why would you do this?

• Enforce preconditions!
§ Put precondition as assert.
§ If violate precondition,

the program crashes
• Provided code in A3

uses asserts heavily

def exchange(from_c, to_c, amt)
"""Returns: amt from exchange

Precondition: amt is a
float…"""
assert type(amt) == float
…

9/27/16 Asserts & Error Handling 10

assert <boolean> # Creates error if <boolean> false
assert <boolean>, <string> # As above, but displays <String>

Will do yourself in A4.

Example: Anglicizing an Integer

def anglicize(n):
"""Returns: the anglicization of int n.

Precondition: n an int, 0 < n < 1,000,000"""
assert type(n) == int, str(n)+' is not an int'
assert 0 < n and n < 1000000, str(n)+' is out of range'
Implement method here…

9/27/16 Asserts & Error Handling 11

Example: Anglicizing an Integer

def anglicize(n):
"""Returns: the anglicization of int n.

Precondition: n an int, 0 < n < 1,000,000"""
assert type(n) == int, str(n)+' is not an int'
assert 0 < n and n < 1000000, str(n)+' is out of range'
Implement method here…

9/27/16 Asserts & Error Handling 12

Check (part of)
the precondition

Error message
when violated

Enforcing Preconditions is Tricky!

def lookup_netid(nid):
"""Returns: name of student with netid nid.

Precondition: nid is a string, which consists of
2 or 3 letters and a number"""
assert ?????

9/27/16 Asserts & Error Handling 13

Assert use expressions only.
Cannot use if-statements.

Each one must fit on one line.

Sometimes we will
only enforce part of

the precondition

Enforcing Preconditions is Tricky!

def lookup_netid(nid):
"""Returns: name of student with netid nid.

Precondition: nid is a string, which consists of
2 or 3 letters and a number"""
assert type(nid) == str, str(nid) + ' is not a string'
assert nid.isalnum(), nid+' is not just letters/digits'

9/27/16 Asserts & Error Handling 14

Returns True if s contains
only letters, numbers.

Does this catch
all violations?

Using Function to Enforce Preconditions

def exchange(curr_from, curr_to, amt_from):
"""Returns: amount of curr_to received.
Precondition: curr_from is a valid currency code
Precondition: curr_to is a valid currency code
Precondition: amt_from is a float"""

assert ??????, str(curr_from) + ' not valid'
assert ??????, str(curr_from) + ' not valid'
assert type(amt_from)==float, str(amt_from) + ' not a float'

9/27/16 Asserts & Error Handling 15

Using Function to Enforce Preconditions

def exchange(curr_from, curr_to, amt_from):
"""Returns: amount of curr_to received.
Precondition: curr_from is a valid currency code
Precondition: curr_to is a valid currency code
Precondition: amt_from is a float"""

assert iscurrency(curr_from), str(curr_from) + ' not valid'
assert iscurrency(curr_to), str(curr_to) + ' not valid'
assert type(amt_from)==float, str(amt_from) + ' not a float'

9/27/16 Asserts & Error Handling 16

Recovering from Errors

• try-except blocks allow us to recover from errors
§ Do the code that is in the try-block
§ Once an error occurs, jump to the catch

• Example:
try:

input = raw_input() # get number from user
x = float(input) # convert string to float
print 'The next number is '+str(x+1)

except:
print 'Hey! That is not a number!'

might have an error

executes if error happens

9/27/16 17Asserts & Error Handling

Recovering from Errors

• try-except blocks allow us to recover from errors
§ Do the code that is in the try-block
§ Once an error occurs, jump to the catch

• Example:
try:

input = raw_input() # get number from user
x = float(input) # convert string to float
print 'The next number is '+str(x+1)

except:
print 'Hey! That is not a number!'

9/27/16 18Asserts & Error Handling

Similar to if-else
§ But always does try
§ Just might not do

all of the try block

might have an error

executes if error happens

Try-Except is Very Versatile

def isfloat(s):
"""Returns: True if string
s represents a float"""
try:

x = float(s)
return True

except:
return False

9/27/16 Asserts & Error Handling 19

Conversion to a
float might fail

If attempt succeeds,
string s is a float

Otherwise, it is not

Try-Except and the Call Stack
recover.py

def function_1(x,y):
try:

return function_2(x,y)
except:

return float('inf')

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

• Error “pops” frames off stack
§ Starts from the stack bottom
§ Continues until it sees that

current line is in a try-block
§ Jumps to except, and then

proceeds as if no error

9/27/16 Asserts & Error Handling 20

function_1

function_2

function_3
pops

pops
line in a try

Try-Except and the Call Stack
recover.py

def function_1(x,y):
try:

return function_2(x,y)
except:

return float('inf')

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

• Error “pops” frames off stack
§ Starts from the stack bottom
§ Continues until it sees that

current line is in a try-block
§ Jumps to except, and then

proceeds as if no error
• Example:

>>> print function_1(1,0)
inf
>>>

9/27/16 Asserts & Error Handling 21

No traceback!

How to return
∞ as a float.

Tracing Control Flow
def first(x):

print 'Starting first.'
try:

second(x)
except:

print 'Caught at first’
print 'Ending first’

def second(x):
print 'Starting second.'
try:

third(x)
except:

print 'Caught at second’
print 'Ending second’

def third(x):
print 'Starting third.'
assert x < 1
print ’Ending third.'

What is the output of first(2)?

9/27/16 Asserts & Error Handling 22

Tracing Control Flow
def first(x):

print 'Starting first.'
try:

second(x)
except:

print 'Caught at first’
print 'Ending first’

def second(x):
print 'Starting second.'
try:

third(x)
except:

print 'Caught at second’
print 'Ending second’

def third(x):
print 'Starting third.'
assert x < 1
print ’Ending third.'

What is the output of first(2)?

'Starting first.'
'Starting second.'
'Starting third.'
'Caught at second'
'Ending second'
'Ending first'

9/27/16 Asserts & Error Handling 23

Tracing Control Flow
def first(x):

print 'Starting first.'
try:

second(x)
except:

print 'Caught at first’
print 'Ending first’

def second(x):
print 'Starting second.'
try:

third(x)
except:

print 'Caught at second’
print 'Ending second’

def third(x):
print 'Starting third.'
assert x < 1
print ’Ending third.'

What is the output of first(0)?

9/27/16 Asserts & Error Handling 24

Tracing Control Flow
def first(x):

print 'Starting first.'
try:

second(x)
except:

print 'Caught at first’
print 'Ending first’

def second(x):
print 'Starting second.'
try:

third(x)
except:

print 'Caught at second’
print 'Ending second’

def third(x):
print 'Starting third.'
assert x < 1
print ’Ending third.'

What is the output of first(0)?

'Starting first.'
'Starting second.'
'Starting third.'
'Ending third'
'Ending second'
'Ending first'

9/27/16 Asserts & Error Handling 25

