9/24/16

Using Color Objects in A3

=

¢ New classes in colormodel id1
: RG

= RGB,CMYK, and HSV
¢ Each has its own attributes
= RGB: red, blue, green iEEn
= CMYK: cyan, magenta, blue
yellow, black
= HSV: hue, saturation, value ~ >>> import colormodel
>>> ¢ = colormodel. RGB(128,0,0)
>>>7 = c.red
>>>¢.red = 500 # out of range
AssertionError: 500 outside [0,255]

red

—
ollo|| 2
©

o Attributes have invariants
= Limits the attribute values
= Example: red is int in 0..255

= Get an error if you violate

Errors and the Call Stack

error.py Crashes produce the call stack:

def function_1(x,y): -~ Traceback (most recent call last):
File "error.py", line 20, in <module>
print function_1(1,0)

File "error.py", line 8, in function_1

| return function_2(x,y)

def function_2(x,y): —_—
return function_3(x,y) return function_2(x,y)

File "error.py", line 18, in function_2

— return function_3(x,y)

File "error.py", line 16, in function_3

def function_3(x,y):
return x/y # crash here

return x/y

if __name__=='__main_"

print function_1(1,0)

Make sure you can see
line numbers in Komodo.

Preferences = Editor

Errors and the Call Stack

Assert Statements

Script code.
d Global space

| return function_2(x,y)

f ILCrashes produce the call stack:

Traceback (most recent call last):

File "error.py", line 20, in <module>
print function_1(1,0)
File "error.py", line 8, in function_1

def function_2(x,y):
return funetion_3(x,y) return function_2(x,y)
File "error.py", line 18, in function_28

def function_3(x,y): return function 3(x.y)

return x/y # crash here File "error.py", line 16, in function_3|
return x/y

Where error occurred
(or where was found)

Make sure you can see
line numbers in Komodo.
Preferences = Editor

assert <boolean> # Creates error if <boolean> false
assert <boolean>, <string> # As above, but displays <String>

° Way to force an error def exchange(amt, from_c, to_c)

= Why would you do this? """Returns: amt from exchange
Precondition: amt is a
floag..."™"

assert type(amt) == float

 Enforce preconditions!
= Put precondition as assert.
= If violate precondition,

the program crashes

e Provided code in A3
uses asserts heavily

(Will do yourself in A4.)

Example: Anglicizing an Integer

def anglicize(n):

"""Returns: the anglicization of int n.

Precondition: n an int, 0 < n < 1,000,000""

assert type(n) == int, str(n)+' is not an int'

asserl{o <nandn< 100000(}[str(n)+' is out of rang(;‘

Check (part of)
the precondition

Error message
when violated

Enforcing Preconditions is Tricky!

def lookup_netid(nid):
"""Returns: name of student with netid nid.

Precondition: nid is a string, which consists of

2 or 3 letters and a number""

assert type(nid) == str, ste(nid) + ' is not a string'
assert nid.isalphanum(), nid+' is not just letters/digits'

Does this catch

Returns True if s contains

only letters, numbers. all violations?

9/24/16

Using Function to Enforce Preconditions

Recovering from Errors

def exchange(curr_from, curr_to, amt_from):
"""Returns: amount of curr_to received.

Precondition: curr_from is a valid currency code
Precondition: curr_to is a valid currency code
Precondition: amt_from is a float"""

assert 29929992, ste(curr_from) + ' not valid'

assert type(amt_from)==float, str(amt_from) + ' not a float'

* try-except blocks allow us to recover from errors
= Do the code that is in the try-block
= Once an error occurs, jump to the catch
* Example:
try:
input = raw_input() # get number from user
x = float(input) # convert string to ﬂoaK
print 'The next number is '+str(x+1)
except:

might have an error

ecxccutcs if error happens
| print 'Hey! That is not a number!' o

Try-Except is Very Versatile

Try-Except and the Call Stack

def isfloat(s):

""Returns: True if string
s represents a float™"

recover.py

= Starts from the stack bottom

def function_1(x,y): K .
= Continues until it sees that

try:

 Error “pops” frames off stack

Conversion to a
float might fail

try:
x = float(s) If attempt succeeds,
return True string s is a float
except:

| return False

Otherwise, it is not

| return function_2(x,y)
except:
return float('inf")

def function_2(x,y):
return function_3(x,y)

def function_3(x,y):
return x/y # crash here

current line is in a try-block

= Jumps to except, and then
proceeds as if no error

0ps
function_8 P

0pS
function_3 Pop

Tracing Control Flow

Tracing Control Flow

def first(x): def third(x):
print 'Starting first.' print 'Starting third.'
try: assert x<1
second(x) print Ending third.'
except:
print 'Caught at first’ g .
print Ending first ‘What is the output of first(2)?

def second(x):

print 'Starting second.'
try:

| thirdee)

except:

print 'Ending second’

print 'Caught at second’

def first(x):
print 'Starting first.'
try:

second(x)
except:

print 'Caught at first’
print 'Ending first’

def second(x):
print 'Starting second.'
try:
| thiraco)
except:
print 'Caught at second’

print 'Ending second’

def third(x):
print 'Starting third.'
assert x<1
print "Ending third.

What is the output of first(0)?

