Lecture 8

Conditionals & Control Flow

Announcements For This Lecture

Readings

- Sections 5.1-5.7 today
- Chapter 4 for Tuesday

Assignment 1

- Due SUNDAY
 - Due *before* midnight
 - Submit something...
 - Can resubmit to Sep. 28
- Grades posted Tuesday
- Complete the Survey
 - Must answer individually

Testing last_name_first(n)

```
# test procedure
                                                   Call function
def test_last_name_first():
                                                    on test input
  """Test procedure for last_name_first(n)"""
  result = name.last_name_first('Walker White')
                                                           Compare to
                                                        expected output
  cornelltest.assert_equals('White, Walker', result)-
                                                White')
  result = name.last_name_first('Walker
  cornelltest.assert_equals('White, Walker', result)
                                Call test procedure
# Script code
                                to activate the test
test_last_name_first()
```

print 'Module name is working correctly'

Types of Testing

Black Box Testing

- Function is "opaque"
 - Test looks at what it does
 - Fruitful: what it returns
 - Procedure: what changes
- Example: Unit tests
- Problems:
 - Are the tests everything?
 - What caused the error?

White Box Testing

- Function is "transparent"
 - Tests/debugging takes place inside of function
 - Focuses on where error is
- Example: Use of print
- Problems:
 - Much harder to do
 - Must remove when done

Finding the Error

- Unit tests cannot find the source of an error
- Idea: "Visualize" the program with print statements def last_name_first(n):

```
end_first = n.find(' ')

print end_first
first = n[:end_first]

print 'first is '+str(first)

last = n[end_first+1:]

print 'last is '+str(last)

return last+', '+first

Print variable after
each assignment

Optional: Annotate
value to make it
easier to identify
```

Structure vs. Flow

Program Structure

- Way statements are presented
 - Order statements are listed
 - Inside/outside of a function
 - Will see other ways...
- Indicate possibilities over multiple executions

Program Flow

- Order statements are executed
 - Not the same as structure
 - Some statements duplicated
 - Some statements are skipped
- Indicates what really happens in a single execution

Have already seen this difference with functions

Structure vs. Flow: Example

Program Structure

Program Flow

def foo():

Statement listed once

print 'Hello'

Script Code

foo()

foo()

foo()

>>> python foo.py

'Hello'

'Hello'

Statement executed 3x

'Hello'

Bugs can occur when we get a flow other than one that we where expecting

Conditionals: If-Statements

Format

Example

if < boolean-expression>:

<statement>

• • •

<statement>

Put x in z if it is positive

if x > 0:

S = X

Execution:

if <boolean-expression> is true, then execute all of the statements indented directly underneath (until first non-indented statement)

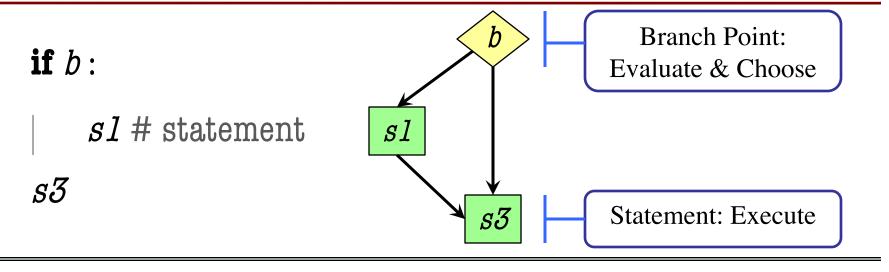
Conditionals: If-Else-Statements

Format

Example

```
      if <boolean-expression>:
      # Put max of x, y in z

      | <statement>
      if x > y:

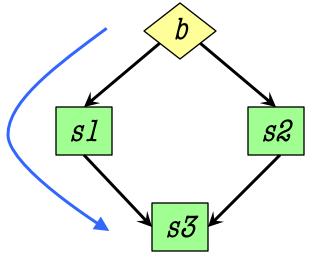

      | z = x
      else:

      | z = y
      z = y
```

Execution:

if <boolean-expression> is true, then execute statements indented under if; otherwise execute the statements indented under elsec

Conditionals: "Control Flow" Statements



else:

s2

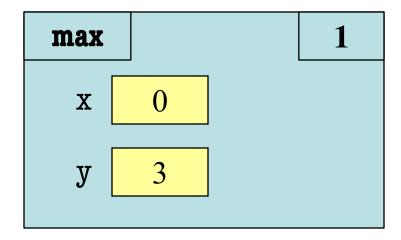
s3

Flow

Program only takes one path each execution

Program Flow and Call Frames

```
def max(x,y):
```


```
"""Returns: max of x, y"""
```

simple implementation

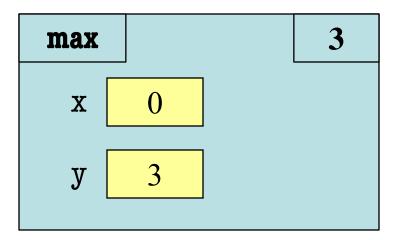
- 1 | if x > y:
- 2 | return x
- 3 return y

Frame sequence depends on flow

 $\max(0,3)$:

Program Flow and Call Frames

```
def max(x,y):
```


"""Returns: max of x, y"""

simple implementation

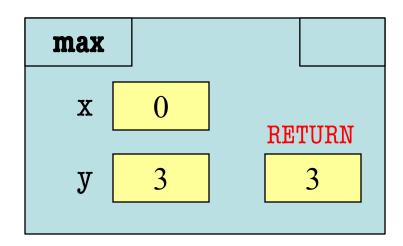
- $1 \mid \text{if } x > y$:
- 2 | return x
- 3 return y

Frame sequence depends on flow

 $\max(0,3)$:

Skips line 2

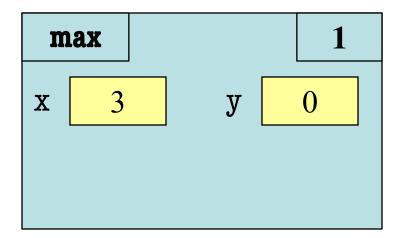
Program Flow and Call Frames


```
def max(x,y):
```

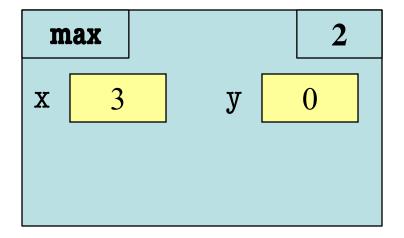
 $\max(0,3)$: """Returns: max of x, y"""

simple implementation

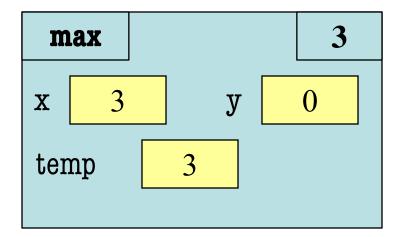
- if x > y:
- return x
- return y


Frame sequence depends on flow

Skips line 2

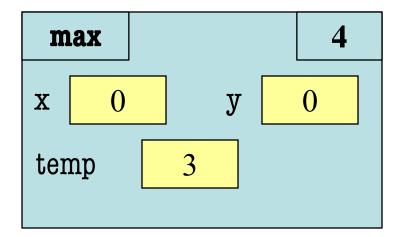

```
"""Returns: max of x, y"""
# swap x, y
# put the larger in y
if x > y:
  temp = x
  x = y
  y = temp
return y
```

- temp is needed for swap
 - x = y loses value of x
 - "Scratch computation"
 - Primary role of local vars
- max(3,0):

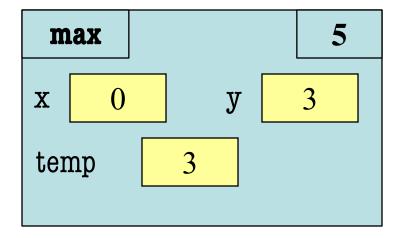

```
"""Returns: max of x, y"""
# swap x, y
# put the larger in y
if x > y:
  temp = x
  x = y
  y = temp
return y
```

- temp is needed for swap
 - x = y loses value of x
 - "Scratch computation"
 - Primary role of local vars
- $\max(3,0)$:

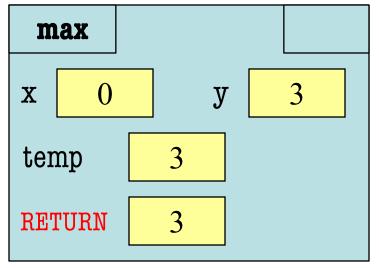

```
"""Returns: max of x, y"""
# swap x, y
# put the larger in y
if x > y:
  temp = x
  x = y
  y = temp
return y
```


- temp is needed for swap
 - x = y loses value of x
 - "Scratch computation"
 - Primary role of local vars
- $\max(3,0)$:


```
def max(x,y):
```


```
"""Returns: max of x, y"""
# swap x, y
# put the larger in y
if x > y:
  temp = x
  x = y
  y = temp
return y
```

- temp is needed for swap
 - x = y loses value of x
 - "Scratch computation"
 - Primary role of local vars
- $\max(3,0)$:


```
"""Returns: max of x, y"""
# swap x, y
# put the larger in y
if x > y:
  temp = x
  x = y
  y = temp
return y
```

- temp is needed for swap
 - x = y loses value of x
 - "Scratch computation"
 - Primary role of local vars
- $\max(3,0)$:


```
"""Returns: max of x, y"""
# swap x, y
# put the larger in y
if x > y:
  temp = x
  x = y
  y = temp
return y
```

- temp is needed for swap
 - x = y loses value of x
 - "Scratch computation"
 - Primary role of local vars
- $\max(3,0)$:

def max(x,y):

```
"""Returns: max of x, y"""
# swap x, y
# put the larger in y
if x > y:
    temp = x
    x = y
    y = temp
```

return temp

• Value of max(3,0)?

A: 3

B: 0

C: Error!

D: I do not know

def max(x,y):

```
"""Returns: max of x, y"""
# swap x, y
# put the larger in y
if x > y:
    temp = x
    x = y
    y = temp
```

return temp

• Value of max(3,0)?

A: 3 CORRECT

B: 0

C: Error!

D: I do not know

- Local variables last until
 - They are deleted or
 - End of the function
- Even if defined inside **if**

def max(x,y):

```
"""Returns: max of x, y"""
# swap x, y
# put the larger in y
if x > y:
    temp = x
    x = y
    y = temp
```

• Value of max(0,3)?

A: 3

B: 0

C: Error!

D: I do not know

return temp

def max(x,y):

```
"""Returns: max of x, y"""
# swap x, y
# put the larger in y
if x > y:
    temp = x
    x = y
    y = temp
```

return temp

• Value of max(0,3)?

A: 3
B: 0
C: Error! CORRECT
D: I do not know

- Variable existence depends on flow
- Understanding flow is important in testing

Program Flow and Testing

- Must understand which flow caused the error
 - Unit test produces error
 - Visualization tools show the current flow for error
- Visualization tools?
 - print statements
 - Advanced tools in IDEs (Integrated Dev. Environ.)

```
# Put max of x, y in z
print 'before if'
if x > y:
   print 'if x>y'
   z = x
 else:
   print 'else x>y'
    z = y
```

print 'after if'

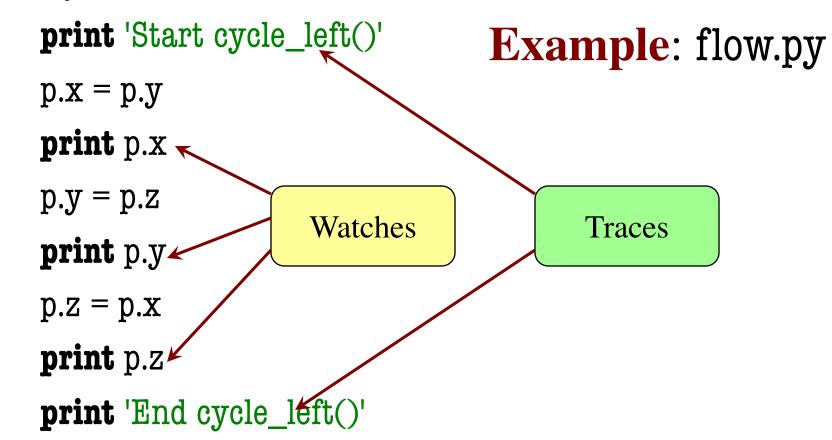
Program Flow and Testing

- Call these tools traces
- No requirements on how to implement your traces
 - Less print statements ok
 - Do not need to word them exactly like we do
 - Do what ever is easiest for you to see the flow
- Example: flow.py

```
# Put max of x, y in z
print 'before if'
if x > y:
   print 'if x>y'
   z = x
                     Traces
 else:
   print 'else x<=y'
   z = y
print 'after if'
```

Watches vs. Traces

Watch


- Visualization tool (e.g. print statement)
- Looks at variable value
- Often after an assignment
- What you did in lab

Trace

- Visualization tool (e.g. print statement)
- Looks at program flow
- Before/after any point where flow can change

Traces and Functions

def cycle_left(p):

Conditionals: If-Elif-Else-Statements

Format

Example

```
if < boolean-expression>:
                                        # Put max of x, y, z in w
     <statement>
                                        if x > y and x > z:
                                           M = X
elif < boolean-expression>:
                                        elif y > z:
     <statement>
                                           M = \lambda
                                        else:
...
else:
                                           M = Z
     <statement>
```

Conditionals: If-Elif-Else-Statements

Format

Notes on Use

- No limit on number of elif
 - Can have as many as want
 - Must be between if, else
- The else is always optional
 - if-elif by itself is fine
- Booleans checked in order
 - Once it finds a true one, it skips over all the others
 - else means all are false

Conditional Expressions

Format

el **if** bexp **else** e2

- el and e2 are any expression
- bexp is a boolean expression
- This is an expression!

Example

```
# Put max of x, y in z
z = x if x > y else y

expression,
not statement
```