
Objects

Lecture 7

Announcements For This Lecture

This Week
• Lab is OPTIONAL

§ Time to work on A1
§ Extra testing exercises
§ Credit if you turn in A1

• A1 due Sunday at mid.
§ Start early to avoid rush

• One-on-Ones this week
§ Lots of spaces available

Readings
• Thursday: Read 5.1-5.4
• Tuesday: SKIM Chap 4

§ Don’t use Swampy

• Sent out e-mails Sunday
• Will start dropping today

29/13/16 Objects

AI Quiz

Type: Set of values and the operations on them

• Type int:
§ Values: integers
§ Ops: +, –, *, /, %, **

• Type float:
§ Values: real numbers
§ Ops: +, –, *, /, **

• Type bool:
§ Values: True and False
§ Ops: not, and, or

• Type str:
§ Values: string literals

• Double quotes: "abc"
• Single quotes: 'abc'

§ Ops: + (concatenation)

9/13/16 Objects 3

Are the the only
types that exist?

Type: Set of values and the operations on them

• Want a point in 3D space
§ We need three variables
§ x, y, z coordinates

• What if have a lot of points?
§ Vars x0, y0, z0 for first point
§ Vars x1, y1, z1 for next point
§ …
§ This can get really messy

• How about a single variable
that represents a point?

9/13/16 Objects 4

x 2.0

y 3.0

z 5.0

• Can we stick them
together in a “folder”?

• Motivation for objects

Type: Set of values and the operations on them

• Want a point in 3D space
§ We need three variables
§ x, y, z coordinates

• What if have a lot of points?
§ Vars x0, y0, z0 for first point
§ Vars x1, y1, z1 for next point
§ …
§ This can get really messy

• How about a single variable
that represents a point?

9/13/16 Objects 5

x 2.0

y 3.0

z 5.0

Objects: Organizing Data in Folders

• An object is like a manila folder
• It contains other variables

§ Variables are called attributes
§ These values can change

• It has an ID that identifies it
§ Unique number assigned by Python

(just like a NetID for a Cornellian)
§ Cannot ever change
§ Has no meaning; only identifies

9/13/16 Objects 6

id1

x 2.0

y 3.0

z 5.0

Unique tab
identifier

Classes: Types for Objects

• Values must have a type
§ An object is a value
§ Object type is a class

• Modules provide classes
§ Will show how later

• Example: geom
§ Part of CornellExtensions
§ Just need to import it
§ Classes: Point2, Point3

9/13/16 Objects 7

id1

x 2.0

y 3.0

z 5.0

Point3

class name

Classes: Types for Objects

• Values must have a type
§ An object is a value
§ Object type is a class

• Classes are how we add
new types to Python

9/13/16 8

id2

x 2.0

y 3.0

z 5.0

Point3

class name
Classes
• Point3
• Point2
• Window

Types

• int
• float
• bool
• str

Objects

Constructor: Function to make Objects

• How do we create objects?
§ Other types have literals
§ Example: 1, 'abc', true
§ No such thing for objects

• Constructor Function:
§ Same name as the class
§ Example: Point3(0,0,0)
§ Makes an object (manila folder)
§ Returns folder ID as value

• Example: p = Point3(0, 0, 0)
§ Creates a Point object
§ Stores object’s ID in p

9/13/16 Objects 9

id2p
Variable
stores ID
not object

instantiated
objectid2

x 0.0

y 0.0

z 0.0

Point3

Constructors and Modules

>>> import geom

>>> p = geom.Point3(0,0,0)

>>> id(p)

9/13/16 Objects 10

id2p

id2

x 0.0

y 0.0

z 0.0

Point3

Need to import module
that has Point class.

Constructor is function.
Prefix w/ module name.

Shows the ID of p.

Actually a
big number

Object Variables

• Variable stores object name
§ Reference to the object
§ Reason for folder analogy

• Assignment uses object name
§ Example: q = p
§ Takes name from p
§ Puts the name in q
§ Does not make new folder!

• This is the cause of many
mistakes in this course

9/13/16 Objects 11

id2p

id2

x 0.0

y 0.0

z 0.0

Point3

id2q

Objects and Attributes

• Attributes are variables
that live inside of objects
§ Can use in expressions
§ Can assign values to them

• Access: <variable>.<attr>
§ Example: p.x
§ Look like module variables

• Putting it all together
§ p = geom.Point3(1,2,3)
§ p.x = p.y + p.z

9/13/16 Objects 12

id3

x 1.0

y 2.0

z 3.0

id3p

Point3

Objects and Attributes

• Attributes are variables
that live inside of objects
§ Can use in expressions
§ Can assign values to them

• Access: <variable>.<attr>
§ Example: p.x
§ Look like module variables

• Putting it all together
§ p = geom.Point3(1,2,3)
§ p.x = p.y + p.z

9/13/16 Objects 13

id3

x 1.0

y 2.0

z 3.0

id3p

Point3

5.0x

Exercise: Attribute Assignment
• Recall, q gets name in p

>>> p = geom.Point3(0,0,0)
>>> q = p

• Execute the assignments:
>>> p.x = 5.6
>>> q.x = 7.4

• What is value of p.x?

9/13/16 Objects 14

id4p id4q

A: 5.6
B: 7.4
C: id4
D: I don’t know

id4

x 0.0

y 0.0

z 0.0

Point3

Exercise: Attribute Assignment
• Recall, q gets name in p

>>> p = geom.Point3(0,0,0)
>>> q = p

• Execute the assignments:
>>> p.x = 5.6
>>> q.x = 7.4

• What is value of p.x?

9/13/16 Objects 15

id4p id4q

A: 5.6
B: 7.4
C: id4
D: I don’t know

id4

x 0.0

y 0.0

z 0.0

Point3

5.6

CORRECT

x

Exercise: Attribute Assignment
• Recall, q gets name in p

>>> p = geom.Point3(0,0,0)
>>> q = p

• Execute the assignments:
>>> p.x = 5.6
>>> q.x = 7.4

• What is value of p.x?

9/13/16 Objects 16

id4p id4q

A: 5.6
B: 7.4
C: id4
D: I don’t know

id4

x 0.0

y 0.0

z 0.0

Point3

5.6 7.4

CORRECT

x x

Call Frames and Objects

• Mutable objects can be
altered in a function call
§ Object vars hold names!
§ Folder accessed by both

global var & parameter
• Example:

def incr_x(q):
q.x = q.x + 1

>>> p = geom.Point3()
>>> incr_x(p)

9/13/16 Objects 17

1
incr_x 1

id5q

Global STUFF

Call Frame

id5pid5

0.0
…

Point3

x

Call Frames and Objects

• Mutable objects can be
altered in a function call
§ Object vars hold names!
§ Folder accessed by both

global var & parameter
• Example:

def incr_x(q):
q.x = q.x + 1

>>> p = geom.Point3()
>>> incr_x(p)

9/13/16 Objects 18

id5pid5

0.0
…

Point3

x

1
incr_x

id5q

Global STUFF

Call Frame

1.0x

Call Frames and Objects

• Mutable objects can be
altered in a function call
§ Object vars hold names!
§ Folder accessed by both

global var & parameter
• Example:

def incr_x(q):
q.x = q.x + 1

>>> p = geom.Point3()
>>> incr_x(p)

9/13/16 Objects 19

id5pid5

0.0
…

Point3

x

1

Global STUFF

Call Frame

1.0x

Methods: Functions Tied to Objects

• Method: function tied to object
§ Method call looks like a function

call preceded by a variable name:
⟨variable⟩.⟨method⟩(⟨arguments⟩)

§ Example: p.distanceTo(q)
§ Example: p.abs() # makes x,y,z ≥ 0

• Just like we saw for strings
§ s = 'abracadabra'
§ s.index('a')

• Are strings objects?

id3

x 5.0

y 2.0

z 3.0

id3p

Point3

9/13/16 Objects 20

Surprise: All Values are in Objects!

• Including basic values
§ int, float, bool, str

• Example:
>>> x = 2.5
>>> id(x)

• But they are immutable
§ Contents cannot change
§ Distinction between value

and identity is immaterial
§ So we can ignore the folder

2.5x

2.5

id5

id5x

float

9/13/16 Objects 21

Surprise: All Values are in Objects!

• Including basic values
§ int, float, bool, str

• Example:
>>> x = 'foo'
>>> id(x)

• But they are immutable
§ No string method can alter

the contents of a string
§ x.replace('o','y') evaluates

to 'fyy' but x is still 'foo'
§ So we can ignore the folder 'foo'x

'foo'

id6

id6x

str

9/13/16 Objects 22

Class Objects

• Use name class object to
distinguish from other values
§ Not int, float, bool, str

• Class objects are mutable
§ You can change them
§ Methods can have effects

besides their return value
• Example:

§ p = Point(3,-3,0)
§ p.clamp(-1,1)

Example: Files

f = open('jabber.txt')
s = f.read()
f.close()

id6
f id6

name,
position,
state, …

Opens a file on your
disk; returns a file

object you can read

file

9/13/16 Objects 23

Base Types vs. Classes

Base Types

• Built-into Python

• Refer to instances as values

• Instantiate with literals

• Are all immutable

• Can ignore the folders

Classes

• Provided by modules

• Refer to instances as objects

• Instantiate w/ constructors

• Can alter attributes

• Must represent with folders

9/13/16 Objects 24

Aside: Name Resolution

• ⟨object⟩.⟨name⟩ means
§ Go the folder for object

§ Look for attr/method name

§ If missing, check class folder

• Class folder is a shared folder
§ Only one for the whole class
§ Shared by all objects of class
§ Stores common features
§ Typically where methods are

• Do not worry about this yet

id3

x 5.0
y 2.0
z 3.0

id3p

Point3

__init__(x, y, z)
distanceTo(other)
abs()

Point

id4

x 7.4
y 0.0
z 0.0

id4q

Point3

9/13/16 Objects 25

Where To From Here?

• Right now, just try to understand objects
§ All Python programs use objects
§ Most small programs use objects of classes

that are part of the Python Library
• OO Programming is about creating classes

§ Eventually you will make your own classes
§ Classes are the primary tool for organizing

more complex Python programs
§ But we need to learn other basics first

9/13/16 Objects 26

A1: The Module urllib2

• Module urllib2 is used to read web pages
§ Function urlopen creates a url object
§ u = urllib2.urlopen('http://www.cornell.edu')

• url has a method called read()
§ Returns contents of web page
§ Usage: s = u.read() # s is a string

9/13/16 Objects 27

u

A1: The Module urllib2

• Module urllib2 is used to read web pages
§ Function urlopen creates a url object
§ u = urllib2.urlopen('http://www.cornell.edu')

• url has a method called read()
§ Returns contents of web page
§ Usage: s = u.read() # s is a string

9/13/16 Objects 28

id2u
id2

url

