
Strings

Lecture 5

Announcements For This Lecture

Readings
• Chapter 8

§ 8.1, 8.2, 8.4, 8.5
§ Avoid for-loop sections

• More expression tables
• Your first function!

Assignment 1
• Will post it on Thurs.

§ Need one more lecture

• Due Sun, Sep. 18th

§ Revise until correct

• Can work in pairs
§ Submit one for both
§ Mixer: Thursday at 5:30

29/6/16 Strings

Today’s Lab

One-on-One Sessions

• Starting tomorrow: 1/2-hour one-on-one sessions
§ Bring computer to work with instructor, TA or consultant
§ Hands on, dedicated help with Lab 3 (or next lecture)
§ To prepare for assignment, not for help on assignment

• Limited availability: we cannot get to everyone
§ Students with experience or confidence should hold back

• Sign up online in CMS: first come, first served
§ Choose assignment One-on-One
§ Pick a time that works for you; will add slots as possible
§ Can sign up starting at 1pm TODAY

9/6/16 Strings 3

Purpose of Today’s Lecture

• Return to the string (str) type
§ Saw it the first day of class
§ Learn all of the things we can do with it

• See more examples of functions
§ Particularly functions with strings

• Learn the difference between…
§ Procedures and fruitful functions
§ print and return statements

9/6/16 Strings 4

String: Text as a Value

• String are quoted characters
§ 'abc d' (Python prefers)
§ "abc d" (most languages)

• How to write quotes in quotes?
§ Delineate with “other quote”
§ Example: " ' " or ' " '
§ What if need both " and ' ?

• Solution: escape characters
§ Format: \ + letter
§ Special or invisible chars

9/6/16 Strings 5

Char Meaning
\' single quote
\" double quote

\n new line
\t tab
\\ backslash

Type: str

String are Indexed

• s = 'abc d'

• Access characters with []
§ s[0] is 'a'
§ s[4] is 'd'
§ s[5] causes an error
§ s[0:2] is 'ab' (excludes c)
§ s[2:] is 'c d'

• Called “string slicing”

• s = 'Hello all'

• What is s[3:6]?

9/6/16 Strings 6

a b c d
0 1 2 3 4

H e l l o
0 1 2 3 4 5

a
6

l
7

l
8

A: 'lo a'
B: 'lo'
C: 'lo '
D: 'o '
E: I do not know

String are Indexed

• s = 'abc d'

• Access characters with []
§ s[0] is 'a'
§ s[4] is 'd'
§ s[5] causes an error
§ s[0:2] is 'ab' (excludes c)
§ s[2:] is 'c d'

• Called “string slicing”

• s = 'Hello all'

• What is s[3:6]?

9/6/16 Strings 7

a b c d
0 1 2 3 4

H e l l o
0 1 2 3 4 5

a
6

l
7

l
8

A: 'lo a'
B: 'lo'
C: 'lo '
D: 'o '
E: I do not know

CORRECT

String are Indexed

• s = 'abc d'

• Access characters with []
§ s[0] is 'a'
§ s[4] is 'd'
§ s[5] causes an error
§ s[0:2] is 'ab' (excludes c)
§ s[2:] is 'c d'

• Called “string slicing”

• s = 'Hello all'

• What is s[:4]?

9/6/16 Strings 8

a b c d
0 1 2 3 4

H e l l o
0 1 2 3 4 5

a
6

l
7

l
8

A: 'o all'
B: 'Hello'
C: 'Hell'
D: Error!
E: I do not know

String are Indexed

• s = 'abc d'

• Access characters with []
§ s[0] is 'a'
§ s[4] is 'd'
§ s[5] causes an error
§ s[0:2] is 'ab' (excludes c)
§ s[2:] is 'c d'

• Called “string slicing”

• s = 'Hello all'

• What is s[:4]?

9/6/16 Strings 9

a b c d
0 1 2 3 4

H e l l o
0 1 2 3 4 5

a
6

l
7

l
8

A: 'o all'
B: 'Hello'
C: 'Hell'
D: Error!
E: I do not know

CORRECT

Other Things We Can Do With Strings

• Operation in: s1 in s2

§ Tests if s1 “a part of” s2

§ Say s1 a substring of s2

§ Evaluates to a bool

• Examples:
§ s = 'abracadabra'
§ 'a' in s == True

§ 'cad' in s == True
§ 'foo' in s == False

• Function len: len(s)
§ Value is # of chars in s
§ Evaluates to an int

• Examples:
§ s = 'abracadabra’
§ len(s) == 11

§ len(s[1:5]) == 4
§ s[1:len(s)-1] == 'bracadabr'

9/6/16 Strings 10

Defining a String Function

• Start w/ string variable
§ Holds string to work on
§ Make it the parameter

• Body is all assignments
§ Make variables as needed
§ But last line is a return

• Try to work in reverse
§ Start with the return
§ Figure ops you need
§ Make a variable if unsure
§ Assign on previous line

def middle(text):
"""Returns: middle 3rd of text
Param text: a string"""

Get length of text
size = len(text)
Start of middle third
start = size/3
End of middle third
end = 2*size/3
Get the text
result = text[start:end]
Return the result
return result

9/6/16 Strings 11

Defining a String Function

• Start w/ string variable
§ Holds string to work on
§ Make it the parameter

• Body is all assignments
§ Make variables as needed
§ But last line is a return

• Try to work in reverse
§ Start with the return
§ Figure ops you need
§ Make a variable if unsure
§ Assign on previous line

def middle(text):
"""Returns: middle 3rd of text
Param text: a string"""

Get length of text

Start of middle third

End of middle third

Get the text

Return the result
return result

9/6/16 Strings 12

Defining a String Function

• Start w/ string variable
§ Holds string to work on
§ Make it the parameter

• Body is all assignments
§ Make variables as needed
§ But last line is a return

• Try to work in reverse
§ Start with the return
§ Figure ops you need
§ Make a variable if unsure
§ Assign on previous line

def middle(text):
"""Returns: middle 3rd of text
Param text: a string"""

Get length of text

Start of middle third

End of middle third

Get the text
result = text[start:end]
Return the result
return result

9/6/16 Strings 13

Defining a String Function

• Start w/ string variable
§ Holds string to work on
§ Make it the parameter

• Body is all assignments
§ Make variables as needed
§ But last line is a return

• Try to work in reverse
§ Start with the return
§ Figure ops you need
§ Make a variable if unsure
§ Assign on previous line

def middle(text):
"""Returns: middle 3rd of text
Param text: a string"""

Get length of text

Start of middle third

End of middle third
end = 2*size/3
Get the text
result = text[start:end]
Return the result
return result

9/6/16 Strings 14

Defining a String Function

• Start w/ string variable
§ Holds string to work on
§ Make it the parameter

• Body is all assignments
§ Make variables as needed
§ But last line is a return

• Try to work in reverse
§ Start with the return
§ Figure ops you need
§ Make a variable if unsure
§ Assign on previous line

def middle(text):
"""Returns: middle 3rd of text
Param text: a string"""

Get length of text

Start of middle third
start = size/3
End of middle third
end = 2*size/3
Get the text
result = text[start:end]
Return the result
return result

9/6/16 Strings 15

Defining a String Function

• Start w/ string variable
§ Holds string to work on
§ Make it the parameter

• Body is all assignments
§ Make variables as needed
§ But last line is a return

• Try to work in reverse
§ Start with the return
§ Figure ops you need
§ Make a variable if unsure
§ Assign on previous line

def middle(text):
"""Returns: middle 3rd of text
Param text: a string"""

Get length of text
size = len(text)
Start of middle third
start = size/3
End of middle third
end = 2*size/3
Get the text
result = text[start:end]
Return the result
return result

9/6/16 Strings 16

Defining a String Function

>>> middle('abc')
'b'
>>> middle('aabbcc')
'bb'
>>> middle('aaabbbccc')
'bbb'

def middle(text):
"""Returns: middle 3rd of text
Param text: a string"""

Get length of text
size = len(text)
Start of middle third
start = size/3
End of middle third
end = 2*size/3
Get the text
result = text[start:end]
Return the result
return result

9/6/16 Strings 17

Not All Functions Need a Return

def greet(n):
"""Prints a greeting to the name n

Parameter n: name to greet
Precondition: n is a string"""
print 'Hello '+n+'!'
print 'How are you?'

9/6/16 Strings 18

Displays these
strings on the screen

No assignments or return
The call frame is EMPTY

Procedures vs. Fruitful Functions

Procedures

• Functions that do something
• Call them as a statement
• Example: greet('Walker')

Fruitful Functions

• Functions that give a value
• Call them in an expression
• Example: x = round(2.56,1)

9/6/16 Strings 19

Historical Aside
• Historically “function” = “fruitful function”
• But now we use “function” to refer to both

Print vs. Return

Print

• Displays a value on screen
§ Used primarily for testing
§ Not useful for calculations

def print_plus(n):
print (n+1)

>>> x = print_plus(2)
3
>>>

Return

• Defines a function’s value
§ Important for calculations
§ But does not display anything

def return_plus(n):
return (n+1)

>>> x = return_plus(2)
>>>

9/6/16 Strings 20

Print vs. Return

Print

• Displays a value on screen
§ Used primarily for testing
§ Not useful for calculations

def print_plus(n):
print (n+1)

>>> x = print_plus(2)
3
>>>

Return

• Defines a function’s value
§ Important for calculations
§ But does not display anything

def return_plus(n):
return (n+1)

>>> x = return_plus(2)
>>>

9/6/16 Strings 21

x 3x

Nothing here!

Advanced String Features: Method Calls

• Methods calls are unique (right now) to strings
• Like a function call with a “string in front”

§ Usage: string.method(x,y…)
§ The string is an implicit argument

• Example: upper()
§ s = 'Hello World'
§ s.upper() == 'HELLO WORLD'
§ s[1:5].upper() == 'ELLO'
§ 'abc'.upper() == 'ABC'

9/6/16 Strings 22

Will see why we
do it this way
later in course

Examples of String Methods

• s1.index(s2)
§ Position of the first

instance of s2 in s1

• s1.count(s2)
§ Number of times s2

appears inside of s1

• s.strip()
§ A copy of s with white-

space removed at ends

• s = 'abracadabra'
• s.index('a') == 0
• s.index('rac') == 2

• s.count('a') == 5
• s.count('b') == 2
• s.count('x') == 2
• ' a b '.strip() == 'a b'

9/6/16 Strings 23

See Python
Docs for more

String Extraction Example

def firstparens(text):
"""Returns: substring in ()
Uses the first set of parens
Param text: a string with ()"""

Find the open parenthesis
start = s.index('(')
Store part AFTER paren
tail = s[start+1:]
Find the close parenthesis
end = tail.index(')')
Return the result
return tail[:end]

>>> s = 'Prof (Walker) White'
>>> firstparens(s)
'Walker’
>>> t = '(A) B (C) D'
>>> firstparens(t)
'A'

9/6/16 Strings 24

String Extraction Puzzle

def second(thelist):
"""Returns: second elt in thelist
The list is a sequence of words
separated by commas, spaces.
Ex: second('A, B, C') => 'B'
Param thelist: a list of words"""

start = thelist.index(',')
tail = thelist[start+1:]
end = tail.index(',')
result = tail[:end]
return result

>>> second('cat, dog, mouse, lion')
'dog'
>>> second('apple, pear, banana')
'pear'

9/6/16 Strings 25

1
2
3
4
5

String Extraction Puzzle

def second(thelist):
"""Returns: second elt in thelist
The list is a sequence of words
separated by commas, spaces.
Ex: second('A, B, C') => 'B'
Param thelist: a list of words"""

start = thelist.index(',')
tail = thelist[start+1:]
end = tail.index(',')
result = tail[:end]
return result

>>> second('cat, dog, mouse, lion')
'dog'
>>> second('apple, pear, banana')
'pear'

9/6/16 Strings 26

1
2
3
4
5

Where is the error?

A: Line 1
B: Line 2
C: Line 3
D: Line 4
E: There is no error

String Extraction Puzzle

def second(thelist):
"""Returns: second elt in thelist
The list is a sequence of words
separated by commas, spaces.
Ex: second('A, B, C') => 'B'
Param thelist: a list of words"""

start = thelist.index(',')
tail = thelist[start+1:]
end = tail.index(',')
result = tail[:end]
return result

>>> second('cat, dog, mouse, lion')
'dog'
>>> second('apple, pear, banana')
'pear'

9/6/16 Strings 27

1
2
3
4
5

result = tail[:end].strip()

tail = thelist[start+2:]
OR

