One-on-One Sessions

¢ Starting tomorrow: 1/2-hour one-on-one sessions

* Bring computer to work with instructor, TA or consultant

= Hands on, dedicated help with Lab 3 (or next lecture)

= To prepare for assignment, not for help on assignment
¢ Limited availability: we cannot get to everyone

= Students with experience or confidence should hold back
* Sign up online in CMS: first come, first served

= Choose assignment One-on-One

= Pick a time that works for you; will add slots as possible

= Can sign up starting at Ilpm TODAY

9/6/16 Strings

String: Text as a Value

¢ String are quoted characters
= 'abc d' (Python prefers) Type: str
= "abc d" (most languages)

* How to write quotes in quotes?

= Delineate with “other quote™ \' single quote
Vi \" double quote

= Example: "' " or
= What if need both "and ' ? \n new line
\t tab
* Solution: escape characters \\ backslash

= Format: \ + letter

= Special or invisible chars

9/6/16 Strings

String are Indexed

e g="abcd ¢ s ="Hello all'
012345678

Lfelrfifo] Jalifr]
e Access characters with [] ¢ What is s[3:6]?

= g[0]is 'a'

= g[4]is 'd’ A:'loa'

= g[5] causes an error B:'lo!
C:'lo"'

= 5[0:2] is 'ab' (excludes ¢) D:'o"

= sl@]is ‘¢ d
e Called “string slicing”

E: I do not know

9/6/16 Strings

Other Things We Can Do With Strings

e QOperation in: 8; in sg e Function len: len(s)
= Tests if 81 “a part of” sg = Value is # of chars in §
= Say sy a substring of sg = Evaluates to an int

= Evaluates to a bool

* Examples: * Examples:

= 8 ='abracadabra’ = g ='abracadabra’

= '3'in s == True = len(s) == 11

= 'cad'in s == True = len(s[1:8]) ==

= 'foo' in s == False = g[l:len(s)-1] == 'bracadabr'
%6116 Strings

Defining a String Function

>>> middle(‘abe") def middle(text):

1y ""Returns: middle & of text
. Param text: a string"""

>>> middle(‘aabbee')

bb' # Get length of text

.) . size = len(text)

>>> middle(‘aaabbbeee’) # Start of middle third
‘bbbl start = size/3

End of middle third
end = 2*size/3

Get the text

result = text[start:end]
Return the result
return result

9/6/16 Strings

Not All Functions Need a Return

def greet(n):
"""Prints a greeting to the name n

Parameter n: name to greet
Precondition: n is a string""

print 'Hello '+n+'!' Displays these
print "How are you‘?, gs on the screen
\ J

No assignments or return
The call frame is EMPTY

9/6/16 Strings

Procedures vs. Fruitful Functions

Procedures Fruitful Functions

* Functions that do something ¢ Functions that give a value
 Call them as a statement ¢ Call them in an expression

e Example: greet('Walker') ¢ Example: x = round(2.56,1)

Historical Aside
* Historically “function” = “fruitful function”
¢ But now we use “function” to refer to both

Print vs. Return

Print

Return

¢ Displays a value on screen
= Used primarily for testing

= Not useful for calculations

def print_plus(n):
| print (n+1)
>>>x = print_plus(2)

e Defines a function’s value
= Important for calculations
= But does not display anything

def return_plus(n):
| return (n+1)
>>> x = peturn_plus(R)

9/6/16 Strings

Advanced String Features: Method Calls

e Methods calls are unique (right now) to strings
* Like a function call with a “string in front”
= Usage: string.method(x,y...)
= The string is an implicit argument
* Example: upper()
= g ="Hello World'
= g.upper() == 'HELLO WORLD'
= g[1:5].upper() == 'ELLO'
= 'abc'.upper() == 'ABC'

Will see why we
do it this way

later in course

9/6/16 Strings 9

3 >>>
Nothing here!
9/6/16 Strings 8
Examples of String Methods
e s1.index(sg) * g ='abracadabra’
= Position of the first * g.index('a’) ==
instance of sg in 8; « sindex('rac) ==
* s1.count(sg) * s.count('a) =5
* Number of times sg * g.count('h") ==

appears inside of s; « s.count(x’) =2

* s.stripQ) * ' ab'stripQ="ab'

= A copy of s with white-
space removed at ends

See Python
Docs for more

9/6/16 Strings 10

String Extraction Example

def firstparens(text): >>> g = 'Prof (Walker) White'
"""Returns: substring in () >>> firstparens(s)
Uses the first set of parens Walker’

Param text: a string with () >>> = (A) B (C) D'
Find the open parenthesis >>> firstparens(t)
start = s.index('(") A

Store part AFTER paren

tail = s[start+1:]

Find the close parenthesis

end = tail.index(")")

Return the result

return tail[:end]

9/6/16 Strings 11

String Extraction Puzzle

def second(thelist): >>> second(‘cat,gog, mouse, lion")
"""Returns: second elt in thelist 'dog'

The list is a sequence of words
separated by commas, spaces.
Ex: second('A, B, C) =>'B'
Param thelist: a list of words"""

>>> gecond('apple, pear, banana')
1=
'pear’

start = thelist.index(',")
tail = thelist[start+1:]
end = tail.index(',")
result = tail[:end]

O I

return result

9/6/16 Strings 12

