
1

Announcements for Today

If Not Done Already

• Enroll in Piazza

• Sign into CMS
§ Fill out the Survey
§ Complete AI Quiz

• Read the textbook
§ Chapter 1 (browse)
§ Chapter 2 (in detail)

Lab 1

• Please stay in your section
§ If you drop, you are stuck
§ E-mail conflicts to Jessica
§ jd648@cornell.edu
§ Will review by next week

• Have one week to complete
§ Fill out questions on handout
§ Show to TA before next lab
§ Show in consulting hours

Helping You Succeed in this Class

• Consultants. ACCEL Lab Green Room
§ Daily office hours (see website) with consultants
§ Very useful when working on assignments

• AEW Workshops. Additional discussion course
§ Runs parallel to this class – completely optional
§ See website; talk to advisors in Olin 167.

• Piazza. Online forum to ask and answer questions
§ Go here first before sending question in e-mail

• Office Hours. Talk to the professor!
§ Will make an announcement next week

Type: Set of values and the operations on them

• Type int:
§ Values: integers
§ Ops: +, –, *, /, %, **

• Type float:
§ Values: real numbers
§ Ops: +, –, *, /, **

• Type bool:
§ Values: True and False
§ Ops: not, and, or

• Type str:
§ Values: string literals

• Double quotes: "abc"
• Single quotes: 'abc'

§ Ops: + (concatenation)

Will see more types
in a few weeks

Operator Precedence

• What is the difference between the following?
§ 2*(1+3)
§ 2*1 + 3

• Operations are performed in a set order
§ Parentheses make the order explicit
§ What happens when there are no parentheses?

• Operator Precedence: The fixed order Python
processes operators in absence of parentheses

add, then multiply

multiply, then add

Precedence of Python Operators
• Exponentiation: **

• Unary operators: + –

• Binary arithmetic: * / %

• Binary arithmetic: + –

• Comparisons: < > <= >=

• Equality relations: == !=

• Logical not

• Logical and

• Logical or

• Precedence goes downwards
§ Parentheses highest
§ Logical ops lowest

• Same line = same precedence
§ Read “ties” left to right
§ Example: 1/2*3 is (1/2)*3

• Section 2.7 in your text

• See website for more info

• Was major portion of Lab 1

Expressions vs Statements

Expression

• Represents something
§ Python evaluates it
§ End result is a value

• Examples:
§ 2.3
§ (3+5)/4

Statement

• Does something
§ Python executes it
§ Need not result in a value

• Examples:
§ print “Hello”
§ import sys

Will see later this is not a clear cut separation

Value

Complex Expression

2

Variables (Section 2.1)

• A variable
§ is a named memory location (box)
§ contains a value (in the box)
§ can be used in expressions

• Examples:

5x Variable x, with value 5 (of type int)

20.1area Variable area, w/ value 20.1 (of type float)

Variable names
must start with a
letter (or _).

The type belongs
to the value, not
to the variable.

The value in the box is
then used in evaluating
the expression.

Variables and Assignment Statements

• Variables are created by assignment statements
§ Create a new variable name and give it a value

x = 5

• This is a statement, not an expression
§ Tells the computer to DO something (not give a value)
§ Typing it into >>> gets no response (but it is working)

• Assignment statements can have expressions in them
§ These expressions can even have variables in them

x = x + 2

x 5

Two steps to execute an assignment:
1. evaluate the expression on the right
2. store the result in the variable on the left

“gets”

8/27/15

the value

the variable

the expression

the variable

Execute the Statement: x = x + 2

• Draw variable x on piece of paper:

• Step 1: evaluate the expression x + 2
§ For x, use the value in variable x
§ Write the expression somewhere on your paper

• Step 2: Store the value of the expression in x
§ Cross off the old value in the box
§ Write the new value in the box for x

• Check to see whether you did the same thing as your
neighbor, discuss it if you did something different.

5x

Execute the Statement: x = x + 2

• The variable x

• The command:
§ Step 1: Evaluate the expression x + 2
§ Step 2: Store its value in x

• This is how you execute an assignment statement
§ Performing it is called executing the command
§ Command requires both evaluate AND store to be correct
§ Important mental model for understanding Python

5x

Dynamic Typing

• Python is a dynamically typed language
§ Variables can hold values of any type
§ Variables can hold different types at different times
§ Use type(x) to find out the type of the value in x
§ Use names of types for conversion, comparison

• The following is acceptable in Python:
>>> x = 1
>>> x = x / 2.0

• Alternative is a statically typed language (e.g. Java)
§ Each variable restricted to values of just one type

ç x contains an int value
ç x now contains a float value

type(x) == int
x = float(x)
type(x) == float

Dynamic Typing

• Often want to track the type in a variable
§ What is the result of evaluating x / y?
§ Depends on whether x, y are int or float values

• Use expression type(<expression>) to get type
§ type(2) evaluates to <type 'int'>
§ type(x) evaluates to type of contents of x

• Can use in a boolean expression to test type
§ type('abc') == str evaluates to True

