
CS 1110, LAB 9: BLACKJACK

http://www.cs.cornell.edu/courses/cs1110/2016fa/labs/lab09/

First Name: Last Name: NetID:

This lab is a lot shorter than you might realize at first glance. You already have enough work
with the assignment due this week, and later assignments will be longer. Therefore, we thought it
best to give you a straight-forward lab that built up some practice with classes.

Lab Materials. We have created several Python files for this lab. You can download all of the
from the Labs section of the course web page.

http://www.cs.cornell.edu/courses/cs1110/2016fa/labs

When you are done, you should have the following three files.

• lab09.py (the primary module for the lab)

• test09.py (a unit test for lab09.py)

• card.py (a support module, which you will not touch)

You should create a new directory on your hard drive and download all of the files into that
directory. Alternatively, you can get all of the files bundled in a single ZIP file called lab09.zip

from the Labs section of the course web page.

Getting Credit for the Lab. Everything in this lab will either be written on this handout,
or implemented in lab09.py. When you are done, show both of these to your instructor. You
instructor will then swipe your ID card to record your success. You do not need to submit the
paper with your answers, and you do not need to submit the computer files anywhere.

As with the previous lab, if you do not finish during the lab, you have until the beginning of
lab next week to finish it. You should always do your best to finish during lab hours. Remember
that labs are graded on effort, not correctness.

1. The Game of Blackjack

In this lab, you will finish a class definition for Blackjack that a casino could use to run multiple
blackjack games simultaneously.

A player wins at blackjack by ending with a hand that has more points than the dealer’s, but
not more than 21 points. If someone exceeds 21 points, they are said to have “gone bust” and
immediately lose. Points come from the ranks of the cards in a hand: 10 points for each face card
(Jack, Queen, or King), 11 points for an ace, and the rank of the card for anything else (e.g. a 4 of
anything is 4 points). In some games of blackjack, an ace can be worth either 1 or 11, whichever is
better; we will ignore that rule for our implementation.

Course authors: D. Gries, L. Lee, S. Marschner, W. White

1

http://www.cs.cornell.edu/courses/cs1110/2016fa/labs/lab09/
http://www.cs.cornell.edu/courses/cs1110/2016fa/labs


Play begins with two cards being dealt to the player and one card to the dealer. All cards in
each hand are always visible to all participants. The player can chose to “hit” (get an additional
card from the deck) or “stay” (turn over play to the dealer). If the player eventually stays without
going bust, then the dealer draws cards until she goes bust or decides to stop.

Once you complete the lab, you can relax and play a few rounds of the game yourself. The file
lab09.py has script code, and so can be safely run as a script. He is a sample transcript showing
off a working game:

[llee: lab09] python lab09.py

Welcome to CS 1110 Blackjack.

Rules: Face cards are 10 points. Aces are 11 points.

All other cards are at face value.

Your hand:

8 of Spades

6 of Clubs

Dealer's hand:

9 of Spades

Type h for new card, s to stop: h

You drew the 6 of Spades

Type h for new card, s to stop: s

Dealer drew the 3 of Spades

Dealer drew the 4 of Spades

Dealer drew the 8 of Hearts

Dealer went bust, you win!

The final scores were player: 20; dealer: 24

1.1. The Module card. The Card class is provided by the module card. You do not need to do
anything with this module at all. You might want to check out the Card methods, but that is not
necessary. The helper functions in lab09.py take care of all of those details for you.

2. Completing the Blackjack class definition

You should proceed in an iterative fashion. For each step outlined below,

(1) Read the directions in this handout and the specification of the relevant methods.

(2) Look at the appropriate test cases in test09.py, to better understand the goal.

(3) Remove lines with the comment “implement me”, and write the appropriate code.

(4) Test your code using test09.py. You do not need to add test cases to it.

Make sure each method passes its test cases before moving on to implement the next method. This
is important because many of the methods here build on earlier ones.

2



2.1. Fix the method headers.

There is something wrong in at least one of the headers of the methods for class Blackjack. You
can tell by running the test script test09.py in the command shell.

What error do you get, and how should you fix the error? Write your answers below, and then
fix all method headers that require this correction.

2.2. Implement and test init .

Implement init so that it initializes the three instance attributes of Blackjack. For this part,
you will probably want to make use of standard list operations. For reference, look at section 5.1
in the Python library at

http://docs.python.org/2/tutorial/datastructures.html

Our solution is three lines long. Write yours here:

2.3. Enforce the preconditions for init .

Notice that the init method has preconditions for the parameter deck. You can break this
precondition into three facts: deck is a list, deck contains only Cards, and deck has at least three
elements.

At least two of these are relatively easy to enforce (All three are enforceable if you are really
clever and create a helper function, as in Assignment 4). In the box below, write assert statements
that would enforce at least two of these preconditions.

3

http://docs.python.org/2/tutorial/datastructures.html


2.4. Read over but don’t change score.

Note the leading underscore in this method. This is meant to be a private helper method for the
class (and for you).

2.5. Implement dealerScore() and playerScore().

You should use the private helper method that we have provided. The syntax for getting this
right might take a little getting used to, so write down your code for dealerScore here for your
instructor to take a look at:

2.6. Implement and test playerBust() and dealerBust().

Your implementation should use dealerScore() and playerScore() as helper methods. We do
not ask you to write it here. Just implement it in lab09.py.

2.7. Implement and test str .

Note that this method is “higher up” in the file, just after init , as is conventional. Use
dealerScore() and playerScore() as helper methods. Again, there is nothing to write on this
worksheet. Just modify the files.

2.8. Play some Blackjack!

This last part is just for fun. Run lab09.py as a script:

python lab09.py

Follow the directions on the screen. The command ‘h’ is for ‘hit’, and ‘s’ is for stay.

Our dealer is following a common house protocol. As with most casinos, the dealer must continue
to hit while her hand is under 17. Once her hand reaches 17 or more, she must stay (or go bust).
See if you can use this to your advantage.

3. OPTIONAL CHALLENGE

You are done with the lab, but if you want an extra challenge, you can try this. In real blackjack,
aces can count as either 1 point or 11 points, depending on what is most advantageous for the holder
of the hand. The score method would have to be rewritten to account for that.

What should a modifed score method do. Sould it return a range of possible scores for a hand?
A list of possible scores? The best possible score? How would you change your code according to
this design decision?

4


	Lab Materials
	Getting Credit for the Lab
	1. The Game of Blackjack
	1.1. The Module card

	2. Completing the Blackjack class definition
	2.1. Fix the method headers
	2.2. Implement and test __init__
	2.3. Enforce the preconditions for __init__
	2.4. Read over but don't change _score
	2.5. Implement dealerScore() and playerScore()
	2.6. Implement and test playerBust() and dealerBust()
	2.7. Implement and test __str__
	2.8. Play some Blackjack!

	3. OPTIONAL CHALLENGE

