CS 1110

Prelim 2 Review Fall 2016

Exam Info

- Prelim 2: 7:30–9:00PM, Thursday, Nov. 10th
 - Last name A K in Uris G01
 - Last name L O in Phillips 101
 - Last name **P W** in Ives 305
 - Last name **X Z** in Ives 105
- To help you study:
 - Study guides, review slides are online
 - Review solution to prelim 1 (esp. call stack!)

- Five questions from the following topics:
 - Recursion (Lab 8, A4)
 - Iteration and Lists (Lab 7, A4, A6)
 - Defining classes (Lab 9, Lab 10, A6)
 - Drawing folders (Lecture, A5)
 - Exceptions (Lectures 11 and 21)
 - Short Answer (Terminology, Potpourri)
- +2 points for name, netid AND SECTION

- Recursion (Lab 8, A4)
 - Will be given a function specification
 - Implement it using recursion
 - May have an associated call stack question
- Iteration and Lists (Lab 7, A4, A6)
- Defining classes (Lab 9, Lab 10, A6)
- Drawing folders (Lecture, A5)
- Exceptions (Lectures 11 and 21)
- Short Answer (Terminology, Potpourri)

Recursive Function (Fall 2014)

def histogram(s):

"""Return: a histogram (dictionary) of the # of letters in string s.

The letters in s are keys, and the count of each letter is the value. If the letter is not in s, then there is NO KEY for it in the histogram.

Example: histogram('') returns {}, histogram('abracadabra') returns {'a':5,'b':2,'c':1,'d':1,'r':2}

Precondition: s is a string (possibly empty) of just letters."""

Recursive Function (Fall 2014)

def histogram(s):

"""Return: a histogram (dictionary) of the # of letters in string s.

The letters in s are keys, and the count of each letter is the value. If the letter is not in s, then there is NO KEY for it in the histogram.

Precondition: s is a string (possibly empty) of just letters."""

Hint:

- Use divide-and-conquer to break up the string
- Get two dictionaries back when you do
- Pick one and insert the results of the other

Recursive Function

```
def histogram(s):
  """Return: a histogram (dictionary) of the # of letters in string s."""
  if s == ":
                                     # Small data
     return { }
  # We know left is { s[0]: 1 }. No need to compute
  right = histogram(s[1:])
  if s[0] in right:
                                     # Combine the answer
     right[s[0]] = right[s[0]]+1
  else:
     right[s[0]] = 1
  return right
```

Call Stack Question

```
def skip(s):
   """Returns: copy of s
   Odd (from end) skipped"""
   result = "
   if (len(s) \% 2 = 1):
      result = skip(s[1:])
   elif len(s) > 0:
      result = s[0]+skip(s[1:])
   return result
```

- Call: skip('abc')
- Recursive call results in four frames (why?)
 - Consider when 4th
 frame completes line 6
 - Draw the entire call stack at that time
- Do not draw more than four frames!

Call Stack Question

```
def skip(s):
   """Returns: copy of s
   Odd (from end) skipped"""
   result = "
   if (len(s) \% 2 = 1):
      result = skip(s[1:])
   elif len(s) > 0:
      result = s[0]+skip(s[1:])
   return result
```

11/6/16

• Call: skip('abc')

Call Stack Question

• Call: skip('abc')

```
def skip(s):
    """Returns: copy of s
    Odd (from end) skip
                           s = 'abc'
    result = "
    if (len(s) \% 2 = 1):
       result = skip(s[1:])
                              g = 'bc'
    elif len(s) > 0:
       result = s[0]+skip(s[1:])
6
    return result
                      g = "
```


- Recursion (Lab 8, A4)
- Iteration (Lab 7, A4, A6)
 - Again, given a function specification
 - Implement it using a for-loop
 - May involve 2-dimensional lists
- Defining classes (Lab 9, Lab 10, A6)
- Drawing folders (Lecture, A5)
- Exceptions (Lectures 11 and 21)
- Short Answer (Terminology, Potpourri)

Implement Using Iteration

def evaluate(p, x):

"""Returns: The evaluated polynomial p(x)

We represent polynomials as a list of floats. In other words

$$[1.5, -2.2, 3.1, 0, -1.0]$$
 is $1.5 - 2.2x + 3.1x**2 + 0x**3 - x**4$

We evaluate by substituting in for the value x. For example

evaluate(
$$[1.5,-2.2,3.1,0,-1.0]$$
, 2) is $1.5-2.2(2)+3.1(4)-1(16) = -6.5$ evaluate($[2]$, 4) is 2

Precondition: p is a list (len > 0) of floats, x is a float"""

Implement Using Iteration

```
def evaluate(p, x):
  """Returns: The evaluated polynomial p(x)
  Precondition: p is a list (len > 0) of floats, x is a float"""
  sum = 0
  xval = 1
  for c in p:
     sum = sum + c*xval # coefficient * (x**n)
     xval = xval * x
  return sum
```

Example with 2D Lists (Like A6)

def max_cols(table):

"""Returns: Row with max value of each column

We assume that table is a 2D list of floats (so it is a list of rows and each row has the same number of columns. This function returns a new list that stores the maximum value of each column.

Examples:

```
\max_{\text{cols}([[1,2,3],[2,0,4],[0,5,2]])} is [2,5,4] \max_{\text{cols}([[1,2,3]])} is [1,2,3]
```

Precondition: table is a NONEMPTY 2D list of floats"""

Example with 2D Lists (Like A6)

```
def max_cols(table):
  """Returns: Row with max value of each column
  Precondition: table is a NONEMPTY 2D list of floats"""
  # Use the fact that table is not empty
  result = table[0][:] # Make a copy, do not modify table.
  # Loop through rows, then loop through columns
  for row in table:
     for k in range(len(row))
       if row[k] > result[k]
          result[k] = row[k]
  return result
```

- Recursion (Lab 8, A4)
- Iteration (Lab 7, A4, A6)
- Defining Classes (Lab 9, Lab 10, A6)
 - Given a specification for a class
 - Also given a specification for a subclass
 - Will "fill in blanks" for both
- Drawing folders (Lecture, A5)
- Exceptions (Lectures 11 and 21)
- Short Answer (Terminology, Potpourri)

class Customer(object):

"""Instance is a customer for our company

Mutable attributes:

- _name: last name [string or None if unknown]
- _email: e-mail address [string or None if unknown]

Immutable attributes:

born: birth year [int > 1900; -1 if unknown]"""

DEFINE GETTERS/SETTERS HERE

Enforce all invariants and enforce immutable/mutable restrictions

DEFINE INITIALIZER HERE

- # Initializer: Make a Customer with last name n, birth year y, e-mail address e.
- # E-mail is None by default
- # Precondition: parameters n, b, e satisfy the appropriate invariants

OVERLOAD STR() OPERATOR HERE

- # Return: String representation of customer
- # If e-mail is a string, format is 'name (email)'
- # If e-mail is not a string, just returns name

class Customer(object): """Instance is a customer for our company Mutable attributes: _name: last name [string or None if unknown] _email: e-mail address [string or None if unknown] Immutable attributes: _born: birth year [int > 1900; -1 if unknown]""" # DEFINE GETTERS/SETTERS HERE def getName(self): Getter return self. name def setName(self,value): assert value is None or type(value) == str

self. name = value

Actual Exam Question probably not this long. Just for this practice.

Setter

class Customer(object): """Instance is a customer for our company Mutable attributes: _name: last name [string or None if unknown] _email: e-mail address [string or None if unknown] Immutable attributes: _born: birth year [int > 1900; -1 if unknown]""" # DEFINE GETTERS/SETTERS HERE def getEmail(self): Getter return self._email def setEmail(self,value): assert value is None or type(value) == str self. email = value Setter

Actual Exam Question probably not this long. Just for this practice.

class Customer(object):

"""Instance is a customer for our company

Mutable attributes:

_name: last name [string or None if unknown]

_email: e-mail address [string or None if unknown]

Immutable attributes:

_born: birth year [int > 1900; -1 if unknown]"""

DEFINE GETTERS/SETTERS HERE

••••

def getBorn(self):

return self._born

Getter

Actual Exam Question probably not this long. Just for this practice.

Immutable.
No Setter!

```
class Customer(object):
  """Instance is a customer for our company
  Mutable attributes:
    _name: last name [string or None if unknown]
    _email: e-mail address [string or None if unknown]
  Immutable attributes:
    born: birth year [int > 1900; -1 if unknown]"""
  # DEFINE GETTERS/SETTERS HERE
  # DEFINE INITIALIZER HERE
  def __init__(self, n, y, e=None):
    assert type(y) == int and (y > 1900 or y == -1)
     self.setName(n) # Setter handles asserts
    self.setEmail(e) # Setter handles asserts
```

self._born = y # No setter

Actual Exam Question probably not this long. Just for this practice.

class Customer(object): """Instance is a customer for our company Mutable attributes: _name: last name [string or None if unknown] _email: e-mail address [string or None if unknown] Immutable attributes: born: birth year [int > 1900; -1 if unknown]""" # DEFINE GETTERS/SETTERS HERE **Actual Exam Question** # DEFINE INITIALIZER HERE probably not this long. # OVERLOAD STR() OPERATOR HERE Just for this practice. def <u>str</u> (self): if self. email is None: return = " if self._name is None else self._name None or str else: s = " if self. name is None else self. name If not None, return s+'('+self._email+')' always a str

class PrefCustomer(Customer): """An instance is a 'preferred' customer Mutable attributes (in addition to Customer): _level: level of preference [One of 'bronze', 'silver', 'gold'] """ # DEFINE GETTERS/SETTERS HERE # Enforce all invariants and enforce immutable/mutable restrictions # DEFINE INITIALIZER HERE # Initializer: Make a new Customer with last name n, birth year y, # e-mail address e, and level l # E-mail is None by default # Level is 'bronze' by default # Precondition: parameters n, b, e, l satisfy the appropriate invariants # OVERLOAD STR() OPERATOR HERE # Return: String representation of customer # Format is customer string (from parent class) +', level'

Use __str__ from Customer in your definition

```
class PrefCustomer(Customer):
  """An instance is a 'preferred' customer
  Mutable attributes (in addition to Customer):
    _level: level of preference [One of 'bronze', 'silver', 'gold'] """
  # DEFINE GETTERS/SETTERS HERE
  def getLevel(self):
                                                     Actual Exam Question
     return self._level
                                   Getter
                                                       will not be this long.
                                                       Just for this practice.
  def setLevel(self,value):
     assert type(value) == str
     assert (value == 'bronze' or value == 'silver' or value == 'gold')
     self. level = value
                                   Setter
```

```
class PrefCustomer(Customer):
    """An instance is a 'preferred' customer
    Mutable attributes (in addition to Customer):
    _level: level of preference [One of 'bronze', 'silver', 'gold'] """

# DEFINE GETTERS/SETTERS HERE
...
# DEFINE INITIALIZER HERE
def __init__(self, n, y, e=None, l='bronze'):

Actual
will n
```

Actual Exam Question will not be this long.

Just for this practice.

```
# OVERLOAD STR() OPERATOR HERE
def __str__(self):
    return Customer.__str__(self)+', '+self._level
```

self.setLevel(1) # Setter handles asserts

Customer.__init__(self,n,y,e)

explicit calls uses method in parent class as helper

- Recursion (Lab 7, A4)
- Iteration and Lists (Lab 6, A4, A5)
- Defining classes (Lab 8, Lab 9, A5)
- Drawing class folders (Lecture, **A5**)
 - Given a skeleton for a class
 - Also given several assignment statements
 - Draw all folders and variables created
- Exceptions (Lectures 11 and 21)
- Short Answer (Terminology, Potpourri)

Two Example Classes

```
class CongressMember(object):
  """Instance is legislator in congress
  Instance attributes:
     name: Member's name [str]"""
  def getName(self):
    return self. name
  def setName(self,value):
     assert type(value) == str
     self. name = value
  def init (self,n):
     self.setName(n) # Use the setter
  def __str__(self):
    return 'Honorable '+self.name
```

```
class Senator(CongressMember):
  """Instance is legislator in congress
  Instance attributes (plus inherited):
     state: Senator's state [str]"""
  def getState(self):
     return self._state
  def setName(self,value):
     assert type(value) == str
     self. name = 'Senator '+value
  def __init__(self,n,s):
     assert type(s) == str and len(s) == 2
     CongressMember.__init__(self,n)
     self. state = s
  def str (self):
     return (CongressMember. str_(self)+
             ' of '+self.state)
```

'Execute' the Following Code

$$>>> q = c$$

>>> d.setName('Clint')

Remember:

Commands outside of a function definition happen in global space

- Draw two columns:
 - Global space
 - Heap space
- Draw both the
 - Variables created
 - Object folders created
 - Class folders created
- If an attribute changes
 - Mark out the old value
 - Write in the new value

Method Overriding

Heap Space

```
class Senator(CongressMember):
  """Instance is legislator in congress
  Instance attributes (plus inherited):
    state: Senator's state [str]"""
  def getState(self):
     return self. state
  def setName(self,value):
     assert type(value) == str
     self. name = 'Senator '+value
  def __init__(self,n,s):
     assert type(s) == str and len(s) == 2
     Senator. init (self,n)
     self. state = s
  def str (self):
     return (Senator. str (self)+
            ' of '+self.state)
```

```
id1
      CongressMember
        'Jack'
name
id2
          Senator
                     'Senator Clint'
       'Sepator John'
name
           'NY'
state
      init calls
 setter as a helper
```

- Recursion (Lab 8, A4)
- Iteration and Lists (Lab 7, A4, A6)
- Defining classes (Lab 9, Lab 10, A6)
- Drawing class folders (Lecture, A5)
- Exceptions (Lectures 11 and 21)
 - Try-except tracing (skipped on Prelim 1)
 - But now with dispatch on type
 - Will give you exception hierarchy
- Short Answer (Terminology, Potpourri)

```
def first(x):
  print 'Starting first.'
  try:
     second(x)
  except IOError:
     print 'Caught at first'
  print 'Ending first'
def second(x):
  print 'Starting second.'
  try:
      third(x)
  except AssertionError:
     print 'Caught at second'
  print 'Ending second'
```

```
def third(x):
    print 'Starting third.'
    if x < 0:
        raise IOError()
    elif x > 0:
        raise AssertionError()
    print 'Ending third.'
```

What is the output of first(-1)?

11/6/16

Prelim 2 Review

```
def first(x):
  print 'Starting first.'
  try:
     second(x)
  except IOError:
     print 'Caught at first'
  print 'Ending first'
def second(x):
  print 'Starting second.'
  try:
      third(x)
  except AssertionError:
     print 'Caught at second'
  print 'Ending second'
```

```
def third(x):
    print 'Starting third.'
    if x < 0:
        raise IOError()
    elif x > 0:
        raise AssertionError()
    print 'Ending third.'
```

What is the output of first(-1)?

Starting first.
Starting second.
Starting third.
Caught at first.
Ending first.

```
def first(x):
  print 'Starting first.'
  try:
     second(x)
  except IOError:
     print 'Caught at first'
  print 'Ending first'
def second(x):
  print 'Starting second.'
  try:
      third(x)
  except AssertionError:
     print 'Caught at second'
  print 'Ending second'
```

```
def third(x):
    print 'Starting third.'
    if x < 0:
        raise IOError()
    elif x > 0:
        raise AssertionError()
    print 'Ending third.'
```

What is the output of first(1)?

```
def first(x):
  print 'Starting first.'
  try:
     second(x)
  except IOError:
     print 'Caught at first'
  print 'Ending first'
def second(x):
  print 'Starting second.'
  try:
      third(x)
  except AssertionError:
     print 'Caught at second'
  print 'Ending second'
```

```
def third(x):
    print 'Starting third.'
    if x < 0:
        raise IOError()
    elif x > 0:
        raise AssertionError()
    print 'Ending third.'
```

What is the output of first(1)?

Starting first.
Starting second.
Starting third.
Caught at second.
Ending second.
Ending first.

- Recursion (Lab 7, A4)
- Iteration and Lists (Lab 6, A4, A5)
- Defining classes (Lab 8, Lab 9, A5)
- Drawing class folders (Lecture, Study Guide)
- Exceptions (Lectures 11 and 21)
- Short Answer (Terminology, Potpourri)
 - See the study guide
 - Look at the lecture slides
 - Read relevant book chapters

In that order

Any More Questions?

