CS 1110

Prelim 2 Review
Fall 2016

Exam Info

e Prelim 2: 7:30-9:00PM, Thursday, Nov. 10th

* Last name A — K in Uris GO1
* Last name L — O in Phillips 101

= [Last name P — W 1n Ives 305

= [Last name X — Z 1n Ives 105

* To help you study:
= Study guides, review slides are online

= Review solution to prelim 1 (esp. call stack!)

11/6/16 Prelim 2 Review

What is on the Exam?

* Five questions from the following topics:
= Recursion (Lab 8, A4)
= Jteration and Lists (Lab 7, A4, A6)
= Defining classes (Lab 9, Lab 10, A6)
* Drawing folders (Lecture, AS)
= Exceptions (Lectures 11 and 21)
= Short Answer (Terminology, Potpourri)

e +2 points for name, netid AND SECTION

11/6/16 Prelim 2 Review

What is on the Exam?

e Recursion (Lab 8, A4)

= Will be given a function specification
* Implement it using recursion
" May have an associated call stack question

e Jteration and Lists (Lab 7, A4, A6)

* Defining classes (Lab 9, Lab 10, A6)

e Drawing folders (Lecture, AS)

* Exceptions (Lectures 11 and 21)

e Short Answer (Terminology, Potpourri)

11/6/16 Prelim 2 Review

Recursive Function (Fall 2014)

def histogram(s):
"""Return: a histogram (dictionary) of the # of letters in string s.

The letters in s are keys, and the count of each letter is the value. If
the letter is not in s, then there is NO KEY for it in the histogram.

Example: histogram(") returns {},
histogram('abracadabra’) returns {'a".5,'n":2,'¢":1,'d":1,'r":2}

Precondition: s is a string (possibly empty) of just letters.""

11/6/16 Prelim 2 Review 5

Recursive Function (Fall 2014)

def histogram(s):
"""Return: a histogram (dictionary) of the # of letters in string s.

The letters in s are keys, and the count of each letter is the value. If
the letter is not in s, then there is NO KEY for it in the histogram.

Precondition: s is a string (possibly empty) of just letters.""

Hint:

4)
* Use divide-and-conquer to break up the string

* Get two dictionaries back when you do

 Pick one and insert the results of the other
_ J

11/6/16 Prelim 2 Review 6

Recursive Function

def histogram(s):
"""Return: a histogram (dictionary) of the # of letters in string s."""
ifg==" # Small data
l return {}

We know left is { s[0]: 1 }. No need to compute
right = histogram(s[1:])

if s[0] in right: # Combine the answer
- right[s[0]] = right[s[0]]+1

else:

| right[s[0]] = 1

return right

11/6/16 Prelim 2 Review

Call Stack Question

def skip(s): o (Call: skip(‘abe")

S O1 & A 2O

11/6/16

""Returns: copy of s

O0dd (from end) skipped"""
result ="

if (len(s) % 2 = 1):

' result = skip(s[L:])

elif len(s) > O:

. result = s[O]+skip(s[1:])
return result

e Recursive call results
in four frames (why?)

= Consider when 4th
frame completes line 6

= Draw the entire call
stack at that time

e Do not draw more
than four frames!

Prelim 2 Review 8

o (Call: skip(‘abe")

Call Stack Question
skip s | 'abc'
def skip(s):

""Returns: copy of s restt

0dd (from end) skipped""" 2 b
1| result="
2 if (len(s) % 2 = 1): restt
3 | result = skip(s[L:]) skip |
4| elif len(s) > 0:
5/ | result = s[0]+skip(s[1:]) et
6/ return result sklp |
o e result | " RETURN

Call Stack Question

def skip(s):

""Returns: copy of s
0dd (from end) skip»==4
result ="

if (len(s) % 2 = 1):
' result = skip(s[L:])
elif len(s) > O:

. result = s[O]+skip(s[1:])
return result

s = 'bec’

S O1 & A 2O

S=l|

11/6/16 Prelim 2 Review

o (Call: skip(‘abe")

ski 3
. s | 'abc'
result
ski 5
p S lbcl
result
skip 3
S lcl
-
Done
result Line 6
. &'1/
skip
S
result RETURN

10

What is on the Exam?

e Recursion (Lab 8, A4)
e Jteration (Lab 7, A4, A6)

= Again, given a function specification
* Implement it using a for-loop
" May involve 2-dimensional lists

* Defining classes (Lab 9, Lab 10, A6)

e Drawing folders (Lecture, AS)

* Exceptions (Lectures 11 and 21)

* Short Answer (Terminology, Potpourri)

11/6/16 Prelim 2 Review

11

Implement Using Iteration

def evaluate(p, x):
"""Returns: The evaluated polynomial p(x)
We represent polynomials as a list of floats. In other words

[1.5,-R.82,38.1,0,-1.0]is 1.5 — B.Rx + 4.1x**2 + 0x**8 — x**4
We evaluate by substituting in for the value x. For example

evaluate([1.5,-2.2,3.1,0,-1.0],) is 1.6-2.2(R)+3.1(4)-1(16) = -6.5
evaluate([R], 4) is 2

Precondition: p is a list (len > 0) of floats, x is a float"™"

11/6/16 Prelim 2 Review 12

Implement Using Iteration

def evaluate(p, x):
"""Returns: The evaluated polynomial p(x)

Precondition: p is a list (len > 0) of floats, x is a float"™"
sum = 0
xval =1
for ¢ in p:
sum = sum + ¢*xval # coefficient * (x**n)
xval = xval * X
return sum

11/6/16 Prelim 2 Review

13

Example with 2D Lists (Like A6)

def max cols(table):
"""Returns: Row with max value of each column

We assume that table is a {D list of floats (so it is a list of rows and
each row has the same number of columns. This function returns
a new list that stores the maximum value of each column.

Examples:
max_cols([[1,3,3], [%,0,4], [0,5,R]]) is [R,5,4]
max_cols([[1,2,3]] is [1,R,3]

Precondition: table is a NONEMPTY 2D list of floats"™"

11/6/16 Prelim 2 Review 14

Example with 2D Lists (Like A6)

def max_cols(table):
"""Returns: Row with max value of each column
Precondition: table is a NONEMPTY 2D list of floats"""
Use the fact that table is not empty
result = table[O][:] # Make a copy, do not modify table.
Loop through rows, then loop through columns
for row in table:
for k in range(len(row))

if row[k] > result[K]

" result[k] = row[k]
return result

11/6/16 Prelim 2 Review

15

What is on the Exam?

e Recursion (Lab 8, A4)
e Jteration (Lab 7, A4, A6)
e Defining Classes (Lab 9, Lab 10, A6)

= Given a specification for a class

= Also given a specification for a subclass
= Will “fill in blanks” for both

e Drawing folders (Lecture, AS)
* Exceptions (Lectures 11 and 21)
* Short Answer (Terminology, Potpourri)

11/6/16 Prelim 2 Review 16

class Customer(object):
"""Tnstance is a customer for our company
Mutable attributes:
_name: last name [string or None if unknown]
_email: e-mail address [string or None if unknown]
Immutable attributes:
_born: birth year [int > 1900; -1 if unknown]"""

DEFINE GETTERS/SETTERS HERE
Enforce all invariants and enforce immutable/mutable restrictions

DEFINE INITIALIZER HERE

Initializer: Make a Customer with last name n, birth year y, e-mail address e.
E-mail is None by default

Precondition: parameters n, b, e satisfy the appropriate invariants

OVERLOAD STR() OPERATOR HERE

Return: String representation of customer
If e-mail is a string, format is 'name (email)'
If e-mail is not a string, just returns name

11/6/16 Prelim 2 Review

17

class Customer(object):

Mutable attributes:

Immutable attributes:

def setName(self,value):

11/6/16

"""Instance is a customer for our company

_name: last name [string or None if unknown]
_email: e-mail address [string or None if unknown]

_born: birth year [int > 1900; -1 if unknown]"""

DEFINE GETTERS/SETTERS HERE

def getName(self):
. return self._name Getter

assert value is None or type(value) == str

self. name = value
\[Setter]

Prelim 2 Review

/

\.

Actual Exam Question
probably not this long.

Just for this practice.

~N

/

18

class Customer(object):
"""Tnstance is a customer for our company
Mutable attributes:

_name: last name [string or None if unknown]

Immutable attributes:
_born: birth year [int > 1900; -1 if unknown]"""

DEFINE GETTERS/SETTERS HERE

def getEmail(self):
. return self, email | Getter]

def setEmail(self,value):
assert value is None or type(value) == str

self. email = value
\[Setter]

11/6/16 Prelim 2 Review

_email: e-mail address [string or None if unknown]

/

\.

Actual Exam Question
probably not this long.

Just for this practice.

~N

/

19

class Customer(object):

Mutable attributes:
_name: last name [

Immutable attributes:

def getBorn(self):
. return self. born

11/6/16

"""Instance is a customer for our company

string or None if unknown]

_born: birth year [int > 1900; -1 if unknown]"""

DEFINE GETTERS/SETTERS HERE

i Getter]

Immutable.
No Setter!

Prelim 2 Review

_email: e-mail address [string or None if unknown]

/

\.

Actual Exam Question
probably not this long.

Just for this practice.

~N

/

20

class Customer(object):

Mutable attributes:

Immutable attributes:

DEFINE INITIALIZER HERE
def __init_ (self, n, y, e=None):

self._born=y # No setter

11/6/16

"""Instance is a customer for our company

_name: last name [string or None if unknown]
_email: e-mail address [string or None if unknown]

_born: birth year [int > 1900; -1 if unknown]"""

DEFINE GETTERS/SETTERS HERE

assert type(y) == int and (y > 1900 or y ==-1)
self.setName(n) # Setter handles asserts
self.setEmail(e) # Setter handles asserts

Prelim 2 Review

/

\.

Actual Exam Question
probably not this long.

Just for this practice.

~N

/

21

class Customer(object):
"""Tnstance is a customer for our company
Mutable attributes:

_name: last name [string or None if unknown]

Immutable attributes:

DEFINE GETTERS/SETTERS HERE
DEFINE INITIALIZER HERE

OVERLOAD STR() OPERATOR HERE

def _ str_ (self):

if self._email is None:

| return =" if self._name is None else self._n
else:

s =" if self. name is None else self._name
return s+'('+self._email+")'

_email: e-mail address [string or None if unknown]

_born: birth year [int > 1900; -1 if unknown]"""

/

\.

Actual Exam Question
probably not this long.

Just for this practice.

~N

/

4me | None or str
If not None, |
i always a str

11/6/16 Prelim 2 Review

22

class PrefCustomer(Customer):
"""An instance is a 'preferred' customer
Mutable attributes (in addition to Customer):
_level: level of preference [One of 'bronze', 'silver', 'gold'] """

DEFINE GETTERS/SETTERS HERE
Enforce all invariants and enforce immutable/mutable restrictions

DEFINE INITIALIZER HERE

Initializer: Make a new Customer with last name n, birth year y,

e-mail address e, and level |

E-mail is None by default

Level is 'bronze' by default

Precondition: parameters n, b, e, 1 satisfy the appropriate invariants

OVERLOAD STR() OPERATOR HERE

Return: String representation of customer

Format is customer string (from parent class) +', level'
Use _ str_ from Customer in your definition

11/6/16 Prelim 2 Review

23

class PrefCustomer(Customer):

def setLevel(self,value):
assert type(value) == str

11/6/16

"""An instance is a 'preferred' customer
Mutable attributes (in addition to Customer):
_level: level of preference [One of 'bronze', 'silver', 'gold'] """

DEFINE GETTERS/SETTERS HERE

def getLevel(self):
. return self. level <£ Getter }

Prelim 2 Review

/

\.

Actual Exam Question
will not be this long.

Just for this practice.

~N

/

assert (value == 'bronze' or value == 'silver' or value == 'dold")

self. level = value
i Setter]

24

class PrefCustomer(Customer):

def _ str_ (self):

11/6/16

"""An instance is a 'preferred' customer
Mutable attributes (in addition to Customer):
_level: level of preference [One of 'bronze', 'silver', 'gold'] """

DEFINE GETTERS/SETTERS HERE

DEFINE INITIALIZER HERE

def __init_ (self, n, y, e=None, 1="boronze'):
Customer.__ init_ (self,n,y,e)
self.setLevel(l) # Setter handles asserts

OVERLOAD STR() OPERATOR HERE

/

\.

Actual Exam Question
will not be this long.

Just for this practice.

return Customer.__str__ (self)+', '+self._level

explicit calls uses method
in parent class as helper

Prelim 2 Review

25

What is on the Exam?

e Recursion (Lab 7, A4)
e Jteration and Lists (Lab 6, A4, AS)
e Defining classes (Lab 8, Lab 9, AS)

 Drawing class folders (Lecture, AS)
= Given a skeleton for a class
= Also given several assignment statements
= Draw all folders and variables created

* Exceptions (Lectures 11 and 21)
* Short Answer (Terminology, Potpourri)

11/6/16 Prelim 2 Review 26

Two Example Classes

class CongressMember(object):
"""Instance is legislator in congress
Instance attributes:

_name: Member's name [str]"""

def getName(self):
. return self. name

def setName(self,value):
assert type(value) == str
. self._name = value

def __init__ (self,n):
| self.setName(n) # Use the setter

def __ str__ (self):
| return 'Honorable '+self.name

class Senator(CongressMember):

"""Instance is legislator in congress

Instance attributes (plus inherited):
_state: Senator's state [str]"""

def getState(self):
return self._state

def setName(self,value):
assert type(value) == str
self._name = 'Senator '+value

def __init__ (selfn,s):

assert type(s) == str and len(s) ==
CongressMember.__init__ (self,n)
self._state =8

def __ str__ (self):
return (CongressMember.__ str__ (self)+
' of '+gelf.state)

11/6/16

Prelim 2 Review 27

‘Execute’ the Following Code

>>> b = CongressMember('Jack')

>>> ¢ = Senator('John', 'NY")
>>>d=c

>>> d.setName('Clint')

e)

Remember:
Commands outside of

a function definition

happen in global space

. /

11/6/16

e Draw two columns:
= Global space
= Heap space

e Draw both the
= Variables created

= Object folders created
= (Class folders created

e If an attribute changes
= Mark out the old value

= Write in the new value

Prelim 2 Review

28

Global Space Heap Space

id1
b id1 CongressMember

_hame | 'Jack'

C id2)
Senator
d id2 _name | 'Sef@orghn' | 'Senator Clint'
_state 'NY'

11/6/16

Prelim 2 Review

29

Global Space

Instance attributes
in object folders

TR B S

Methods and
class attributes
in class folders

/

/[

Heap Space
id1
CongressMember
_hame | 'Jack'
id2
Senator

_name | 'Sef@orgshn' | 'Senator Clint’

state 'NY'
Arrow to
superclass

11/6/16

Prelim 2 Review 30

Global Space Heap Space

id1
b id1 CongressMember

_hame | 'Jack'

C id2 ‘D

Senator
A idd _name | 'Sef@orgshn' | 'Senator Clint’
[Method parameters.] state NY'

2\ L

11/6/16

Prelim 2 Review

31

Method Overriding

Heap Space

class Senator(CongressMember):

"""Instance is legislator in congress

Instance attributes (plus inherited):
_state: Senator's state [str]"""

def getState(self):
| return self._state

def setName(self,value):

self. name = 'Senator '+value

[‘ assert type(value) == str]

def __init__ (selfn,s):

assert type(s) == str and len(s) ==
Senator.__init__ (self,n)
self._state =8

def _ str_ (self):
return (Senator._ str_ (self)+
l ' of '+gelf.state)

id1

_name | 'Jack'

CongressMember

id2

Senator
_name | 'SeforFshn'
_state 'NY'

'Senator Clint'

__init calls

setter as a helper

11/6/16 Prelim 2 Review

32

What is on the Exam?

e Recursion (Lab 8, A4)

e Jteration and Lists (Lab 7, A4, A6)

* Defining classes (Lab 9, Lab 10, A6)
e Drawing class folders (Lecture, AS)

e Exceptions (Lectures 11 and 21)
" Try-except tracing (skipped on Prelim 1)
= But now with dispatch on type
= Will give you exception hierarchy

* Short Answer (Terminology, Potpourri)

11/6/16 Prelim 2 Review 33

Exceptions and Dispatch-On-Type

def first(x):
print 'Starting first.'
try:

second(x)
except IOError:

print 'Caught at first’
print 'Ending first’

def second(x):
print 'Starting second.'
try:
third(x)
except AssertionError:
print 'Caught at second’

print 'Ending second’

def third(x):

print 'Starting third.'

if x <0:

raise IOError()

elif x > O:

raise AssertionError()
print 'Ending third.'

What is the output of first(-1)?

HINT: StandardError

>

AssertionError

IOError

11/6/16

Prelim 2 Review

34

Exceptions and Dispatch-On-Type

def first(x): def third(x):
print 'Starting first.' print 'Starting third.'
try: ifx<0:
second(x) raise IOError()
except IOError: elif x > O:
print 'Caught at first’ raise AssertionError()
print 'Ending first’ print 'Ending third.'
det second(x): What is the output of first(-1)?
print 'Starting second.'
bry: Starting first.
third(x) Starting second.
except AssertionError: Starting third.
print 'Caught at second’ Caught a.t first.
. . Ending first.
print 'Ending second’

11/6/16 Prelim 2 Review 35

Exceptions and Dispatch-On-Type

def first(x):
print 'Starting first.'
try:

second(x)
except IOError:

print 'Caught at first’
print 'Ending first’

def second(x):
print 'Starting second.'
try:
third(x)
except AssertionError:
print 'Caught at second’

print 'Ending second’

def third(x):

print 'Starting third.'

if x <0:

raise IOError()

elif x > O:

raise AssertionError()
print 'Ending third.'

What is the output of first(1)?

11/6/16

Prelim 2 Review

36

Exceptions and Dispatch-On-Type

def first(x): def third(x):
print 'Starting first.' print 'Starting third.'
try: ifx<0:
second(x) raise IOError()
except IOError: elif x > O:
print 'Caught at first’ raise AssertionError()
print 'Ending first’ print 'Ending third.'
def socond(x): What is the output of first(1)?
print 'Starting second.'
bry: Starting first.
third(x) Starting second.
except AssertionError: Starting third.
print 'Caught at second’ Caught ab second.
. . Ending second.
print 'Ending second’ Ending first.

11/6/16 Prelim 2 Review 37

What is on the Exam?

11/6/16

Recursion (Lab 7, A4)

Iteration and Lists (Lab 6, A4, AS)
Defining classes (LLab 8, Lab 9, A5)
Drawing class folders (Lecture, Study Guide)

Exceptions (Lectures 11 and 21)

Short Answer (Terminology, Potpourri)

= See the study guide
" Look at the lecture slides
= Read relevant book chapters

Prelim 2 Review

\

> In that order

_/

38

Any More Questions?

11/6/16

Prelim 2 Review

39

