Last Name: UTION First Name: SOL Cornell NetID: CS1110

Solution: CS 1110 Prelim 2 — April 22, 2014

1. [2 points] When allowed to begin, write your last name, first name, and Cornell NetID at the
top of each page.

Solution: Every time a student doesn’t do this, somewhere, a kitten weeps.

More seriously, we sometimes have exams come apart during grading, so it is actually important
to write your name on each page.

2. [10 points] Recursion. Recall the Node class from A3. Each node has a contacted_by attribute
consisting of a (possibly empty) list of nodes that have contacted it, and we know that anything
in a node’s contacted_by list is from an earlier generation. This question asks you to add a
new method for class Node; implement it according to its specification. Your solution must be
recursive, though it can involve for-loops as well.

class Node(object):

def is_downstream_from(self, older):

"""Returns True if: older is in this node's contacted_by list, OR if
at least one of the nodes in this node's contacted_by list is
downstream from older. Returns False otherwise.

Pre: older is a node.

nnn

Do NOT compute the legacy of older (it doesn't even help to do so if

self is not converted). You do NOT need to do any caching or check

if nodes are converted or not.

Solution:

if self.contacted_by == []:
return False
elif older in self.contacted_by:
return True
else:
for contacter in self.contacted_by:
if contacter.is_downstream_from(older):
return True
If we get to this line, no contacter was downstream of older
return False
+1 for first base case concept
+1 for second base case concept
+1 for using self correctly throughout
+1 looping through each contacter
+2 recursive call idea [this should be all or nothing, probably]

Last Name:UTION First Name: SOL Cornell NetID: CS1110

+2 correct syntax (method means contacter-dot, older should be the argument again)
+1 return True in correct recursive case
+1 return False when all checks fail

Ezample: In the figure below, (2,0) is downstream from (0,1), (0,2), (0,4), and (1,1), but no
other nodes.

generation
[o
O——e
[) []
(@]
(@]
@]

Page 2

Last Name:UTION First Name: SOL Cornell NetID: CS1110

3. [6 points] While-loops. Write a function that does the same thing as product_for but uses
a while-loop.

def product_for(x):

"""Return: the product of the numbers in x.
Pre: x is a list of integers.

nnn

p=1

for n in x:
p *=n

return p

def product_while(x):
"""Same specification as above."""

Solution:

i=20
p=1
while i < len(x):
p *= x[i]
i+=1
return p
Counting backwards would also be fine.
+1 for each initialization, the condition, the body, the increment,
and the return (that is, 1 for each line)

4. [8 points] While-loops. Implement the strip function so that it meets its specification, using
two non-nested while-loops: one starting from the beginning of the string and moving right, and
then one starting from the end of the string and moving left.

Your implementation may not use the Python built-ins strip, 1strip, or rstrip.

def strip(s1l, s2=' '):
"""Return a new string that is sl but with the occurrences of characters in s2
removed from the ends.
Pre: sl1 contains at least one character not in s2.

Examples: strip(' te st ') == 'te st'
strip('batestb', 'ab') == 'test'
strip('test ') == 'test'
strip('banana', 'nab') violates the precondition.

Hint: the precondition means your loops can't "fall off" the other end.

Solution:

Page 3

Last Name:UTION First Name: SOL

##
##
##

##
##
##
##t

ALTERNATE SOLUTION WITHOUT EXPLICIT INDEXING

h=20
inv: s[0..h-1] is in s2
while s1[h] in s2:
h+=1
We now know that s1[h] is not in s2.

k = len(sl)
inv: s[k..len(s)-1] is in s2
while si1[k-1] in s2:

k-=1

We now know that s1[k-1] is not in s2.

return si[h:k] # returns sl[h..k-1]

Cornell NetID: CS1110

Also possible to have j mean '"next thing to check" , in which case
j should start at len(sl)-1, loop condition is while si1[j] in s2,

return sif[h:j+1]

For each while loop:

+1 for correct init, +1 for correct loop condition, +1 for increment
The "return" line is worth two points, one for each increment.

while s1[0] in s2:
sl = s1[1:]
while s1[len(s1)-1] in s2:
sl = si1[:1len(s1)-1]
return sl

Page 4

Last Name:UTION First Name: SOL Cornell NetID: CS1110

5. [12 points] Classes and objects. The three classes Course, Student, and Schedule that
are printed on a separate handout are part of the Registrar’s new course enrollment database,
which keeps track of which courses each student is enrolled in, and also which students are
enrolled in each course. Two methods are not implemented: Student.add course (line 96),
which updates the database to reflect a student enrolling in a course, and Student.validate
(line 106), which checks a student’s schedule to make sure it follows the rules.

Read the code to become familiar with the design and operation of these classes. Note that
helper methods and a unit test included, which may help in understanding how these classes
are used and in solving the problems below.

After reading the code, implement the two incomplete methods by filling in your code below.
Write your answers on this sheet, not on the code printout (where there is no space to fit your
answer).

class Student(object):

def add_course(self, course):
"""See the code for the specification."""

Solution:

course.students.append(self)
self.schedules[0] .courses.append(course)

2 for first line:

+1 for accessing students list

+1 for appending correctly.

3 for second line:

+1 for accessing schedules list

+1 for then accessing courses list

+1 for appending correctly.

def validate(self, credit_limit):
"""See the code for the specification."""

Solution:

Page 5

Last Name:UTION First Name: SOL Cornell NetID: CS1110

valid = True
for sched in self.schedules[1:]:
if sched.overlaps(self.schedules[0]):
valid = False

return valid and (self.schedules[0].total_credits() <= credit_limit)
Various other ways to structure the logic are possible.
5 for computing overlap boolean
+1 for loop over the right part of schedules

+1 for calling Schedule.overlaps correctly
##t +1 for calling it with the right argument
it +2 for logic that returns False if any are true

2 for enforcing total credits limit
it +1 for calling Schedule.total_credits on the right thing
+1 for logic that returns False if limit is exceeded

Page 6

Last Name:UTION First Name: SOL Cornell NetID: CS1110

6. [8 points] Loop invariants. Each of the following can be fixed with a one-line change to the
code. Fix each method by crossing out only one line and rewriting it to the right, so that
the code is consistent with the invariant.

def partition(b, z):

i=0
j = len(b)-1
inv: b[0..i-1] <= z and b[j..] > z
while i != j:
if b[i] <= z:
i+=1
else:
j-=1

b[il, blj] = blj], bli]
post: b[0..j-1] <= z and b[j..] > z
return j

Solution: Change j = len(b)-1to j = len(b). 2 pts (all or none) for correcting the right
line; 2 pts (all or none) for the right correction.

def partition2(b, z):

i=-1
j = len(b)
inv: b[0..i] <= z and b[j..] > z
while 1 != j:
if bl[i+1] <= z:
i+=1
else:
b[i+1], b[j-1]1 = b[j-11, bli+1]
j-=1
post: b[0..j-1] <= z and b[j..] > z
return j
Solution: Change i !'= jtoi !'= j-1. 2 pts (all or none) for correcting the right line; 2 pts

(all or none) for the right correction.

Did you write your name & netlD on each page, and carefully re-read all instructions and
specifications? Did you mentally test your code against the examples, where provided?

Page 7

