Review 6

Developing Loops
from Invariants

Outline

4 questions for loop
How to develop loops from invariants
What is on the exam

Common mistakes

< Feel free to ask questions at any time >

Four Loopy Questions

1. How does it start?
= Does the initialization make the invariant true?

2. When does it stop?
* Invariant + falsity of condition => postcondition

3. Does the repetend make progress toward
termination?

4. Does the repetend keep the invariant true?

Developing a Loop on a Range of Integers

* Given a range of integers a..b to process.

e Possible alternatives
" Could use a for-loop: for x in range(a,b+1):
" Or could use a while-loop: X = a; while a <=Db:
= Which one you can use will be specitied

e But does not remove the need for invariants

= Invariants: properties of variables outside loop
(as well as the loop counter x)

= If repetend has any variables that are accessed
outside of loop, you need an invariant

Developing an Integer Loop (a)

Suppose you are trying to implement the command

Process a..b

Write the command as a postcondition:

post: a..b has been processed.

Developing an Integer Loop (b)

Set-up using for:

for k in range(a,b+1):
Process k
post: a..b has been processed.

Developing an Integer Loop (b)

Set-up using while:

while k <= b:
Process k
k=k+1
post: a..b has been processed.

Developing an Integer Loop (c)

Add the invariant (for):

invariant: a..k-1 has been processed

for k In Pange(a,,b+1): Note 1t 1s post condition
Process k with the loop variable

post: a..b has been processed.

Developing an Integer Loop (c)

Add the invariant (while):

invariant: a..k-1 has been processed

while k <= b: Note 1t 1s post condition
Process k with the loop variable
k=k+1

post: a..b has been processed.

Developing a For-Loop (d)

[] [] [J [] [J [] . \
Fix the initialization: Nothing to do unless

invariant has variables

other than loop variable >

init to make invariant true
invariant: a..k-1 has been processed
for k in range(a,b+1):

Process k

- N
post: a..b has been processed. | Why did not use

loop invariants

with for loops
\ /

Developing a For-Loop (d)

Fix the initialization: ;[\ Has to handle the loop]

variable (and others)

init to make invariant true

invariant: a..k-1 has been processed
while k <= b:

Process k

k=k+1

post: a..b has been processed.

Developing a For-Loop (e)

Figure out how to “Process k’:
init to make invariant true
invariant: a..k-1 has been processed
for k in range(a,b+1):

Process k

implementation of “Process k”
post: a..b has been processed.

Developing a For-Loop (e)

Figure out how to “Process k’:
init to make invariant true
invariant: a..k-1 has been processed
while k <= b:
Process k
implementation of “Process k”
k=k+1
post: a..b has been processed.

Range

* Pay attention to range:

a.b or a+1.b or a...b-1 or...

* This affects the loop condition!
= Range a..b-1, has conditionk < b
= Range a..b, has conditionk <=b

* Note that a..a-1 denotes an empty range

= There are no values 1n 1t

Modified Question 3 from Spring 2008

* A magic square 1s a square where each row and column adds
up to the same number (often this also includes the diagonals,
but for this problem, we will not). For example, in the following
5-by-5 square, each row and column add up to 70:

18 25 2 9 16
24 © 8 15 17

5 /7 14 21 23
11 13 20 22 4
12 19 26 3 10

def are_magic_rows(square, value):
"""Returns: True if all rows of square sum to value
Precondition: square is a 2d list of numbers""

invariant: each row 0..i-1 sums to value

while
Return False if row i is does sum to value

invariant: each row O..len(square)-1 sums to value

return

def are_magic_rows(square, value):

"""Returns: True if all rows of square sum to value
Precondition: square is a 2d list of numbers""
i=0
invariant: each row 0..i-1 sums to value
while| i <len(square) |:
Return False if row i is does sum to value

rowsum =0

invariant: elements 0.k-1 of square[i] sum to rowsum
for k in range(len(square)): # rows == cols

rowsum = rowsum + square[i][k]

if rowsum != value:

return False

i=1+1

invariant: each row O..len(square)-1 sums to value

return |True

def are_magic_rows(square, value):
"""Returns: True if all rows of square sum to value
Precondition: square is a 2d list of numbers""

i=0
invariant: each row 0..i-1 sums to value Inner invariant was
while| i < len(square) | : not required

Return False if row i is does sum to value /

rowsum = 0 V

invariant: elements 0.k-1 of square[i] sum to rowsum
for k in range(len(square)): # rows == cols

rowsum = rowsum + square[i][k]

if rowsum != value:

return False

i=i+1
invariant: each row O..len(square)-1 sums to value

return |True

Invariants and the Exam

 We will not ask you for an invariant without
both giving you precondition/postcondition

= So we will give you every extra variable
other than the loop variables

" You just need to reword with the loop variable
* We will try to keep 1t simple

= Will only have one loop variable unless it 1s
one of the five required algorithms

* Only need box diagrams for required algorithms
= If more complicated, will give you the invariant

Modified Question 4 from Spring 2007

Given lists b, ¢, d which with single digit elements

len(b) = len(c) >= len(d) 0 I 00
Want to ‘add’ ¢ and d and put result in b 481
h = 02
k= 573
carry =

invariant: b[h..] contains the sum of ¢[h..] and d[k..],
except that the carry into position k-1 is in 'carry’
while

postcondition: b contains the sum of ¢ and d
except that the carry contains the O or 1 at the beginning

Modified Question 4 from Spring 2007

Given lists b, ¢, d which with single digit elements |
len(b) = len(c) >= len(d) e 0 4] 80 10 d[O]
Want to ‘add’ ¢ and d and put result in b /

h= d Q<7

‘o b| 573

carry = T

invariant: b[h..] contains the sum of ¢[h..] and d[k..], b[O]

except that the carry into position k-1 is in 'carry’
while

posteondition: b contains the sum of ¢ and d
except that the carry contains the O or 1 at the beginning

Modified Question 4 from Spring 2007

h =len(c)

k = len(d) ¢ 100
carry = 0 C - 8 1
invariant: b[h..] contains the sum of ¢[h..] and d[k..], d 0 3
except that the carry into position k-1 is in 'carry’ b 5 7 3
while h > 0:

h=h-1;k =k -1 # Easier if decrement first
x=d[k]if k>=0¢else 0

b[h] = c[h]+x+carry

if b[h] >= 10:

| carry = 1; b[h] = b[h]-10

else:

‘ carry = 0
postcondition: b contains the sum of ¢ and d
except that the carry contains the O or 1 at the beginning

DOs and DON’Ts #1

* DO use variables given 1n the invariant.
e DON’T use other variables.

invariant: b[h..] contains the sum of ¢[h..] and d[k..],
except that the carry into position k-1 is in 'carry’
while :

Okay to useb, ¢, d, h, k, and carry

Anything else should be ‘local’ to while

DOs and DON’Ts #2

DO double check corner cases!
 h =len(c)
e while h > 0:

= What will happen when h=1 and h=len(c)?
* If you use hin ¢ (e.g. c[Xx]) can you possibly get an error?

invariant: b[h..] contains the sum of ¢[h..] and d[k..],
except that the carry into position k-1 is in 'carry’

while h > 0:
Range 1s off by 1.
How do you know?

Questions?

