
Sequence Algorithms	

Review 7	

Three Types of Questions	

•  Write body of a loop to satisfy a given invariant.	

§  Exercise 6, Fall 2013 (Final)	

§  Exercise 6, Spring 2014 (Final)	

•  Given an invariant with code, identify all errors.	

§  Exercise 6, Spring 2014 (Prelim 2)	

§  Exercise 6, Spring 2013 (Final)	

•  Given an example, rewrite it with new invariant.	

§  Lab 13 (the optional one)	

Horizontal Notation for Sequences	

	

	

Example of an assertion about an sequence b. It asserts that:	

1.  b[0..k–1] is sorted (i.e. its values are in ascending order)	

2.  Everything in b[0..k–1] is ≤ everything in b[k..len(b)–1]	

	

	

 	

Given index h of the first element of a segment and	

index k of the element that follows that segment,	

the number of values in the segment is k – h.	

b[h .. k – 1] has k – h elements in it.	

 	

b 	

0 h k

 	

h h+1

(h+1) – h = 1

 	

b <= sorted >=	

0 k len(b)

•  DON’T put variables directly above vertical line.���
	

§ Where is j? 	

§  Is it unknown or >= x?	

DOs and DON’Ts #3	

 <= x x ? >= x 	

 h i j k	

b	

Algorithm Inputs	

•  We may specify that the list in the algorithm is 	

§  b[0..len(b)-1] or 	

§  a segment b[h..k] or 	

§  a segment b[m..n-1]	

•  Work with whatever is given!	

•  Remember formula for # of values in an array segment	

§  Following – First 	

§  e.g. the number of values in b[h..k] is k+1–h.	

? 	

h k	

b	

Three Types of Questions	

•  Write body of a loop to satisfy a given invariant.	

§  Exercise 6, Fall 2013 (Final)	

§  Exercise 6, Spring 2014 (Final)	

•  Given an invariant with code, identify all errors.	

§  Exercise 6, Spring 2014 (Prelim 2)	

§  Exercise 6, Spring 2013 (Final)	

•  Given an example, rewrite it with new invariant.	

§  Lab 13 (the optional one)	

Exercise 6, Fall 2013 Final	

•  Example:	

§  Input [1, 2, 2, 2, 4, 4, 4] 	

§  Output [1, 2, 2, 2, 1, 2, 4]	

sorted 	

0 k	

pre: b	

0 h k	

post: b	

 unchanged	

 b[0..k] w/o duplicates	

inv: b	

0 p h k	

unchanged	

 Unchanged, values ���
all in b[h+1..k]	

b[p+1..k] w/o duplicates	

Solution to Fall 2013 Final	

Assume 0 <= k, so the list segment has at least one element

p =

h =

inv: b[h+1..k] is original b[p+1..k] with no duplicates

b[p+1..h] is unchanged from original list w/ values in b[h+1..k]

b[0..p] is unchanged from original list

while :

inv: b	

0 p h k	

unchanged	

 Unchanged, values ���
all in b[h+1..k]	

b[p+1..k] w/o duplicates	

Solution to Fall 2013 Final	

Assume 0 <= k, so the list segment has at least one element

p = k-1

h = k-1

inv: b[h+1..k] is original b[p+1..k] with no duplicates

b[p+1..h] is unchanged from original list w/ values in b[h+1..k]

b[0..p] is unchanged from original list

while :

inv: b	

0 p h k	

unchanged	

 Unchanged, values ���
all in b[h+1..k]	

b[p+1..k] w/o duplicates	

Solution to Fall 2013 Final	

Assume 0 <= k, so the list segment has at least one element

p = k-1

h = k-1

inv: b[h+1..k] is original b[p+1..k] with no duplicates

b[p+1..h] is unchanged from original list w/ values in b[h+1..k]

b[0..p] is unchanged from original list

while 0 <= p:

inv: b	

0 p h k	

unchanged	

 Unchanged, values ���
all in b[h+1..k]	

b[p+1..k] w/o duplicates	

Solution to Fall 2013 Final	

Assume 0 <= k, so the list segment has at least one element

p = k-1

h = k-1

inv: b[h+1..k] is original b[p+1..k] with no duplicates

b[p+1..h] is unchanged from original list w/ values in b[h+1..k]

b[0..p] is unchanged from original list

while 0 <= p:

 if b[p] != b[p+1]:

 b[h] = b[p]

 h = h-1

 p = p-1

inv: b	

0 p h k	

unchanged	

 Unchanged, values ���
all in b[h+1..k]	

b[p+1..k] w/o duplicates	

Exercise 6, Spring 2014 Final	

•  Example:	

•  Input s1 = 'abracadabra', s2 = 'abc' 	

•  Output 'abacaabardr' (or 'aaaabbcrdr')	

Elements of string s1	

0 len(b)	

pre: b	

0 j len(b)	

post: b	

 Elements in s2	

 Elements not in s2	

inv: b	

0 i j len(b)	

Elts in s2	

 Elts not in s2	

???	

Solution to Spring 2014 Final	

convert to a list b

b = list(s1)

initialize counters

 �

inv: b[0..i-1] in s2; b[j+1..n-1] not in s2

while :

post: b[0..j] in s2; b[i+1..n-1] not in s2

convert b back to a string

Solution to Spring 2014 Final	

convert to a list b

b = list(s1)

initialize counters

i = 0�
j = len(b) - 1

inv: b[0..i-1] in s2; b[j+1..n-1] not in s2

while :

post: b[0..j] in s2; b[i+1..n-1] not in s2

convert b back to a string

Inv:	

0 i j len(b)	

Elts in s2	

 Elts not in s2	

???	

Solution to Spring 2014 Final	

convert to a list b

b = list(s1)

initialize counters

i = 0�
j = len(b) - 1

inv: b[0..i-1] in s2; b[j+1..n-1] not in s2

while j != i - 1:

post: b[0..j] in s2; b[i+1..n-1] not in s2

convert b back to a string

Inv:	

0 i j len(b)	

Elts in s2	

 Elts not in s2	

???	

Solution to Spring 2014 Final	

convert to a list b

b = list(s1)

initialize counters

i = 0�
j = len(b) - 1

inv: b[0..i-1] in s2; b[j+1..n-1] not in s2

while j != i - 1:

 if b[i] in s2:

 i = i + 1

 else:

 b[i], b[j] = b[j], b[i] # Fancy swap syntax in python

 j = j – 1

post: b[0..j] in s2; b[i+1..n-1] not in s2

convert b back to a string

Inv:	

0 i j len(b)	

Elts in s2	

 Elts not in s2	

???	

Solution to Spring 2014 Final	

convert to a list b

b = list(s1)

initialize counters

i = 0�
j = len(b) - 1

inv: b[0..i-1] in s2; b[j+1..n-1] not in s2

while j != i - 1:

 if b[i] in s2:

 i = i + 1

 else:

 b[i], b[j] = b[j], b[i] # Fancy swap syntax in python

 j = j – 1

post: b[0..j] in s2; b[i+1..n-1] not in s2

convert b back to a string

result = ''.join(b)

Inv:	

0 i j len(b)	

Elts in s2	

 Elts not in s2	

???	

Three Types of Questions	

•  Write body of a loop to satisfy a given invariant.	

§  Exercise 6, Fall 2013 (Final)	

§  Exercise 6, Spring 2014 (Final)	

•  Given an invariant with code, identify all errors.	

§  Exercise 6, Spring 2014 (Prelim 2)	

§  Exercise 6, Spring 2013 (Final)	

•  Given an example, rewrite it with new invariant.	

§  Lab 13 (the optional one)	

Exercise 6, Spring 2014 Prelim 2	

def partition(b, z):

 i = 1

 k = len(b)

 # inv: b[0..i-1] <= z and b[k..] > z

 while i != k:

 if b[i] <= z:

 i = i + 1

 else:

 k = k–1

 b[i], b[k] = b[k], b[i] # python swap

 # post: b[0..k-1] <= z and b[k..] > z

 return k

<= z	

 0 i k len(b)	

inv: b	

 >= z	

???	

Exercise 6, Spring 2014 Prelim 2	

def partition(b, z):

 i = 1 i = 0

 k = len(b)

 # inv: b[0..i-1] <= z and b[k..] > z

 while i != k:

 if b[i] <= z:

 i = i + 1

 else:

 k = k–1

 b[i], b[k] = b[k], b[i] # python swap

 # post: b[0..k-1] <= z and b[k..] > z

 return k

<= z	

 0 i k len(b)	

inv: b	

 >= z	

???	

Exercise 6, Spring 2014 Prelim 2	

def partition(b, z):

 i = -1

 k = len(b)

 # inv: b[0..i] <= z and b[k..] > z

 while i != k:

 if b[i+1] <= z:

 i = i + 1

 else:

 b[i+1], b[k–1] = b[k–1], b[i+1] # python swap

 k = k–1

 # post: b[0..k-1] <= z and b[k..] > z

 return k

<= z	

 0 i k len(b)	

inv: b	

 >= z	

???	

Exercise 6, Spring 2014 Prelim 2	

def partition(b, z):

 i = -1

 k = len(b)

 # inv: b[0..i] <= z and b[k..] > z

 while i != k: i != k–1:

 if b[i+1] <= z:

 i = i + 1

 else:

 b[i+1], b[k–1] = b[k–1], b[i+1] # python swap

 k = k–1

 # post: b[0..k-1] <= z and b[k..] > z

 return k

<= z	

 0 i k len(b)	

inv: b	

 >= z	

???	

Exercise 6, Spring 2013 Final	

def num_space_runs(s):

 """The number of runs of spaces in the string s. �
 Examples: ' a f g ' is 4 'a f g' is 2 ' a bc d' is 3. �
 Precondition: len(s) >= 1"""�
 i = 1�
 n = 1 if s[0] == ' ' else 0�
 # inv: s[0..i] contains n runs of spaces

 while i != len(s):

 if s[i] == ' ' and s[i-1] != ' ':

 n = n+1

 i = i+1

 # post: s[0..len(s)-1] contains n runs of spaces return n

 return n

Exercise 6, Spring 2013 Final	

def num_space_runs(s):

 """The number of runs of spaces in the string s. �
 Examples: ' a f g ' is 4 'a f g' is 2 ' a bc d' is 3. �
 Precondition: len(s) >= 1"""�
 i = 1 i = 0�
 n = 1 if s[0] == ' ' else 0�
 # inv: s[0..i] contains n runs of spaces

 while i != len(s):

 if s[i] == ' ' and s[i-1] != ' ':

 n = n+1

 i = i+1

 # post: s[0..len(s)-1] contains n runs of spaces return n

 return n

Exercise 6, Spring 2013 Final	

def num_space_runs(s):

 """The number of runs of spaces in the string s. �
 Examples: ' a f g ' is 4 'a f g' is 2 ' a bc d' is 3. �
 Precondition: len(s) >= 1"""�
 i = 1 i = 0�
 n = 1 if s[0] == ' ' else 0�
 # inv: s[0..i] contains n runs of spaces

 while i != len(s): i != len(s)–1

 if s[i] == ' ' and s[i-1] != ' ':

 n = n+1

 i = i+1

 # post: s[0..len(s)-1] contains n runs of spaces return n

 return n

Exercise 6, Spring 2013 Final	

def num_space_runs(s):

 """The number of runs of spaces in the string s. �
 Examples: ' a f g ' is 4 'a f g' is 2 ' a bc d' is 3. �
 Precondition: len(s) >= 1"""�
 i = 1 i = 0�
 n = 1 if s[0] == ' ' else 0�
 # inv: s[0..i] contains n runs of spaces

 while i != len(s): i != len(s)–1

 if s[i] == ' ' and s[i-1] != ' ': s[i+1] == ' ' and s[i] != ' ':

 n = n+1

 i = i+1

 # post: s[0..len(s)-1] contains n runs of spaces return n

 return n

Three Types of Questions	

•  Write body of a loop to satisfy a given invariant.	

§  Exercise 6, Fall 2013 (Final)	

§  Exercise 6, Spring 2014 (Final)	

•  Given an invariant with code, identify all errors.	

§  Exercise 6, Spring 2014 (Prelim 2)	

§  Exercise 6, Spring 2013 (Final)	

•  Given an example, rewrite it with new invariant.	

§  Lab 13 (the optional one)	

Partition Example	

Make invariant true at start �
j = h�
t = k+1

inv: b[h..j–1] <= x = b[j] <= b[t..k]

while j < t–1:

 if b[j+1] <= b[j]:

 swap b[j] and b[j+1]

 j = j+1

 else:�
 swap b[j+1] and b[t-1]

 t=t–1

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

Make invariant true at start �
j = �
q =

inv: b[h..j–1] <= x = b[j] <= b[q+1..k]

while :

�

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

<= x	

 h j t k	

inv: b	

 x	

 ???	

 >= x	

Partition Example	

Make invariant true at start �
j = h�
t = k+1

inv: b[h..j–1] <= x = b[j] <= b[t..k]

while j < t–1:

 if b[j+1] <= b[j]:

 swap b[j] and b[j+1]

 j = j+1

 else:�
 swap b[j+1] and b[t-1]

 t=t–1

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

Make invariant true at start �
j = �
q =

inv: b[h..j–1] <= x = b[j] <= b[q+1..k]

while :

�

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

<= x	

 h j t k	

inv: b	

 x	

 ???	

 >= x	

 <= x	

 h j q k	

inv: b	

 x	

 ???	

 >= x	

Partition Example	

Make invariant true at start �
j = h�
t = k+1

inv: b[h..j–1] <= x = b[j] <= b[t..k]

while j < t–1:

 if b[j+1] <= b[j]:

 swap b[j] and b[j+1]

 j = j+1

 else:�
 swap b[j+1] and b[t-1]

 t=t–1

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

Make invariant true at start �
j = h�
q = k

inv: b[h..j–1] <= x = b[j] <= b[q+1..k]

while j < q:

�

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

<= x	

 h j t k	

inv: b	

 x	

 ???	

 >= x	

 <= x	

 h j q k	

inv: b	

 x	

 ???	

 >= x	

Partition Example	

Make invariant true at start �
j = h�
t = k+1

inv: b[h..j–1] <= x = b[j] <= b[t..k]

while j < t–1:

 if b[j+1] <= b[j]:

 swap b[j] and b[j+1]

 j = j+1

 else:�
 swap b[j+1] and b[t-1]

 t=t–1

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

Make invariant true at start �
j = h�
q = k

inv: b[h..j–1] <= x = b[j] <= b[q+1..k]

while j < q:

 if b[j+1] <= b[j]:

 swap b[j] and b[j+1]

 j = j+1

 else:�
 swap b[j+1] and b[q]

 q=q–1

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

<= x	

 h j t k	

inv: b	

 x	

 ???	

 >= x	

 <= x	

 h j q k	

inv: b	

 x	

 ???	

 >= x	

Partition Example	

Make invariant true at start �
j = h�
t = k+1

inv: b[h..j–1] <= x = b[j] <= b[t..k]

while j < t–1:

 if b[j+1] <= b[j]:

 swap b[j] and b[j+1]

 j = j+1

 else:�
 swap b[j+1] and b[t-1]

 t=t–1

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

Make invariant true at start �
j = �
m =

inv: b[h..j–1] <= x = b[j] <= b[j+1..m]

while :

�

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

<= x	

 h j t k	

inv: b	

 x	

 ???	

 >= x	

Partition Example	

Make invariant true at start �
j = h�
t = k+1

inv: b[h..j–1] <= x = b[j] <= b[t..k]

while j < t–1:

 if b[j+1] <= b[j]:

 swap b[j] and b[j+1]

 j = j+1

 else:�
 swap b[j+1] and b[t-1]

 t=t–1

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

Make invariant true at start �
j = h �
m = h

inv: b[h..j–1] <= x = b[j] <= b[j+1..m]

while :

�

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

<= x	

 h j t k	

inv: b	

 x	

 ???	

 >= x	

 <= x	

 h j m k	

inv: b	

 x	

 >= x	

 ???	

Partition Example	

Make invariant true at start �
j = h�
t = k+1

inv: b[h..j–1] <= x = b[j] <= b[t..k]

while j < t–1:

 if b[j+1] <= b[j]:

 swap b[j] and b[j+1]

 j = j+1

 else:�
 swap b[j+1] and b[t-1]

 t=t–1

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

Make invariant true at start �
j = h�
m = h

inv: b[h..j–1] <= x = b[j] <= b[j+1..m]

while m < k:

�

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

<= x	

 h j t k	

inv: b	

 x	

 ???	

 >= x	

 <= x	

 h j m k	

inv: b	

 x	

 >= x	

 ???	

Partition Example	

Make invariant true at start �
j = h�
t = k+1

inv: b[h..j–1] <= x = b[j] <= b[t..k]

while j < t–1:

 if b[j+1] <= b[j]:

 swap b[j] and b[j+1]

 j = j+1

 else:�
 swap b[j+1] and b[t-1]

 t=t–1

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

Make invariant true at start �
j = h�
m = h

inv: b[h..j–1] <= x = b[j] <= b[j+1..m]

while m < k:

 if b[m+1] <= b[j]:

 swap b[j] and b[m+1]

 swap b[j+1] and b[m+1]

 m = m+1; j=j+1

 else:�
 m = m+1

post: b[h..j–1] <= x = b[j] <= b[j+1..k]

<= x	

 h j t k	

inv: b	

 x	

 ???	

 >= x	

 <= x	

 h j m k	

inv: b	

 x	

 >= x	

 ???	

Questions?	

