11/8/12

While-Loops and Flow Some Important Terminology
print 'Before while' Output: * assertion: true-false statement placed in a program to
count = 0 Before while assert that it is true at that point
i=0 Start loop 0 = Can either be a comment, or an assert command
while i < 3: End loo * precondition: assertion placed before a statement
int ' +° P = Same idea as function precondition, but more general
print 'Start loop '+°1 Start loop 1
count = count + i End * postcondition: assertion placed after a statement
nd loo . . .
i=i+1 P * loop invariant: assertion supposed to be true before
print ‘End loop ' Start loop 2 and after each iteration of the loop
rint 'After while' End loop = Distinct from attribute invariant
P After while * iteration of a loop: one execution of its repetend
Assertions versus Asserts Preconditions & Postconditions
n
e Assertions prevent bugs # x is the sum of 1..n precondition 123456738
- SEL}:)’2;‘ :re:zot?fk of Comment form #x =sumof L.l x contains the sum of these (6)
Y e of the assertion. fl : ;(1 : rll

e Also track down bugs

= Make it easier to check
belief/code mismatches

#x= sumof L.n-1 n

12345678

postcondition

¢ Do not confuse w/ asserts o Precondition: assertion x contains the sum of these (10)

= All asserts are assertions

placed before a segment Relationship Between Two
= But reverse is not true

¢ Postcondition: assertion If precondition is true, then
= Cannot always convert a placed after a segment postcondition will be true
comment to an assert
Solving a Problem Invariants: Assertions That Do Not Change
precondition * Loop Invariant: an assertion that is true before and
after each iteration (execution of repetend)
#x =sumof 1.n What statement do you x=0;i=2 -
R put here to make the while i <= 5: i=2
#x= sumof Lo postcondition true? X=x+it
- =141 # invariant
postcondition =1
x = sum of squares of 2..5
Arx=x + 1
B:x=xXx +n Invariant:
C:X=x + n+l x = sum of squares of 2..i-1
D: None of the above in terms of the range of integers
E: T don’t know that have been processed so far The loop processes the range 2..5

Invariants: Assertions That Do Not Change

x=0;i=2 x [MX R X 54

Inv: x = sum of squares of 2..i-1 .
6

while i <= 5: XXX XX

x=x+i*
=i+l =2

Post: x = sum of squares of 2..5

invariant

Integers that have
been processed: 2, 3, 4, 5

Range 2..i-1: 2.5

Invariant was always true just
before test of loop condition. So
it’s true when loop terminates

The loop processes the range 2..5

Designing Integer while-loops

Process integers in a..b
inv: integers in a..k-1 have been processed
k=a
while k <=b:
‘ process integer k
k=k+1
post: integers in a..b have been processed = Equivalent postcondition

invarian‘

invariant

Command to do something

Designing Integer while-loops

Recognize that a range of integers b..c has to be processed
‘Write the command and equivalent postcondition

Write the basic part of the for-loop

Write loop invariant

Figure out any initialization

S o

Implement the repetend (process k)

Process b..c
Initialize variables (if necessary) to make invariant true
Invariant: range b.k-1 has been processed
while k<=c:
Process k
k=k+1
Postcondition: range b..c has b

Finding an Invariant
Command to do something

Make b True if no int in 2..n-1 divides n, False otherwise

b =True

k=2

invariant: b is True if no int in 8.k-1 divides n, False otherwise

whilek <n:
Process k;
ifn%k==0:

b = False

k=k+l

b is True if no int in 2..n-1 divides n, False otherwise

" Equivalent postcondition

What is the invariant? 123 ...kl kk+l...n
11/6/12 Loop Design 10

Finding an Invariant

set x to # adjacent equal pairs in s[0..s.length()-1] Command to do something

for s = 'ebeee’, x =2
invariant: 299

k=0
while k < len(s):

Process k;

k=k+1
x = # adjacent equal pairs in s[0..s.length()-1] Equivalent postcondition
k: next integer to process.
‘Which have been processed? What is the invariant?
A: 0.k A: X =no. adj. equal pairs in s[1..k]
B: 1.k B: x = no. adj. equal pairs in s[0.k]
C:0.k-1 C: x =no. adj. equal pairs in s[1.k-1]
D:1.k-1 D: x = no. adj. equal pairs in s[0..k-1]
E: I don’t know E: I don’t know

Be Careful!

String s has at least 1 element 1. What is the invariant?

Set ¢ to largest element in s R
How do we initialize ¢ and k?

c=9? Command to do something

k=92 A: k=0; ¢=5[0]

#1inv: c is largest element in s[0..k—1]

while k < len(s): B k=1; ¢=5(0]
Process k C: k=1; c=g[1]
k=l D: k=0; c=s[l]

¢ =largest char in s[0..s.length()-1]
E: None of the above

Equivalent postcondition

An empty set of characters or integers has no maximum. Therefore,
be sure that 0.k—1 is not empty. You must start with k = 1.

