Lecture 17

Subclasses &
Inheritance

Announcements for Today

Reading Assignments
 Today: Chapter 18 * A4 1s due at Midnight
* Online reading for Thursday = Keep reading Piazza

* Hopefully you just have a
few methods left

= Cannot give extensions

Prelim, Nov 6" 7:30-9:30
= Material up next Tuesday

= Review posted next week

= Recursion + Loops + Classes * A5 posted tomorrow

= QGet started immediately!

Conflict with Prelim time?

= Submit to Prelim 2 Conflict
assignment on CMS = But short; essentially an

= Do not submit if no conflict extended lab activity

= Only one week to do it

10/23/12 Subclasses & Inheritance

A Interesting Challenge

* How do we add new methods to class Point?
= Open up the .py module and add them!

* But Python has many “built-in” classes
= Examples: string, list, time, date (in datatime)

= Kivy Examples: Button, Slider, Image
e What if we want to add methods to these?

* Where 1s the module to modify?

= It 1s even a good 1dea to modify 1t?

10/23/12 Subclasses & Inheritance

Solution: Subclasses

e (Class that extends another class Employee(object):

= Has attributes, methods """An Employee with a salary™"

from the original class _name =" # a string
_start =-1 # year; -1 if undef

_salary = 0.0 # float >=0

= Say it “inherits” these
= Plus any new ones added

* Original class 1s parent

" Also called super class class Executive(Employee):

* Does not have to be in the | ""An Employee with a bonus.""
same module as parent _bonus = 0.0 # float >= 0
= Just import the parent

10/23/12 Subclasses & Inheritance

Class Definition: Revisited

class <name>(<superclass>):
"""Class specification™"
definitions of fields
definitions of properties
constructor (__init)
definition of operators

definition of methods

Class type to extend

(may need module name)

[

\

e Every class must
extend something

* Previous classes all
extended object

~

/

10/23/12 Subclasses & Inheritance

object and the Subclass Hierarcy

* Subclassing creates a Kivy Example
hierarchy of classes

= Each class has its own object
super class or parent

= Until object at the “top”
 object has many features kivy.uix.widget.Widget

= Special built-in fields: kivy.uix.label.Label
__class__,_ diet__

kivy.event.EventDispatcher

* Default implementations ~ SVY-UlX.buttonjButton
of operators (e.g. __str_) M
Module Class

10/23/12 Subclasses & Inheritance 6

object and the Subclass Hierarcy

* Subclassing creates a Kivy Example
hierarchy of classes w_in class }
= Each class has its own object %

subclass or parent class
kivy.event.EventD%super class }

= Until object at the “top”
 object has many features kivy.uix.widget.Widget

= Special built-in fields: kivy.uix.label.Label
__class__,_ diet__

* Default implementations ~ SVY-UlX.buttonjButton

of operators (e.g. __str_)
Module Class

10/23/12 Subclasses & Inheritance 7

Super class

Folder Analogy and Subclasses

4300517584

super class-name

attributes declared inside
<superclass-name> Include properties here

------------------------------------- (though they are methods)

methods declared inside

<superclass-name>
Include operators here

(but only if defined)

subclass-name

attributes declared inside
<subclass-name>

methods declared inside
<subclass-name>

10/23/12 Subclasses & Inheritance 8

Example: Class Point

4300517584
_ class__| Point object AThe object Partition}
[IFROTITLES i]>" .'.'._". ------------------ Default str()
default constructor _init_ O _str_ O (and) behayior

e Point 2 The Point Partition}

If ﬁeld associated x| 00| y|00] z|00
with a property, | ___ - __ - __ ...
st o e __init_ (x=0.0,y=0.0,2=0.0)
str O _repr_g Specify non-self J
distanceTo(other) Arguments

10/23/12 Subclasses & Inheritance 9

Example: Class Point

4300517584

__class__ | Point

Object

distanceTo(other)

10/23/12

4300517584

Point

__init_ (x=0.0,y=0.0,2=0.0)
_str O repr__ ()

distanceTo(other)

(

Because it 1s always
there, typically omit
the object partition

Subclasses & Inheritance

~N

The Bottom-Up Rule

* Which _str does str() use?
* Work up from bottom of folder

* Find first method matching name
= Use that definition

* New method definitions
override those of parent

* Also applies to
= Constructor
= (Operators
= Properties

10/23/12

all “methods”

Subclasses & Inheritance

4300517584
class Point object
it 0 _str_ O
Point

__init_ (x=0.0,y=0.0,2=0.0)
ste O _repr_ ()

distanceTo(other)

11

The Bottom-Up Rule

e Which _ str does str() use? 4300517584
* Work up from bottom of folder

* Find first method matching name
= Use that definition

* New method definitions
override those of parent

* Also applies to

= Constructor

__init_ (x=0.0,y=0.0,2=0.0)

= (Operators all “methods”
= Properties

_str. O _repr_ ()

distanceTo(other)

10/23/12 Subclasses & Inheritance 12

Accessing the “Previous’ Method

* What if you want definition 5298179176
of the overridden method? Employee
= New method just extends name | 'Fred
= Do not want to repeat code start | 2012 salary | 0.0
from the old version ___________________________.
* super(<class>,<object>) —mit—<§—sw—o
= Returns partition in object
= Parent partition of class \ Executive
bonus 0.0

e Useittocallamethod super(Executive,sel) }

= Example: __init_ T r_0
super(Executive,self).__str_ () . ﬁn

"= Doesn’t work on properties

10/23/12 Subclasses & Inheritance 13

Accessing the “Previous’ Method

e What if you want definition ¢lass Employee(object):
of the overridden method? """An Employee with a salary™"

= New method just extends def str (self):
" Do not want to repeat code return (self.name +
from the old version ' year '+ str(self.start) +
* super(<class>,<object>) , salary "+ str(self salary))

= Returns partition in object class Executive(Employee):

= Parent partition of class """An Employee with a bonus."""
e Use it to call a method
def __str__ (self):
return (super(Executive,self).__str__ (O
+ ', bonus ' + str(self.bonus))

= Example:
super(Executive,self)._ str_ ()

"= Doesn’t work on properties

10/23/12 Subclasses & Inheritance 14

Primary Application: Constructors

class Employee(object): 5298179176

Employee

def __init__ (self,n,d,s=50000.0): name | 'Fred'
self. name =n
self. start =d

self._salary = s _init_ () _str__ O

class Executive(Employee):

def __init (self,n,d,b=0.0):
super(Executive,self).__init_ (n,d) _init_ () _str O
self._bonus = b

10/23/12 Subclasses & Inheritance 15

Primary Application: Constructors

class Employee(object): 5298179176
Employee
def __init__ (self,n,d,s=50000.0): name | 'Fred'
self._name =n
self._start = d It 1s good programming style
self._salary = s to user super() in __init

class Executive(Employee):

Bad things might happen if
you forget it in a subclass
_(see today’s lab for example) /

def __init (self,n,d,b=0.0):

super(Executive,self).__init_ (n,d) _init_ (L)

self. bonus=b

10/23/12 Subclasses & Inheritance

16

Properties and Inheritance

e Properties: all or nothing ~ ¢lass Employee(object)

= Typically inherited @property

* Or fully overridden def salary(self):
(both getter and setter) return self._salary
e When override property, — ©Sarysetter
def salary(self,value):

completely replace it self._salary = value

= Cannot use super()

. class Executive(Employee):
* Very rarely overridden

- Exception: making a @property # no setter; now read-only

property read-only def salary(self):
return self._salary

" See employee.py

10/23/12 Subclasses & Inheritance 17

