10/15/12

Recall: Classes are Types for Objects The Class Definition
* Values must have atype ¢ Classes are how we add * Defines the format of » Simplest class definition:
= An object is a value new types to Python any object of that class class Example(object):

e Everything is indented """Does nothing""

= Object type is a class
43001122 under the class name pass

class <class-name>(object):

Classes """Class specification"""
X « Point P This definition goes inside
« RGB definitions of fields of a module, just like a
y * Turtle . . .
* Window definitions of methods function definition does.
z
(in any order)
Fields: Adding Attributes to a Class The Value None
827990 * The boss field is a problem.
rETTa o " is jec 827990
Default Values: 0 boss is a Worker ?bjea varl | 827990
What new objects hame = But we are defining what
all start off with & l:l the Worker class looks like
E——— = Cannot put a value in boss var2
bossl:l until the definition is done Y
¢ Solution: use value None Z
class Worker(object): None: Lack of (fold
"™An instance is a worker in a certain organization."" °’111°' ack o k(10 612 l"am'e 430011
—n o 11 = Will reassign the field later!
Iname = # Last name (string, " if unknown) 'g) var3
ssn=0 # Social security # (int in range 0..999999999) * Be careful with None variables .
‘ boss = None | # Immediate boss (Worker object; None if none) = var3.x gives error!
= There is no name in var3 y
= Which Point to use? z
Constructors Methods
 Class definition creates a w = Worker() ¢ Looks like a function def ~ class Point(object:
special (hidden) function . . Lo """Instances are points in 3d space"""
P () « [5279% But indented inside class 2= 0.0 # x coord float
= Same name as the class = The first parameter =00 #y coord, float
= (For now) no arguments 827990 is always called self 2=0.0 # z coord, float
e Called the constructor * In a method call: def distanceTo(self,):
= Makes new object of class Iname Iil = Parentheses have one less """Returns: dist from self to q
= Returns the id of object argument than parameters Precondition: q a Point™"
. Example: ssh lIl = The object in front is assert type(q) == Point
ple: boss passed to parameter self sqrdst = ((self.x-q.x)**2 +
= Point() . (selfy-qy)**2+
1 . .
 WorkerO) T PTATNENTe Example: a.distanceTo(b) (self2-q.2)**2)
‘What new objects return math.sqrt(sqrdst)
all start off with

10/15/12

Methods Calls

Initializing the Fields of an Object (Folder)

» Example: a.distanceTo(b) class Point(object):
"""Instances are points in 3d space'

i

a ‘ 827250 ‘ b ‘ (3001 ‘ x=0.0 # x coord, float
827990 430011 y=0.0 #y coord, float
. . 2= 0.0 # z coord, float
v y def distanceTo(self,q):
, . """Returns: dist from self to q

Precondition: q a Point""
assert type(q) == Point
sqrdst = ((self.x-q.x)**Q +

self (selfy-qy)**3 +
(self.z-q.z)**R)
q | 430011
return math.sqrt(sqrdst)

* Creating a new Worker is a multi-step process:
= w = new Worker()
= w.Iname = 'White'

* Want to use something like

w = Worker('White', 1234, None)
= Create a new Worker and assign fields
= Iname to 'White', ssn to 1234, and boss to None

¢ Need a custom constructor

Special Method: __init__

How a Constructor Expression Works

two underscores
don’t forget self

del nit__(self, n, s, b): 430011

""Constructor: creates a Worker

Instance has last name n, SSN s,

and boss b Iname I:l
Precondition: n a string, s an int in

range 0..999999999, and b either

[1
a Worker or None. boss l:l

self.lname = n >

__init__(self,n,s,b)

self.ssn =8
self.boss = b

use self to access fields

Worker('White', 1, null)

1. Creates a new object (folder)
of the class Worker 430011
= Fields set to default values

- I

2. Puts the folder into heap space
3. Executes the method __init_

= Passes folder name to self

= Passes other arguments in order

= Executes the (assignment)
commands in constructor body
4. Returns the object (folder) name
as final value of expression

Making Arguments Optional

What Does str() Do On Objects?

e We can assign default values class Point(object):
to __init__ arguments ""Instances are points in 3d space
= Write as assignments to x=0.0 # x coord, float
parameters in definition y=0.0#y coord, float
= Parameters with default 2=0.0 # z coord, float
values are optional
* Examples:

i

def __init__(self,x=0,y=0,z=0):
"""Constructor: makes a new Point

= p = Point() #(0,0,0) Precondition: x,y,z are numbers""
= p=Point(1,2,3) #(1,3,3) selfx=x
= p = Point(1,2) #(1,,0) selfy =y
= p = Point(y=3) #(0,3,0) selfz =2

= p="Point(1,z2=R) # (1,0,2)

class Point(object):
""Instances are points in 3d space'

* Does NOT display contents
>>>p = Point(1,,3)
>>> str(p)

i

) X | , def _ str__ (self):
<Point object at 0x1007a90> "Returns: string with contents

¢ To display contents, you must return '(‘+selfx + ') +
implement a special method selfy +'' +

= _ str__forstr() self.z + ")’
= _ repr__ for backquotes

- def __repr__(self):
= If only implement __str__, "Returns: unambiguous string"
backquotes do not work) X

return str(self.__class__)+
= If implement __repr__ but str(self)

not __str__, str() uses it too

