
1	

Structure vs. Flow	

Program Structure	

•  Way statements are presented 	

§  Order statements are listed	

§  Inside/outside of a function	

§  Will see other ways…	

•  Indicate possibilities over
multiple executions	

Program Flow	

•  Order statements are executed	

§  Not the same as structure	

§  Some statements duplicated	

§  Some statements are skipped	

•  Indicates what really happens
in a single execution	

Have already seen this 	

difference with functions	

Structure vs. Flow: Example	

Program Structure	

def foo():

print 'Hello'

Application code

if __name__ == 'main':

foo()

foo()

foo()

Program Flow	

>>> python foo.py

'Hello'

'Hello'

'Hello'

Statement
listed once	

 Statement

executed 3x	

Bugs can occur when we
get a flow other than one
that we where expecting	

Conditionals: If-Statements	

Format	

	

if <boolean-expression>:�

<statement>�

…

<statement>

Example	

	

 # Put x in z if it is positive

 if x > 0:

 z = x

Execution: ���

if <boolean-expression> is true, then execute all of the statements
indented directly underneath (until first non-indented statement)	

Conditionals: If-Else-Statements	

Format	

	

if <boolean-expression>:�

<statement>�

…�

else:

<statement>�

…

Example	

	

 # Put max of x, y in z

 if x > y:

 z = x

 else:

 z = y

Execution: ���

if <boolean-expression> is true, then execute statements indented
under if; otherwise execute the statements indented under elsec	

Conditionals: “Control Flow” Statements	

if b : �

 s1 # statement

s3

if b :�
 s1

else:

 s2

s3�

	

s1

s3

s1

b

s1

s3

b
 Branch Point:	

Evaluate & Choose	

Statement: Execute	

Flow	

Program only
takes one path
each execution	

max

Program Flow vs. Local Variables	

def max(x,y):

 """Returns: max of x, y"""

 # swap x, y�
 # put the larger in y

 if x > y:

 temp = x

 x = y

 y = temp

 return y

•  temp is needed for swap	

§  x = y loses value of x

§  “Scratch computation”	

§  Primary role of local vars	

• max(3,0):	

x
 3 y
 0

temp
 3

0 3

2	

Program Flow vs. Local Variables	

def max(x,y):

 """Returns: max of x, y"""

 # swap x, y�
 # put the larger in y

 if x > y:

 temp = x

 x = y

 y = temp

 return temp

•  Value of max(3,0)?	

A: 3

B: 0	

C: Error!	

D: I do not know	

•  Local variables last until	

§  They are deleted or	

§  End of the function	

•  Even if defined inside if

Program Flow and Testing	

•  Must understand which
flow caused the error	

§  Unit test produces error	

§  Visualization tools show

the current flow for error	

•  Visualization tools?	

§  print statements	

§  Advanced tools in IDEs

(Integrated Dev. Environ.)	

	

 # Put max of x, y in z

 print 'before if'

 if x > y:

 print 'if x>y'�
 z = x

 else:

 print 'else x>=y'�
 z = y

 print 'after if'

Traces	

Watches vs. Traces	

Watch	

•  Visualization tool���
(e.g. print statement)	

•  Looks at variable value	

•  Often after an assignment	

•  What you did in lab	

Trace	

•  Visualization tool���
(e.g. print statement)	

•  Looks at program flow	

•  Before/after any point

where flow can change	

Traces and Functions	

def shift(p):

print 'Start shift()'

p.x = p.y

print p.x

p.y = p.z

print p.y

p.z = p.x

print p.z

print 'End shift()'

Watches	

 Traces	

Example: flow.py

Local Variables Revisited	

•  Never refer to a variable
that might not exist	

•  Variable “scope”	

§  Block (indented group)

where it was first assigned	

§  Way to think of variables; ���

not actually part of Python	

•  Rule of Thumb: Limit
variable usage to its scope	

def max(x,y):

 """Returns: max of x, y"""

 # swap x, y�
 # put larger in temp

 temp = y

 if x > y:

 temp = x

 return temp

First assigned	

Inside scope	

Conditionals: If-Elif-Else-Statements	

Format	

	

if <boolean-expression>:�

<statement>�

…�

elif <boolean-expression>:

<statement>�

…

 …

else:

<statement>�

…

Example	

	

 # Put max of x, y, z in w

 if x > y and x > z:

 w = x

 elif y > z:

 w = y

 else:

 w = z

