
1	

1	

CS1110 15 April 2010���
while loops	

Reading: today: Ch. 7 and ProgramLive sections.	

For next time: Ch. 8.1-8.3	

Prelim 2. Thursday evening, 7:30PM	

Watch the lectures on ���
www.videonote.com/cornell	

A4: 	

 mean: 93.3	

median: 97	

std dev: 9.4	

A4 times: 	

 mean: 7.3	

median: 7	

std dev: 3	

A4 max times:	

15 (4 people)	

14 (1 people)	

12 (4 people)	

11 (7 people)	

2	

Beyond ranges of integers: the while loop	

while (<condition>) {	

 sequence of declarations	

 and statements	

}	

<condition>: a boolean expression.	

<repetend>: sequence of statements.	

In comparison to for-loops: we get a broader notion of “there’s
still stuff to do” (not tied to integer ranges), but we must ensure
that “condition” stops holding (since there’s no explicit
increment).	

condition	
 repetend	

false	

true	

3	

Canonical while loops	

// Process b..c	

for (int k= b; k <= c; k= k+1) { 	

 Process k;	

}	

// Process b..c 	

int k= b;	

while (k <= c) {	

 Process k;	

 k= k+1;	

}	

scope of k: the loop;
k can’t be used after
the loop	

// process a sequence of input not of fixed size	

<initialization>;	

while (<still input left>) {	

 Process next piece of input;	

 make ready for the next piece of input;	

}	

Here’s one way to
use the while loop	

4	

Understanding assertions about lists	

	

	

This is an assertion about v
and k. It is true because
chars of v[0..3] are greater
than ‘C’ and chars of v[6..8]
are ‘Z’s.	

0 1 2 3 4 5 6 7 8	

X Y Z X A C Z Z Z	
v	
 This is a list of Characters	

v ≥ C ? all Z’s k	
 6	

0 3 k 8	

v ≥ C ? all Z’s k	
 5	

0 3 k 8	

v ≥ C all Z’s k	
 6	

0 k 8	

v ≥ W A C all Z’s k	
 4	

0 k 8	

Indicate
whether each

of these 3
assertions is
true or false.	

5	

Linear search. Character c is in String s. Find its first position.	

	

	

1. How does it start? ((how)
does init. make inv true?)	

2. When does it stop? (From
the invariant and the falsity of
loop condition, deduce that
result holds.) 	

3. (How) does it make
progress toward termination?	

4. How does repetend keep
invariant true?	
R: s c not here c ?	

0 k s.length()	

// Store in k to truthify diagram R 	
 Idea: Start at beginning of s,
looking for c; stop when found. ���
How to express as an invariant?	

 P : s c not here ?	

 0 k s.length()	

// See diagram P, below 	

k= 0;	

while () {	

	

}	

s.charAt(k) != c	

k= k + 1;	

6	

// Set c to the number of ‘e’s in String s.	

int n= s.length(); 	
 	
 	
	

k= 0; c= 0; 	
 	
 	
 	
 	

// inv: c = #. of ‘e’s in s[0..k-1] 	
	

while (k < n) { 	
	

 if (s.charAt(k) == ‘e’) 	
 	
 	
	

	
 c= c + 1; 	
 	
 	
	

 k= k+ 1; 	
 	
 	
 	
	

} 	
	

// c = number of ‘e’s in s[0..n-1]	

The while loop: 4 loopy questions. Allows us to focus on one
thing at a time and thus separate our concerns.	

	

	

1. How does it start? ((how)
does init. make inv true?)	

2. When does it stop? (From
the invariant and the falsity of
loop condition, deduce that
result holds.) 	

3. (How) does it make
progress toward termination?	

4. How does repetend keep
invariant true?	

2	

7	

We add the postcondition and
also show where the invariant
must be true:	

initialization;	

// invariant: P	

while (B) { 	

 // { P and B}	

 repetend	

 // { P }	

}	

// { P and !B }	

// { Result R }	

The four loopy questions	
Suppose we are thinking of
this while loop:	

initialization;	

while (B) { 	

 repetend	

}	

Second box helps us develop four loopy
questions for developing or understanding a
loop:	

1. How does loop start? Initialization
must truthify invariant P.	

2. When does loop stop?	

At end, P and !B are true, and these must
imply R. Find !B that satisfies ���
 P && !B => R.	

3. Make progress toward termination?
Put something in repetend to ensure this.	

4. How to keep invariant true? Put
something in repetend to ensure this. 	

8	

Appendix examples: Develop loop to store in x the sum of 1..100.	

	

	

1. How should the loop start? Make range 1..k–1���
empty: k= 1; x= 0;	

We’ll keep this definition of x and k true: ���
 x = sum of 1..k–1	

2. When can loop stop? What condition lets us ���
know that x has desired result? When k == 101	

3. How can repetend make progress toward termination? k= k+1;	

4. How do we keep def of x and k true? x= x + k; 	

Four loopy
questions	

k= 1; x= 0;	

// invariant: x = sum of 1..(k–1)	

while (k != 101) {	

 x= x + k;	

 k= k + 1;	

}	

// { x = sum of 1..100 }	

9	

Roach infestation	

/** = number of weeks it takes roaches to fill the apartment --see p 244 of text*/	

public static int roaches() {	

 double roachVol= .001; // Space one roach takes	

 double aptVol= 20*20*8; // Apartment volume	

 double growthRate= 1.25; // Population growth rate per week	

 	

 int w= ; // number of weeks	

 int pop= ; // roach population after w weeks	

 	

 // inv: pop = roach population after w weeks AND	

 // before week w, volume of roaches < aptVol	

 while () {	

 	

 	

 }	

 // Apartment is filled, for the first time, at week w.	

 return w;	

 }	

0	

100	

aptVol > pop * roachVol 	

w= w + 1;	

pop= (int) (pop *(1 + growthRate));	

10	

Iterative version of logarithmic algorithm to calculate b**c	

(we’ve seen a recursive version before).	

/** set z to b**c, given c ≥ 0 */	

int x= b; int y= c; int z= 1;	

// invariant: z * x**y = b**c and 0 ≤ y ≤ c	

while (y != 0) {	

 if (y % 2 == 0) {	

 x= x * x; y= y/2; 	

 }	

 else { 	

 z= z * x; y= y – 1; 	

 }	

}	

// { z = b**c }	

11	

Calculate quotient and remainder when dividing x by y	

	

 x/y = q + r/y 21/4= 4 + 3/4	

Property: x = q * y + r and 0 ≤ r < y	

/** Set q to quotient and r to remainder.���
 Note: x >= 0 and y > 0 */	

int q= 0; int r= x;	

// invariant: x = q * y + r and 0 ≤ r	

while (r >= y) {	

	
r= r – y;	

	
q= q + 1;	

}	

// { x = q * y + r and 0 ≤ r < y }	

12	

Building a fair coin from an unfair coin	

/** = result of flipping a fair coin	

 (heads/tails is true/false) */ 	

public static boolean fairFlip() {	

 boolean f1= new unfair flip;	

 boolean f2= new unfair flip;	

 /* invariant P: f1, f2 contain results ���

 of 2 unfair flips, and���
 in all previous flips, f1 and f2	

 were the same */	

	
while (f1 == f2) {	

 	
 	
f1= new unfair flip;	

 	
 	
f2= new unfair flip;	

 	
}	

 // R: P and f1 != f2	

 return !f1 && f2	

}	

John von Neumann:	

building a “fair coin” from

an unfair coin	

loopy questions:	

1. P is true initially	

2. When it stops, R is true	

4. Repetend keeps P true	

3. But we can’t prove that
the loop makes progress
toward termination!	

Unfair flip produces heads with some probability p, 0 < p < 1	

probability of !f1 && f2 =	

probability of f1 && !f2 	

