Final Exam: Review Session 2

Constructors fn Subclasses

Apparent and Real Types

Casting
Biggest issue!!! You can’ t do questions on this
topic correctly unless you draw variables, draw

objects when they are created, and draw frames
for method calls.

Learning to do this will help you to do the same
thing when debugging.

2011.12.7

ivating Problem

J** An instance s a bird */
public class Bird extends Creature { public class Creature {
/** set of Birds in the zo0. */ /" This Creature's name */
public static Bird[] aviary; private String name;

/** An instance is a zoo creature. */

/** set of Creatures in the z00*/
public static Creature(] zoo;

/** Constructor: a Bird with name n */
public Bird(String n) {
super(n);
/** Constructor: a new Creature with name n */
public Creature(String n) {

/** ="a Bird can (usually) fly" */ setName(n);

public boolean canFly() {

return true;

) /** = this Creature's name */

) public String getName() (
return name;

/** An instance is a penguin */
public class Penguin extends Bird{
/** Set this Creature's name to n */
/** Constructor: a new Penguin with name n*/ public void setName(String n)
public Penguin(String n) name=n;

super(n);)

}

/** = "a Penguin can usually fly" */
public boolean canFly() {
return false;

Key Points for this Subject

1. Subclass: inherits ALL components (fields and methods) from
super class.

2. Even private fields are inherited; they appear in each object.

w

A subclass can OVERRIDE an inherited method.

4. DON’T override fields. It is called "shadowing the variables”.
We have never seen a good use of it. Don’t do it.

Example

a0
* Penguin z = new Penguin(“©”);

)

equals(); toString();

z 0] B o

ame ©

anFly() m

c
Bird(String n)
canFly() m

Bird(String n)

5. Point 2 allows use of the bottom-up rule for finding the
declaration for a reference to a file or method:
start at bottom of object and search up until it is found.
Very Important!

© Principal: initialize fields in a superclass partition before fields
in the subclass partition. There are several reasons for this. Just
remember it --and follow it whenever you write a constructor.

® Therefore, EVERY constructor starts with a constructor call.

e If there is no explicit constructor call in a constructor,
Java inserts super(); .

e

Very Important! (contd.)

The first statement in a constructor can be one of:
e this(...); //call another constructor in this class
e super(...); // call a constructor in the superclass

e

Casting

© Apparent class of a variable: the class with which it was
declared. Used to tell if a reference is legal (if not,
program won't compile.)

e v.field or v.method(...) is legal ONLY if field or method()
was defined in or inherited by the apparent class of v.

© Real class of a variable: class of the object whose name is
in the variable.

2011.12.7

e

Syntax VS Semantics!

¢ SYNTAX (grammar; rules for legal programs)

° SEMANTICS (meaning; how legal programs are
executed).

e

Running Example!

* Dr Java ©

