2011.12.7

€S 1110

Final Exam: Review Session 1

s

Understanding execution of

¢ local variable declaration (in a method body)
® new expression (3 steps)

8
@W@WUW frames for * method call (method frames, call stack)
calls, executing methed calls

= a
Biggest issue!!! You can’ t do questions on this topic examp les from pICVIOUS Cxams

correctly unless you draw variables, draw objects when e code execution (Q4 from 2008 fall final, modified)
they are created, and draw frames for method calls. o method call (Q3 from 2007 fall final)

Learning to do this will help you to do the same thing
when trying to find errors in your programs.

Important! code segment (in a method body)

© All previous finals included some questions about code

execution int a= 3; =
¢ You need to know how to draw variables, objects, method The first thlng
frames ... C x=new C(a); to do?
® The purpose of such questions on executing statements
with new expressions and method calls is to test your @ Y= new C(a), draw all local

understanding of how java programs are executed .
riding of How Jave progt - variables

X=Y;

/’/ﬁwnt (in a method body) e

code se Evaluation of new expression

public class C {

private int f; X |:| V- |:| a * 3 steps in evaluating the new expression new C(args)

public C(intk) { f=k; } o create a new folder (object) of class C with a unique name
(place it in the class file drawer)

}

o Execute the constructor call C(args)
int a= 3; o yield the name of the object as the value of the new

expression
C x=new C(a);
C y=new C(a);
X=Y;

| _codesegment (in a method body

public class C {
private int f;

Cintk) { f=k; }
int a= 3;

C x=new C(a);
C y=new C(a);
=Y

C(int);

—— aliasing

Execute the call:
Store.session();

public class Store {
public static void session() {
11 Ttem one = new Item(“ipod”, 20);
2: Item two = new Item(“wii”, 32);
3: Item treat = two;

4: Ttem three = one;
5: three.add(4);
6: System.out println(one);
7: System.out printin(“Cost of Item: *+
Ttem. getTotal Cost()):
8:System.out printin(*Are they the same?” +
(one.getName() == treat. getName()));
9:System.out println(“Are they the same?” +
ame().equals(treat getName());
10:System.out printin(“Are they the same?” +
(one.getName() = three. getName()));

i
)

| Code Execution (Q4 from > ified)

public class Item {
/# total cost of allitems created */

private static int totalCost = 0;

private int cost; // cost of this item

private String name; // title

/%% Constructor: new Item with name t, cost ¢ */

i

+# = Cost of this item *

public int getCost() { return cost; }

/%% = this item’s name *

public String getName() { return name; }

¥

*¥ = “<name>:<cost>" */
public String toString() { return name +*:” + getCost(): }
% Add d to this item’s cost */

public void add(int) {

cost=cost+d; totalCost = totalCost + d;

i

/#* = the total cost of al Items */

public static int getTotalCost() { return totalCost; }

2011.12.7

/

variables declared in a loop

public void m(int size) {

int[]b=...;

for (int i= 0; i< size; i=i+1) {

When is local
variable b inside the
loop created?

During the first step
of executing a
method call, when
the frame for the call
is drawn.

Not after the loop
starts.

Execute the call:

Store.session();

public class Store {
public static void session() {
1:Ttem one = new Ttem(“ipod”, 20);
2: Item two = new Item(“wii”, 32);
3+ Item treat = two;

4: Item three = one;

5: three.add(4);

6: System.out println(one);

7: System.out printin(“Cost of Item: *“+
Ttem. getTotalCost());

8:System.out printin(*Are they the same?” +
(one.getName() == treat getName()));

9:System.out. printin(“Are they the same?” +
one.getName().cquals(ireat.getName()));

10:System.out println(*Are they the same?” +
(one.getName() = three. getName()));

i

| CoedeExecution (Q4 from = ified)

answers :
6: “ipod:24”
7: “Cost of Item: 56”
8 : “Are they the same? false”
9 : “Are they the same? false”

10 : “Are they the same? true”

‘ Remember: Every method is in a folder (object) or in a file-drawer. ‘

method name: instruction counter

l scope box

parar}leters

local variables (don’ t deal with these now)

va

Draw the
parameters
as variables.

/}g‘%mhe box) W

‘ Remember: Every method is in a folder (object) or in a file-drawer. ‘

method name: instruction counter

l scope box

parameters

local variables (don’ t deal with these now)

\

number of the statement of
method body to execute
NEXT. Helps you keep track
of what statement to
execute next. Start off with 1.

| The frame {the box)W

‘ Remember: Every method is in a folder (object) or in a file-drawer. ‘

method name: instruction counter l scope box

local variables (don’ t deal with these now)

parameters

[

scope box contains
the name of entity
that contains the
method —a file
drawer or object.

If this is a static method, this
method in the file-drawer, so the
scope box contains the class name,
if it is not static, it is in the
folder(object), scope box contain
the name of the object.

2011.12.7

To execute the call x.setScore(100);

T
m\e for the call.

2. Assign arguments to the parameters (in

the frame).
3. Execute the method body. (Look for seeggien ‘ ‘ =
variables in the frame; if not there, look in
the place given by the scope box.)
value |100
4. Erase the frame for the call.

x |:| Score '

score

Score

10- 100
setScore(int value) { score= value;}

getScore() {...}

Scope of local variable: the sequence of statements following it
within the containing “block”.

/** = the max of xand y */
public static int max(int x, int y) {
/] Swap x and y to put the max in x

if (x<y) {
int temp;
temp= x;
scope of
temp

You can’t use temp down here
return x;

}

This is an error.

‘ Scope of local variable: the sequence of statements following it.

/** s contains a name in the form exemplified by “David Gries”.
Return the corresponding String “Gries, David”.
There may be 1 or more blanks between the names. */
public static String switchFormat(String s) {
// Store the first name in variable f and remove f from s
declaration intk; // Index of the first blank in} s
assignment k= s.indexOf('');
String f; // The first ngme ins.
f= s.substring(o, k);
s= s.substring(k);

/] Remove the blanks fromjs scope of
s= s.trim();

returns+"," +f;
scope of f

/
Call Stack

- N

This fact explains why local
variables do not retain their
values from one call of a method
to the next call of the same

Call Stack is the stack of frames
for uncompleted method calls, a
frame for a method call lasts as
long as the method call is being
executed. When the call is
finished, the frame is erased.

method:

All the information about the first
call is in a frame, and the frame is
erased when the call is
completed.

Question 3 (12 points) Executing method calls. Suppose vecror
+ of Tntegers contains 3 elements. as shown to the right. The 3 al
elements are the names of Lnteger objects wrapping the three

int values 5.7, and 3

ssE-xeﬁsel/

Fxeeute the method call

vect

everse(v);

where class VectarTools is given below. (We have 2[a0
Iabeled the statements with numbers (e.g. 2:). which
You can use as program counters in o frame for a 2 at 0

call). Stop executing when you are ready 10 execute
b Tuiczer Tnteger Tutcuer
the return statement that is abeled 2. [O e ey

For each call during exceution (except the calls on
methods in class). dravw the frame for
the call. Note that elements of Vector v will change,

and you should record those changes in abject 21 Note: For v a Vector.

v.size() = number of elements in v
3, or 4 frames for calls v.get(i) = the value of element v[i]
v.set(iw) sets vli] to w

Hint: You will have to draw 2.

public class VectorTools {
Reverse v[0..v.size()]
public static void reverse(Veetor v) {
1 reverse(v. 0. v.size()-)

3

Reverse the segment v[h. K]
private static void reverse(Veetor v, int b int k) |
Lifth= k)

2: return.

Tnteger w=v.get(h).
vsei(h. v.get(k)
vset(k. w)
reverse(v. i 1 k-1)

Py

= -
|— al
Reverse: 1 ‘ ‘ VectorTools Vector
01a0
v
1|a4
2 (a2
Reverse: 6 ‘ ‘ VectorTools

‘ Integer ‘ Integer ‘ Integer

/S/tep4ﬁ’f0 Vs Ste pUVEfr‘\\/

G

Step Into: Step Over:

y Assume the function is doing
Draw the frame for the call exactly what it should do
and execute the method call Y

based on the specifications of
the function.

2011.12.7

Reverse: 2 ‘

‘ VectorTools al
Vector
0 a0
1]a4
2|a2
a2 a4 a0
| Integer | Integer | Integer

