
2011.12.7	

1	

Review of Required ���
Array Algorithms 

	

You will be asked about one of	

these algorithms on the final:	

	

binary search	

Dutch national flag	

partition algorithm	

insertion sort	

selection sort	

	

You have to know the specifications	

of these algorithms. Memorize them.	

	

Then, develop an invariant from	

the spec and develop the loop from	

using 4 loopy questions. An algorithm	

given without the inv or an algorithm���
that doesn’t use the inv is simply wrong.	

1	

Reasons for this:	

	

1.  Important algorithms.	

2.  Forces you to think in

terms of specifications.	

3.  Forces you do learn to

develop invariants.	

4.  Forces you to learn to

use the four loopy
questions in reading or
developing a loop	

Below are specs of the algorithms. Memorize them.	

We give pre- and post-conditions as diagrams. Same for loop
invariants. You can do this too.	

	

We may specify that an algorithm is working with an array
b[0..b.length-1], or a segment b[h..k], or a segment b[m..n-1]. It
doesn’t matter; work with whatever is given. 	

2	

 ? 	

h k	

b	

Remember, the number of values in an array segment is
given by the formula Following – First 	

—e.g. the number of values in b[h..k-1] is k – 1.	

Binary search:	

Vague spec: Look for v in sorted array segment b[h..k].	

	

BETTER IS:	

 ? 	

h k	

Precondition P: b	

 <= v > v 	

h i k	

Postcondition: Q: b	

Called binary search
because each iteration
of the loop will cut
the ? Segment in half	

3	

Store in i to truthify:	

(in ascending
order)	

Dutch National Flag 	

b contains red balls, white balls, and blue balls	

 reds whites blues 	

0 n	

post: Q: b	

4	

 ? 	

0 n	

pre P: b	

Swap the balls in b[0..n-1] so that	

Partition algorithm: Given an array b[h..k] with some value x in b[h]:	

 x ?	

h k	

P: b	

 <= x x >= x 	

h j k	

Q: b	

 3 5 4 1 6 2 3 8 1 	
b	

h k	

e.g. change:	

into	
 1 2 1 3 5 4 6 3 8	
b	

h j k	

x is called the pivot value.	

x is not a program variable; x just denotes the value initially in b[h]. 	

Swap elements of b[h..k] and store in j to truthify Q:	

 1 2 3 1 3 4 5 6 8	
b	

h j k	

or	

5	
 6	

 ?	

0 n	

pre: b	

 sorted 	

0 n	

post: b	

Insertion sort AND	

Selection sort	

Swap values of b[0..n] so that the array looks like this:	

2011.12.7	

2	

7	

Finding invariants.	

For each of these problems, you find the invariants by
combining (or generalizing) the pre- and post-conditions. In
some cases, this may be done in several ways. Below, we
show you one way.	

	

DO NOT MEMORIZE THE INVARIANTS. Instead, learn
simply to combine the pre- and post-conditions:	

binary search	

 <= v ? > v 	

h i t k	

invariant: b	

Dutch National Flag	

 reds ? whites blues 	

0 h k m n	

inv: b	

8	

Partition algorithm	

Insertion sort	

Selection sort	

 <= x x ? >= x 	

 h j t k	

inv: b	

 sorted 	

0 i n	

inv: b	

 sorted, <= >=	

0 i n	

inv: b	

DO have to remember: selection sort
inv is the insertion sort inv with one
more property: everything in left
segment is <= everything is right
segment	

