
CS100J    October 16, 2003
More on Loops

Reading: Secs 7.1–7.4

Quotes for the Day:
Instead of trying out computer programs on test cases until they are
debugged, one should prove that they have the desired properties.
John McCarthy, 1961, A basis for a mathematical theory of computation.

Testing may show the presence of errors, but never their absence.
Dijkstra, Second NATO Conf. on Software Engineering, 1969.

I have graded Q1, Q2, and A2. Monday morning, they will be placed in the
Carpenter basement, to be picked up when a consultant is there.



On “fixing the invariant”

// {s is the sum of 1..h}
s=  s + (h+1);
h= h+1;
// {s is the sum of 1..h}



On “fixing the invariant”

// {s is the sum of h..n}     s = 5 + 6 + 7 + 8      h = 5, n = 8
s= s + (h-1);
h= h-1;
// {s is the sum of h..n} s = 4 + 5 + 6 + 7 + 8      h = 4, n = 8



Loop pattern to process a range m..n–1
(if m = n, the range is empty)

int h= m;
// invariant: m..h–1 has been processed
while (h != n) {
     Process h;
     h= h+1;
}
// { m..n–1 has been processed }
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Loop pattern to process a range m..n
(if m = n+1, the range is empty)

int h= m;
// invariant:  m..h–1 has been processed
while (h != n+1) {
     Process h;
     h= h+1;
}
// { m..n has been processed }



Loop pattern to process a range m..n in reverse order
(if m = n+1, the range is empty)

int h= n+1;
// invariant:  h..n has been processed (in reverse)
while (h != m) {
     Process h–1;
     h= h–1;
}// { m..n has been processed (in reverse)}



Logarithmic algorithm to calculate b**c,
for c >= 0 (i.e. b multiplied by itself c times)

/** set z to b**c, given c ≥ 0 */
int x= b; int y= c; int z= 1;
// invariant:  z * x**y = b**c  and 0 ≤ y ≤ c
while (y != 0) {
     if (y % 2 == 0)

{ x= x * x; y= y/2;  }
     else { z= z * x; y= y – 1; }
}
// { z = b**c }

Decimal  Binary
001           1  = 2**0
002         10  = 2**1
003         11
004       100  = 2**2
005       101
006       110
007       111
008     1000 = 2**3
009     1001
010     1010
011     1011
012     1100
013     1101
014     1110
015     1111
016   10000 = 2**4
…
099
100
…
256 100000000
                    = 2**8

2**n in binary is: 1 followed by n zeros. 2**15 is 32768 (in decimal).

n is called the logarithm of 2**n. The logarithm of 32768 = 2**15 is 15.



Logarithmic algorithm to calculate b**c, for c >= 0
(i.e. b multiplied by itself c times)

/** set z to b**c, given c ≥ 0 */
int x= b; int y= c; int z= 1;
// invariant:  z * x**y = b**c  and 0 ≤ y ≤ c
while (y != 0) {
   if (y % 2 == 0)
       { x= x * x; y= y/2;  }
   else { z= z * x; y= y – 1; }
}
// { z = b**c }

The algorithm looks at the binary
representation of y.

• Testing if y is even means testing
whether it rightmost bit is 0.

• y= y/2; is done by deleting the rightmost
bit.

• y= y–1; in the algorithm is done by
changing the rightmost bit from 1 to 0.



Logarithmic algorithm to calculate b**c, for c >= 0
(i.e. b multiplied by itself c times)

/** set z to b**c, given c ≥ 0 */
int x= b; int y= c; int z= 1;
// invariant:  z * x**y = b**c  and 0 ≤ y ≤ c
while (y != 0) {
     if (y % 2 == 0)

{ x= x * x; y= y/2;  }
     else { z= z * x; y= y – 1; }
}
// { z = b**c }

The algorithm is

“logarithmic in c”

which means that if c = 2**k, it
takes time proportional to k

E.g. if c = 2**15, i.e. 32768, loop

takes at most 2*15 + 1 iterations!


