CS100 FALL 1998

Table of contents

1. Preliminaries ..., 1
due date, working with another
person, grading, what to hand in

2. SYNOPSIS . vii 1
3. Files to retrieve..........cooiiiiiiiiiiii i 2
4. The game of Checkers................... 2
5. The GUI i 2
6. Dealing with the Frame........................ 4
6.1. Fields of a Frame 4
6.2. Overview of constructor Checkers.......... 4
6.3. Adding a component to the Frame 5
6.4. Handling events over the Frame............ 6
7. Class CheckersSquare.............covviiueinnn. 6
8. Class IntLabel it 7
9. The code that plays Checkers 7

1 Preliminaries

Due: At the beginning of lecture on Tuesday, 3 Novem-

ber. You may turn it in before that date in the Car-
penter consulting room. Do not turn it in at Carpen-
ter on the due date.

Working with another person. You may do this
assignment with one other person. However, you
must share the work equally; you should write the
code together, type it in together, and debug it to-
gether. It is not okay for one person to write and
debug one method and another person to do another
method; that is not togetherness. We want together-
ness. Hand in only one assignment with both names
on it.

Note. The first comment of your program must con-
tain the name, Cornell ID, section day, section time,
and section instructor of each person who is to receive
a grade for the assignment you hand in. Don’t write
it in by hand; type it in as the first comment of the
file that contains class Checkers.

Goals of assignment. (0) To have you work with
a well-designed, well-documented program. As you
study it, be conscious of the comments near declara-
tions of variables that define the meaning of the vari-
ables, the specifications of methods, the statement-

Program Assignment 7: Checkers

Due in lecture, Tuesday, 3 November 1

comments within method bodies, and the indenta-
tion. (1) To get you to work with a 2-dimensional
array. (2) To introduce you to GUIs.

Grading. Section 9 describes the sections of code
that you have to write. For each of them, you can
get from 0 to 3 points, based on correctness (2) and
style (1) of doing it (keep things simple and clear).
None of these sections of code have to be long; the
work will be in understanding the project as a whole
and keeping the details straight.

What to hand in. The description of what you are
to do for this assignment appears in Sec. 9, “The code
that plays checkers”. That section takes you through
a series of steps, which end up with a complete pro-
gram.

Hand in a copy of class Checkers. Also hand in a
printout of one snapshot of a game played by your
program, some point after the first move.

Finally, write (and hand in) a one-page essay on your
experiences with this assignment. You may say what-
ever you want, but think about answering the follow-
ing kinds of questions. Was it interesting? Worth-
while? What did you think about it before initially,
halfway through, and after finishing it? What did
you learn? Feel free to say negative as well as posi-
tive things; be honest. What you say will not affect
your grade.

2 Synopsis

By a user interface we mean a method by which a
user inputs data into a computer program or receives
output. Thirty years ago, input was mostly by means
of information stored on “punch cards” and informa-
tion stored in some manner on a magnetic tape (usu-
ally produced by some other computer program). (A
magnetic tape was, and still is, like an audio cassette
tape.) Output would be printed on a piece of paper,
stored in a file on a magnetic tape, or punched on
cards. Relatively few monitors and interactive key-
boards were in use.

Today, for input, one uses a keyboard and mouse (and
perhaps other devices like a joystick) attached to a
computer in connection with a set of “windows” on a

CS100 FALL 1998

computer monitor, which allows one to type in infor-
mation in many different places, to press “buttons”,
and so forth. Output, as you already know, can be in
many forms —on the computer screen in the form of
text, graphics, tables, and images, on paper, and on
various storage devices like floppy disks, zip drives,
and hard disks.

3 Files to retrieve

Browse the CS100A home page and find the material
for assignment 7. You will find:

(a) A link to a version of our CodeWarrior program
that you can execute from your browser. Execute
this to become familiar with the game and with the
GUI (Graphical User Interface) for the game. It is
important to do this before trying to write code for
this assignment. Look at the source for this html file
to see something about how it works.

(b) Four files: TrivialApplication.java, Checkers.ja-
va, CheckersSquare.java, and IntLabel.java. These
contain the classes that make up this implementation
of the game of checkers, except that some sections of
code have been removed from class Checkers; your
task is to complete these sections. See Sec. 9.

(c) File Experiment.java, which you can use to learn
about developing a Graphical User Interface, as ex-
plained in lecture on 27 October.

You should start a new CodeWarrior project using
the Java stationery (not the CUCS Java stationery or
the CUCS Java Graphics stationery). Then, replace
file Trivial Application.java in that project by the one
mentioned in (b) above. Also, move copies of the
other files mentioned in (b) into this project folder
and then add them to your project. (The latter can
be done by opening them and then using menu item
“Add window”).

You can compile and execute the program, but it
won’t perform suitably until you fill in the missing
sections in class Checkers.

Program Assignment 7: Checkers

Due in lecture, Tuesday, 3 November 2

4 The game of Checkers

The game of Checkers is played by two people, say
R and B, on an 8 x 8 board on which black and red
pieces are placed. The initial configuration, which
can be seen below or by starting up the program men-
tioned in (a) above, contains twelve red pieces and
twelve black pieces, all on black squares. R plays first;
the pieces move only on black squares since pieces can
move only diagonally. A piece can move into a di-
agonally adjacent empty square or it can diagonally
jump an enemy piece, taking it off the board. (In
our present implementation, only one piece can be
jumped on a move.) Normally, pieces can move only
toward the side of the board opposite from which
they started. When a piece reaches the last row, it
becomes a king. Kings can move in any (diagonal)
direction.

The initial configuration of the board is:

R R R R
R R R R

R R R R
B B B B

B B B B
B B B B

All pieces lie on black squares of the checkerboard.
The game ends when one player has no pieces left.

When you look at the program, consider how could
you change it to permit a jump of two or more pieces.

5 The GUI

A set of Java classes, called the abstract window tool-
kit (awt), comes with each Java programming envi-
ronment. The toolkit provides classes for the win-
dows, menus, text fields, buttons, etc., that one sees
on a computer screen these days. The classes are
defined in an abstract, machine-independent fashion
and are then implemented in a machine-dependent
(or operating system-dependent) fashion in each op-
erating system. Thus, if you run a Java program

CS100 FALL 1998

that uses this toolkit on a Macintosh, you will get
Macintosh-like buttons, textfields, etc., and if you
run the same program on a PC running Windows 95,
you will get Windows-95-like buttons, textfields, etc.
The machine-independent nature of the Java defini-
tion and its faithful implementation on different plat-
forms helps make Java a success today, in the context
of the world-wide web.

This discussion of the awt is only an overview. We
encourage you to spend some time looking at some
of the awt classes, like Button, after you read this
section. Study some of the methods in these classes,
get a feel for the overall structure. This may enable
you later to develop your own GUI for a small project.

Also, while reading this section, refer often to the
appropriate parts of classes Checkers and Checkers-
Square.

One obtains the ability to reference the classes of the
abstract window toolkit by placing the statement

import java.awt.x;

at the beginning of a Java program file.

In this assignment, you will not have to write any
code that deals directly with the awt —the code you
write will deal with arrays. The awt is too large and
the idea is too new to you. And, you don’t have
enough programming experience to be expected to
program using the awt in such a short time. The awt
is discussed in this assignment only to acquaint you
with building GUD’s in Java. Studying this assign-
ment and the code should prove enlightening in this
regard.

Below is a list of the classes that the Checkers pro-
gram uses. (There are more classes in the awt, which
we don’t show you.) Indentation denotes subclassing.
For example, Frame is a subclass of Window, which is
a subclass of Container, which is a subclass of Compo-
nent. Below this list, we describe the classes briefly.
At the end of this document, we provide a picture of
Checkers being played, with the various components
indicated.

Component
Container
Window

Program Assignment 7: Checkers

Due in lecture, Tuesday, 3 November 3

Frame
Button
Canvas
Label
TextComponent
TextArea
TextField
Color
Event
Graphics
GridBagConstraints
GridBagLayout

Component is the superclass of many classes that
appear on the screen; a Component (i.e. an instance
of class Component) has a position, has a size, can be
painted on the screen, and can receive input “events”
(keyboard strokes, mouse clicks, etc.).

Container represents all components that can hold
other components.

Button: a labeled button.
Canvas: a rectangular area with graphics capability.
Color: the colors that can be used.

Event: The representation of an event, like a mouse
down, or a keystroke, or a mouse drag.

Frame: a Frame (i.e. an instance of class Frame) is
a top-level Window with a title and a border. By
“top-level”, we mean that it does not appear within
some other component on the screen, but appears by
itself. A Frame can have a menu. The awt sends the
Frame all mouse and keyboard events that occur over
it.

Graphics: the class that enables drawing graphical
figures in (some) components, like a Frame or a Can-
vas.

GridBagConstraints contains constraints that are
used for laying out components using class GridBag-
Layout.

GridBagLayout: a “layout manager” that places
components in a window (or frame, etc.). The idea
of a layout manager is discussed below.

Label: a component for placing text in a container.
The text can be changed by the application, but a
user cannot edit it directly.

CS100 FALL 1998

TextComponent: a component that allows editing
of text in it by the user.

TextArea: a component that is a two-dimensional
text area with scroll bars. The user can edit it (unless
the code makes it uneditable).

TextField: a component that is a single line of text.
The user can edit it (unless the code makes it uned-
itable).

Window: a top-level window (one that does not ap-
pear in some other component), with no title or menu
bar.

6 Dealing with the Frame

6.1 The fields (variables) of a Frame

Look at method Trivial Application.main. It prints
a message and declares and initializes variable game
using the statement

Checkers game= new Checkers();

That is all it does! Obviously, a lot must go on in
constructor Checkers.

Now turn to class Checkers and notice that it ex-
tends class Frame, so that Checkers is a subclass of
Frame. We now investigate constructor Checkers.

A Frame is a stand-alone window that can appear
on your computer monitor. The purpose of construc-
tor Checkers is to add the components that make up
the game Checkers (as you see it on the monitor) and
then place the Frame on the monitor. Look at the
beginning of class Checkers. The first declarations
define the variables that will contain the components
that will be in the Frame. Variable board will be
an 8 x 8 array of elements of class CheckersSquare,
which is a subclass of class Canvas. Each array ele-
ment board[i][j], then, is a (red or black) square of the
checkerboard, and it can be drawn on using graphics
methods like drawOwval.

Following variable board are variables of class Label
(they contain the strings of characters that appear on
the right side of the Frame) and a variable helpText
(which contains the help information that appears at

Program Assignment 7: Checkers

Due in lecture, Tuesday, 3 November 4

the bottom of the Frame when the Help button is
pressed).

Finally, array buttons contains the Strings that ap-
pear on the three buttons in the upper righthand cor-
ner of the Frame.

The components just mentioned have to be placed in
the Frame in appropriate positions. For example, in
our Frame, the game board of Canvas components
appears in the upper left of the Frame and the but-
tons in the upper right. In the Java awt, the place-
ment of components is done using a layout manager.
There are several layout managers, each of which has
a different approach to describing how the compo-
nents are to be placed.

In this project, we use layout manager GridBagLayout,
which uses an instance of class GridBagConstraints
to do its job. Variable gb contains the layout man-
ager and variable gbc contains the associated instance
of GridBagConstraints. The declarations of gb and
gbc come next in class Checkers.

Following the declarations of gb and gbc come decla-
rations of variables that are used to simulate a game
of checkers. These have comments that describe their
meaning, so we don’t discuss them here. Note that
only six variables are needed here! Information about
what pieces are actually on the board is contained in
the individual elements of array board.

6.2 Overview of constructor Checkers

Now look at the body of constructor Checkers in
order to get an overview of what it does and how
it does it. Some of the methods that it calls are in
superclass Frame, so you would have to look at that
class to get a rigorous definition of those methods.

The initial call super(“Checkers’) provides the Frame
with its title. Next come assignments that generate
instances for variables gb and gbc, set the font suit-
ably, and tell the F'rame which layout manager to
use (setLayout(gb)).

Then comes a sequence of sections of code to (0)
create the array of CheckersSquare elements (which
make up the game board) and add them to the Frame;
(1) create the buttons and add them to the Frame,
(2) add the informational Labels to the Frame.

CS100 FALL 1998

Finally, we have the following statements: (0) pack()
causes the components in the window to be laid out
using their preferred size; (1) move(150,150) indi-
cates where the upper left corner of the Frame is to
be placed on the screen; (2) newGame(), which we
wrote, places the initial pieces on the board and sets
the informational labels accordingly, and (3) show()
causes the F'rame to be drawn on the monitor.

Note that the Text Area containing the help informa-
tion has not been added to the Frame.

At this point, note how the constructor is presented.
There is a comment for each part, which describes
at a high level, but precisely, what that part does.
Thus, you can get a good sense of the constructor
without understanding all the details. Later, you can
investigate each of the parts in detail. Thus, you
can understand the constructor at several “levels of
abstraction”.

6.3 Adding a component to the Frame

Layout manager GridBagLayout views the Frame
as a two-dimensional table of columns and rows. A
component can occupy any rectangular piece of this
table. So, component A could occupy the element at
column 0 row 0, while component B could occupy the
2 x 2 set of elements whose left upper element is in
column 1 row 1, as shown below:

0 1 2 3 4 5 6
0|A
1 B|B
2 B|B

In the Frame of game Checkers, each square of the
board takes up a 2 x 2 array of elements of the Frame,
as shown below. This is so that the labels to the right
don’t take up so much space. In the diagram, a num-
ber “ij” in a square indicates that the square is used
as part of the checkerboard square in column i, row j
—remember, there are two different two-dimensional
tables used here, the checkerboard and the Frame on
which it is drawn. To the right, “quit” in two squares
indicates that the menu button titled “quit” occupies
those squares. And so forth.

Program Assignment 7: Checkers

Due in lecture, Tuesday, 3 November 5

0000|1010 ..| 70| 70 | new game
0000|1010 ..| 70| 70 | new game
Ot |o1 |11 |11 |..}71 |71 quit
01|01 |11 |11 |..]71 |71 quit
02102 |12 |12 ...[72| 72 help
02 102|12 |12 | ... 72|72 help
0303|1313 ...| 73] 73| red to play
0303|1313 |..] 73] 73| (crosshair)

Before adding a component to the Frame using the
GridBagLayout manager, one must set various “con-
straints” in the associated instance gbc of GridBag-
Constraints. As you read this description, look also
at method Checkers.add. Here are some of the prop-
erties, or constraints, that you can set:

e The column number gbc.gridz and row number
gbc.gridy of the upper left element of the grid
that a component is to occupy.

e The numbers gbc.gridwidth and gbc.gridheight
of columns and rows of the grid that this com-
ponent is to occupy.

o The relative horizontal weight gbc.weightx and
relative vertical weight gbc.weighty that is to
be used when the Frame is resized (e.g. made
bigger or smaller by the user). Usually, these
numbers are between 0 and 100. We illustrate
by example how these are used. If gbc.weightx
is 0 for a component, then the width of the
component will not change, no matter how big
or small the Frame becomes. If gbc.weightz
for this component is 100 and gbc.weightx for
another component is 50, then when the F'rame
is made bigger, this component receives twice
as much space than the other. Thus, these are
relative weights.

e gbc.fill indicates how much of the space allo-
cated to a component it should actually occupy.
If gbe.fill = gbc. NONE, then it occupies the
minimal amount of space. If gbc.fill = gbc.-
HORIZONT AL, then it occupies the minimal
amount of vertical space and maximum amount
of horizontal space. If gbc.fill = gbc.VERTI-
CAL, then it occupies the maximum amount of

CS100 FALL 1998

vertical space and the minimum amount of hor-
izontal space. If gbe.fill = gbc. BOT H, then it
occupies the maximum amount of vertical space
and the maximum amount of horizontal space.

You can get an idea about the use of gbe.fill by
changing the assignment to gbec.fill within the
code that adds the buttons to the Frame to

gbe.fill = GridBagConstraints. NONE;

and executing the program. Be sure to change
NONE back to BOT H after noticing this dif-
ference.

To add component ¢ (say) to the Frame, one first sets
the constraints in gbc as desired, lets GridBagLayout
manager gb know about these constraints by execut-
ing gb.setConstraints(c, gbc), and finally adds the
component to the Frame by calling method add of
the Frame. You can see this sequence of statements
in the body of method Checkers.add.

Now, this is a rather long and torturous sequence
of statements. To simplify and shorten all this, we
wrote another method Checkers.add, which is used
throughout the constructor to add the components to
the Frame. For example, study the code that adds
the squares of array board to the Frame.

6.4 Handling events over the Frame

Pushing down a mouse button when the cursor is in
some square of the game board, letting the mouse
button up, pushing a button, and clicking the mouse
when the cursor is in the “destroy window” box (up-
per right hand corner on the PC, upper left corner on
the Mac) are called events. When one of these events
take place, the program must recognize it and take
appropriate action.

Such events are modeled as instances of class Event.
Class Fvent contains constants to represent events.
Thus, integer constant Event. MOUSE_DOW N rep-
resents pressing the mouse button down. Below are
some event constants and their values —you can take
alook at class Fvent to see what events your program
could recognize and process:

MOUSE_DOWN = 501

Program Assignment 7: Checkers

Due in lecture, Tuesday, 3 November 6

MOUSE_UP = 502
MOUSE_MOVE = 503
MOUSE_ENTER = 504
MOUSE_EXIT = 505
MOUSE_DRAG = 506

There are two ways for the system to tell the program
that an event has occurred within the Frame:

(0) call method action (if a button has been pressed)

(1) to call method handleEvent if some other event
has occurred.

Look carefully at these two methods, and you will see
that determining and processing the events is rather
straightforward.

7 Class CheckersSquare

As mentioned earlier, each element of 8 x 8 array
board is an instance of class CheckersSquare, which
extends class Canvas. Thus, an instance of Check-
ersSquare can be a component of the Frame for the
game, and one can draw circles, etc. on it.

The class contains five constants (variables with prop-
erty final): EMPTY, RED, BLACK, REDKING,
and BLACKKING, which are used to indicate what
type of piece sits on the square. These constants are
static, which means that they belong to the class
rather than to an instance of the class.

FEach instance of class CheckersSquare has variables
that contain the column and row of the instance on
the game board as well as the contents of the square
(EMPTY,RED, BLACK, REDKING, or BLACK-
KING). There are also variables that give the back-
ground color of the square since it needs to be differ-
ent from red or black; in addition there is a boolean
variable toBe M oved.

Now look at constructor CheckersSquare. First, it
calls the constructor of the superclass (Canwvas); then
it saves the desired column and row number for this
square. Finally, it uses three methods of class Canvas
to set the background color, to set the preferred size
of the component, and to paint the component (that
is the purpose of method repaint). Function bounds
yields the perimeter of the canvas as an instance of

CS100 FALL 1998

class Rectangle, which is stored in b.

Since this component can reference Graphics meth-
ods, it has a method paint to draw on it. You have
seen such paint procedures before, so this one should
be relatively easy to understand. Note that it saves
the current color for the component and then restores
it at the end. If the square has a piece on it, the
piece is drawn with red or black ovals for the top of
the piece and with underlying magenta or gray ovals,
which provide the apparent side of the piece. A yel-
low K is drawn on a king.

CheckersSquare has ten other methods, which are
simple and short. Note that three of them repaint the
square if they make changes to it. To see why this
is necessary, comment out a repaint call, execute the
program, and notice what happens when pieces are
placed on the board. Be sure to remove the comment
symbol after this experiment.

8 Class IntLabel

The numbers of black and red pieces on the board are
printed on the GUI This requires that the numbers
be kept in two forms: the integers themselves and the
Label that contains the String representation of the
integer. Requiring the program to maintain these two
forms is frought with danger —if one form is changed
without changing the other, which is quite likely, an
error results.

Object-oriented programming helps us guard against
such mistakes. We encapsulate in class IntLabel both
of these representations. Take a look at this class —
note its methods. Then notice the two fields redCount
and blackCount that are declared in class C'heckers.

9 The code that plays Check-
ers

In this section, we discuss how the code plays checkers
and describe what you are to do in this assignment.
We have removed sections of the code, which you have
to fill in. We take you through a series of steps to
complete the program.

Program Assignment 7: Checkers

Due in lecture, Tuesday, 3 November 7

First, familiarize yourself with the variables that are
used in the game —the fields in class Checkers. Also
become familiar with classes CheckersSquare and
IntLabel, because you will be reading and writing
calls on their methods. Then study method Checkers-
.processSquareClick, which, as it says, processes a
mouse click in a square. Read the high-level com-
ments first, as well as the specifications of the meth-
ods that it calls, to get an idea how it works.

9.1 Method newGame

This method sets everything to play a new game. At
the moment, it puts only the 12 red pieces on the
board. Change it at the places marked with a com-
ment so that it also places the black pieces on the
board.

Run the program and make sure it works correctly
before proceeding to the next step.

9.2 Method isValidNonJump

At the moment, the body of this method simply re-
turns false, so no move is considered valid. Statement-
comments have been written, indicating the sequence
of actions to be done in the body. Write the method
body as indicated. You can check your code out by
placing the statement System.out.println(“move to ”
+ newSq + “valid”); just before returning true and
a similar statement just before returning false. Make
sure this method is correct before proceeding.

9.3 Part I of Method validMove

Fill in the missing code that is marked with comments
as Part I in this method. The comment specifies ex-
actly what is to be done; most of what you write will
be calls on methods in class CheckersSquare. When
this is done correctly, your program should make non-
jump moves correctly. Make sure this method is cor-
rect before proceeding.

CS100 FALL 1998 Program Assignment 7: Checkers Due in lecture, Tuesday, 3 November 8

9.4 Method isValidJump

At the moment, the body of this method simply re-
turns false, so no move is considered valid. Statement-
comments have been written, indicating the sequence
of actions to be done in the body. Write the method
body as indicated. You can check your code out by
placing the statement System.out.println(“move to “
+ newSq + “valid”); just before returning true and
a similar statement just before returning false. Make
sure this method is correct before proceeding.

9.5 Part II of Method validMove

Fill in the missing code that is marked with comments
as Part Il in this method. This is similar to what you
did in Part I for this method. When this is done, your
program is finished!

Once this code is written, the program should run
correctly.

