
CS 100: Section Assignment 2
(For the week of February 8)

Section assignments are discussed in section and are not submitted for grading. They relate  to recent lecture topics and usually
to the current Programming Assignment.  Prelim questions are based on  Section Assignments, Programming Assignments, and
Lecture examples.

1. Let 31 +=s  . Write a program that prints a 15-line table. On the nth line should appear n, the next integer bigger than

s2n, 2n+1 and the remainder when this next largest integer is divided by  2n+1. Use type long and make full use of Math.pow.
Use Math.ceil to get the required next largest integer. After you figure that out, rewrite your program so that it prints
exactly the same table but does not use the Math.pow  method.

2. Write a program that produces the following graphic:

Think of this as a circle with trinkets. The circle should be centered at (hc,,vc)    = (400,300) and should have radius r1 = 200.
There should be n = 16 trinkets. For k = 0,…, n-1, the kth trinket has  center  (hc + r1cos(kθ ) ,vc -  r1sin(kθ )) where θ  = 2π/n.
With this scheme we index trinkets counterclockwise identifying the “3 o’clock”  trinket as trinket 0. The kth trinket is a square
with side 2r2 if k is odd and a circle with radius r2 if k is even. Set r2 = 20. Use fillOval and fillRect for drawing trinkets. They
work just like drawOval and drawRect only they fill in the shape. Pay attention to types. Encapsulate the “design parameters”
as constants.

Hints: Use a for-loop that counts from 0 to n-1 to to draw the trinkets. Each time through the loop you should draw either a
square or a circle. The remainder of the loop index divided by 2 can be used to figure out which.

3.  The Fibonacci sequence is given by  f-1 = 0, f0 = 1, f1 = 1, f2 = 2, f3 = 3, f4 = 5, f5 = 8, f6 = 13, f7 = 21, etc. In general, the nth
Fibonacci number is the sum of its two predecessors, i.e., fn =  fn-1 +  fn-2 . Here is a program that prints f1 ,…, f20 :



// S2_3
import java.io.*;

public class S2_3
{
   public static void main(String args[])
   {
      final int kmax=20;  // index of the last Fibonacci number to be printed

int k;            // index of the current Fibonacci number
long z;             // the current Fibonacci number
long y;             // the "parent" of z.
long x ;            // the "grandparent" of z.

TokenReader in = new TokenReader(System.in);

      x = 0;
      y = 1;

z = 1;
for(k=1;k<=kmax;k=k+1)
{
   System.out.println("  " + k + "   " + z);
   x = y;
   y = z;
   z = x + y;
}
in.waitUntilEnter();

   }
}

Execute a few passes through the loop by hand so that you understand the roles of the variables x, y, and z. (a) Convert the
for-loop to a while-loop. The modified  program should print exactly the same thing. (b) Modify the part (a) program so
that instead of printing  f1 ,…, f20  it prints all Fibonacci numbers that are strictly less than one billion. (The program need not
print f-1 and  f0 .)

4. Here are two definitions:

• An integer is a “type A integer” if it does not have 2, 3, 5, or 7 as a divisor.
• An integer  is a “type B integer” if  its ones place value, tens place value, and hundreds place value are not distinct.

Note that  66 is not a type A integer because it is divisible by 3. On the other hand, 143 = 11*13 is a type A integer. Note that
234 is not a type B integer because its ones place value is 4, its tens place value is 3, and its hundreds place value is 2 and these
three digits  are distinct. On the other hand, 707, 991, 344, and 555 are all type B integers.

Write a single program that prints the number of type A integers that are less than or equal to one million and the number of
type B integers that are from the set {100,101,…,999}.


