
CS 501- Software Engineering

Legal Data Markup Software
Software Design Document

Version 1.0

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 2

Revision History
Date Version Description Author

10/31/2000 1.0 Initial Version. LDMS Group

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 3

Table of Contents

1. Introduction 5
1.1 Purpose 5
1.2 Scope 6
1.3 Definitions, Acronyms and Abbreviations 6
1.4 References 7
1.5 Overview 8
1.6 Roles and Responsibilities 8

2. Development and Execution Environment 8
2.1 Development Environment 8

2.1.1 Hardware 8
2.1.2 Software 9

2.2 Execution Environment 10
2.2.1 Hardware 10
2.2.2 Software 10

3. Naming Standards 10

4. Coding Standards 12

5. Software Design 13
5.1 Overview 13
5.2 Architecture 13

5.2.1 System Architectural Components 14
5.2.2 Modules in Components 15

5.3 Design Constraints 18
5.4 Global Data Objects 18
5.5 Error Handling 18
5.6 Development Language 19
5.7 Preconditions and Postconditions 19
5.8 User Interfaces 20

5.8.1 Introduction 20
5.8.2 User Interface 20
5.8.3 Menu Design 20
5.8.4 Data Screen Design 21
5.8.5 Report Formats 21

5.9 Supporting Diagrams 22
5.9.1 Flow Diagram 22
5.9.2 Culture Diagram 23
5.9.3 Context Diagram 24

6. DTD Design 25
6.1 Conceptual Schema 25

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 4

6.2 Tag Descriptions 26
6.3 Document Type Definition 28

7. Packaging 31
7.1 Documentation 31

7.1.1 Source Level Documentation 31
7.1.2 Program Design Document 31
7.1.3 DTD Design Document 31

7.2 Source Code 32
7.3 Executables 32
7.4 Data Files 32
7.5 Installation 32

8. Supporting Information 33
8.1 Description of Responsibilities 33

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 5

1. Introduction

The intent of this project is to create a software tool that will convert the U.S. Code of

Law from its distributed ASCII format into well-formed, valid XML. Our client, the

Legal Information Institute, will utilize the XML output in next-generation applications

that will make the U.S. Code available in a variety of different formats to the general

public. Particular examples of such use include the electronic publication of the code on

the Internet and downloadable versions in Folio Views format.

1.1 Purpose

The LDMS is a content-based conversion utility designed to facilitate the distribution of

the US code of law. The purpose of the LDMS is to allow the client to fulfill its goal of

distributing the US code in formats not feasible with their previous conversion utility.

The purpose of this document is to outline and explain the details of the design of the

LDMS with respect to the following points:

• Construction of the DTD for the XML output

• Development and execution environments

• Reading and parsing of the formatted ASCII input

• Processing of the formatted ASCII input

• Generation of XML output

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 6

1.2 Scope

This document applies only to the LDMS XML conversion utility and any associated

maintenance tools we provide. The software design is by no means a comprehensive

specification of future functionality that may be added by the developers or by the client.

Only those design decisions that are apparent at the time of this writing are included in

this particular draft of the software design document; future revisions may include

extended or additional design specifications that are added if the current design becomes

inflexible and needs to be expanded.

1.3 Definitions, Acronyms and Abbreviations

DDD DTD Design Document

DTD Document Type Definition

HTML Hypertext Markup Language

LDMS Legal Data Markup Software

Leda Name of server running development and application environment.

LII Legal Information Institute

MTBF Mean Time Between Failures

MTTR Mean Time to Repair

PDD Program Design Document

SDD Software Design Document

SRS Software Requirements Specification

TOC Table of Contents

US United States

W3C World Wide Web Consortium

XML Extensible Markup Language

XSL Extensible Stylesheet Language

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 7

1.4 References

The following documents are related to the project and have been consulted:

• Current version of source code for conversion from raw ASCII to HTML.

• http://uscode.house.gov/download.htm – U.S. Code related input formats.

• http://www.lexum.umontreal.ca/fr/equipes/technologie/dtd/LOIQ.dtd – Montreal’s DTDs

used for legislative purposes.

• http://elj.warwick.ac.uk/jilt/00-2/bruce.html – General background on legislative and legal

publishing.

• http://elj.warwick.ac.uk/jilt/00-1/arnold.html – Provides history, motivation, and high-level

implementation of EnAct, a project done in Tasmania similar to this one.

• http://nwalsh.com/docs/articles/xml/ – An XML tutorial.

• http://developer.irt.org/script/xml.htm – Archive of frequently asked XML questions.

• http://www.w3.org/TR/REC-xml – The W3C XML draft specification.

• The Perl CD Bookshelf, 6 best-selling books on CD-ROM, O’Reilly & Associates, Inc.,

August 1999.

• The House of Quality, Hauser, J.R. and D. Clausing, Harvard Business Review, May-June

1988, pp. 63-73.

• Writing Quality Requirements, Wiegers, K. E., Software Development, May 1999.

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 8

1.5 Overview

The rest of this document provides a comprehensive specification of all the software

design decisions for the project. These specifications include the explanation of the

construction of the DTD for the XML output; development and execution environments;

reading, parsing, and processing of ASCII input; generation of XML output; and the top

level components and modules design. In summary, the specifications outlined by this

document will provide a sufficient description of the design that will be used to create the

final product.

1.6 Roles and Responsibilities

Name Department Responsibility
Thomas Bruce Legal Information Institute Project Sponsor
William Arms Computer Science Department Project Sponsor
Amy Siu Computer Science Department Project Reviewer
Ju Joh Computer Science Department Student Developer
Sylvia Kwakye Computer Science Department Student Developer
Jason Lee Computer Science Department Student Developer
Nidhi Loyalka Computer Science Department Student Developer
Omar Mehmood Computer Science Department Student Developer
Charles Shagong Computer Science Department Student Developer
Brian Williams Computer Science Department Student Developer

2. Development and Execution Environment

2.1 Development Environment

2.1.1 Hardware

The primary hardware that we will be using in the development environment is a machine

with a 233 MHz Intel Pentium II processor, 128 MB memory, and a 28 GB hard disk.

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 9

Additionally, we will be using 4 Dell Latitude CPt notebook computers to connect to the

primary hardware during our coding sessions, each consisting of a 400 MHz Intel

Celeron processor, 96 MB memory, a 4.7 GB hard disk, and an Aironet PC4800 Wireless

PCMCIA card.

2.1.2 Software

The software that we will be using in the development environment consists of the

following:

• Red Hat Linux 6.2, the operating system.

• Perl 5.6, the coding language.

• SSH Secure Shell 2.3, the remote connection software.

• CVS 1.10.7, the version control software.

• Emacs 20.5.1, a text editor.

• VIM 5.6, a text editor.

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 10

2.2 Execution Environment

2.2.1 Hardware

The hardware that will be used in the execution environment is the same hardware that

we will be using in the development environment. This fact alleviates almost any

potential hardware compatibility threats. Even though the LDMS will presumably

function normally after a successful hardware upgrade, the client knows that any

hardware upgrade is at his own risk and the software is not guaranteed to work under the

new conditions.

2.2.2 Software

The software that will be used in the execution environment consists of the following:

• Red Hat Linux 6.2

• Perl 5.6

Even though the LDMS will presumably function normally after a successful software

upgrade of the Linux OS and/or Perl Compiler/Interpreter, the client knows that any

software upgrade is at his own risk and the software is not guaranteed to work under the

new conditions.

3. Naming Standards

The LDMS team will use the following naming standards for the design and

implementation of the software:

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 11

• File Name Styles: All file names will begin with a single word in all lower case

followed by any number of words with the first letter of each word in upper case

followed by a “.” and up to three characters (e.g. thePerlFile.pl)

• File Name Length: All files names will be at most 20 characters in length not

including the “.” and up to three character extension

• Function Names: All function names will begin with a single verb in all lower

case followed by any number of words with the first letter of each word in upper

case (e.g. initializeErrorModule)

• Variable Names: All variable names will begin with the appropriate qualifier

followed by a single word in all lower case followed by any number of words

with the first letter of each word in upper case (e.g. $variableOneName).

Additionally, local storage variable names will begin with the appropriate

qualifier and the name of the module that “owns” the storage variable followed by

an underscore and then the standard variable name production (e.g.

$error_LastErrorMessage).

• Filehandle Names: All filehandle names will be in all capital letters

• XML Output File Names: The output file names will begin with the first part of

the input file name before the first “.” followed by “.xml”

• DTD Element Names: All DTD element names will be in all capital letters. All

DTD tag names for divisions within other elements will begin with “DIV”

followed by the name of the element.

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 12

• Version Numbers: Each subsequent prototype of the system will be assigned a

version number equal to an increment of 0.1 to the previous version number.

Since we are not planning to develop more than 10 prototypes, the system will be

set at version 1.0 after the completion of the project. No other major version

number changes are planned, e.g. 1.0 to 2.0.

4. Coding Standards

The LDMS team will use the following coding standards for the design and

implementation of the software:

• Functions shall not exceed 100 lines.

• Each function shall have a preceding comments section describing the function’s

precondition, postcondition, and purpose.

• Each variable shall have a comment describing the variable’s purpose.

• Each loop shall have begin and end comments.

• A consistent indentation of 3 spaces shall be used for each block.

• All variables that are not in the interface specification shall be declared locally.

• Perl contractions shall not be used.

• Each file shall have a modification history log showing the version number, date,

user id, and description of each change.

• Each file shall include a copyright and license notice at the beginning of the file.

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 13

5. Software Design

5.1 Overview

The software design consists of three main components: Read and Parse File, Language

Parsing, and Output. The raw ASCII file contains the 50 titles provided by the House of

Representatives and will be fed as input to the system. The whole file will be read by the

Read and Parse File component with the help of its modules. The input module will read

either lines of text or blocks of text at a time. As the lines are being read, the

StateMachine module provides us state information as to which part of the document we

are processing, i.e. which title we are currently at, if we are encountering white spaces or

special characters that need to be parsed, external/internal references etc. The

WhiteSpacePatternMatching and the WordPatternMatching take care of inconsistencies

in white space and tabs, and special characters. In the event of any error, the error is

outputted through modules of StoreAndOutputErrors component and stored in an error

file. The modules of the Status component periodically display the status, as to which

lines of the document have been processed. Finally, a well-formed and valid XML

document is created.

5.2 Architecture

The software architecture diagrams summarize the important physical groupings of code

of that make up the LDMS.

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 14

5.2.1 System Architectural Components

The “Program” represents the top of the system architecture. The LDMS has three major

components: Read and Parse File, Language Parsing, and Output. Each of these

components has several modules that perform the tasks described by the component.

LDMS
Main

File
Parser

Lang
uage Parsing

Outp
ut

Inp
ut Hand
ler

Whitesp
ace Pattern
Matching

Wor
d Patte
rn

Erro
r Messa
ge

Stat
us Messa
ge

Stat
e Machi
ne

File
Creator

XML
Output Hand
ler

Figure 5.1: Top-level UML component diagram.

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 15

5.2.2 Modules in Components

Status
currLineNumber
statusInterval

printStatus()
initStatus()
defineIntervalStatus()
updateStatus()
updateAndPrintStatus()

WhiteSpacePatternMatching
indentSpace
tableSpace

getIndentSpace()
setIndentSpace()
checkForTable()

Input
lineText
blockText
filehandle

openFile()
readLine()
readBlock()
tag()
closeFile()

StoreAndOutputFile
outputFile
startTagList
endTagList
textList
textBuffer

initialize()
beginTag()
addAttribute()
addText()
endTag()
finalize()

CreateFile
filehandle

createFile()
flushText()
closeFile()

StateMachine
stateArray
subDiv

getState()
advanceState()
getSubDivision()

StoreAndOutputErrors
errMsg

initError()
printErrMsg()
setErrMsg()
getErr()

WordPatternMatching
matchWord
subWord
searchString

findAndHighlight()
findAndSub()
findAndLink()
findWord()
findAndTag()

Figure 5.2: UML Class Diagram.

Module Descriptions:

• The CreateFile module creates the corresponding XML file for each title

processed from the raw ASCII input file. Filehandle points to the current XML

file being prepared. CreateFile() creates the XML file, flushText() flushes the

processed ASCII text stream into the newly created XML file and closeFile()

closes the XML file once the whole file is created.

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 16

• The Input module supports the reading of the raw ASCII document provided by

the House of Representatives. It can either read text line by line in the variable

lineText, or read an entire block defined by catchlines stored in the variable

blockText, e.g. all lines of text between –CITE– and the line immediately before

the next –CITE– would form one block. The variable filehandle is a reference to

the current file being read. The function openFile() opens the raw ASCII file for

reading. ReadLine() reads lines of text until the end of the document while

readBlock() reads blocks of text. Tag() replaces the catchlines with their

equivalent DTD tags defined in the DTD document. Finally, closeFile() closes

the file when the whole file has been read.

• The StateMachine module helps us to know where we currently are in the raw

ASCII document. For example, it can tell us whether we are at the beginning of a

title, chapter, section, or subsection, what the number of the particular division is,

whether we are referring to a footnote or an external/internal reference, etc.

Basically, it helps us to perform functions such as white space and word pattern

matching, tagging, etc.

• The Status module provides a periodic display of the current line of the input file

being processed. It contains functions to increment and print the current

processing line number as well as define the status display interval.

• The WhiteSpacePatternMatching module has 2 attributes, indentSpace and

tableSpace. IndentSpace is the number of spaces a line is from the edge while

tableSpace refers to the spacing that is used to denote tables in the ASCII text.

Functions are provided to get or set the indentSpace. Another function allows one

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 17

to check for tables.

• The StoreAndOutputErrors module has one attribute, errMsg. ErrMsg is the

last error message that was set by setErr() and can be retrieved using getErr().

InitErr() initializes the error module for output to the standard error stream and

printErrMsg() writes a message to this stream.

• The attributes for the WordPatternMatching module are: matchWord, which is

the word we are searching for; subWord, which is the word we can substitute the

matchWord for; and searchString, which is the text we are searching through.

The functions are straightforward. One can find a word and substitute for it, find

and link it to something, find and highlight it, find and tag it, or just find it.

• In the StoreAndOutputFile module, the attribute startTagList is a list of lists,

each of which contains a start tag with its associated attributes, in the order that

they will occur in the output. EndTagList is a list containing the end tags in the

order they will occur in the output and the number of start tags preceding this end

tag. TextList is a list containing the strings that are the text between tags.

TextBuffer is a string that collects all the text between the last and the next tag.

The function initialize() reads in the output file name (outputFile) and initializes

the three lists and the buffer as empty. BeginTag() adds a start tag to the

startTagList, putting the textBuffer into the textList. AddAttribute() adds an

attribute to the most recent unclosed start tag. EndTag() adds an end tag to the

endTagList with the number of start tags (for proper ordering in the output),

putting the textBuffer into the textList. Finalize() creates the outputFile and the

Perl XMLWriter module uses the three stacks to write to the output file.

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 18

5.3 Design Constraints

Our design will be based on the following design constraints and assumptions:

• The U.S. Code input file will be in ASCII format. We note that the division of

titles into chapters, sections, and sub-sections, white spaces, special characters,

footnotes, references, and tables, may differ significantly across each title.

• The software will be designed to facilitate the unattended operation of the

program. This will have implications in error handling. For example, the issues

of automatic decision making to re-start execution of the program in case of a

server crash and steps taken by the system to handle graceful failures without user

intervention, will be addressed in the design.

5.4 Global Data Objects

We will not be using any global data objects other than the input file name. The output

file names will not be hard coded as global variables as is common practice, but rather

will be determined by the name of the input file with the “.xml” extension appended to

the file name.

5.5 Error Handling

Error handling is managed by the main program loop and is stored and output using the

StoreAndOutputErrors module (refer to 5.2.1 and 5.2.2).

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 19

The following are errors that may be encountered and their associated solutions:

• Improper program call: If the program is executed with unknown parameters or

extraneous information, the program will exit and print the usage parameters to

the console.

• Output file already exists: If the overwrite flag was set during the program call,

then the existing file will be overwritten. If the flag was not set, then the program

will write an appropriate error message to the standard error stream and exit the

program.

• System errors: If a system error such as “disk is full” is experienced, the program

will log the error message to the standard error stream and exit the program.

• Non-critical errors: Any non-critical errors in processing the input data will be

handled gracefully by using a tag similar to the HTML <PRE> tag.

5.6 Development Language

The software will be developed using Perl 5.6.

5.7 Preconditions and Postconditions

The following preconditions must be met prior to starting the application:

• The input file(s) must be available in a particular path

• The execution environment including the hardware and software must be setup.

• The required memory and disk space as previously stated in the requirements

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 20

document must be available.

The following post conditions shall be guaranteed by the system:

• A well-formed, valid XML document with respect to the DTD we designed will

be produced. It will correspond to the input file.

5.8 User Interfaces

5.8.1 Introduction

Since the goal of the system is simply to convert the raw ASCII input files into a well-

formed, valid XML document conforming to the DTD we designed, there will be no

sophisticated user interactivity or interfaces. The program will use user-specified

command line arguments such as the name of the input file to be processed as well as

other common parameters. A batch processing approach will be adopted whereby the

user inputs all the files that are to be converted and the program will process these files

together.

5.8.2 User Interface

The inputs to the program will be entered as command line arguments.

5.8.3 Menu Design

The following parameters will be used to employ particular commands:

• -O <filename>: Output file name

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 21

• -F: Overwrite existing file

• -V: Verbose error messages

• -L#: Status message frequency

• -?: Help

In addition, the standard error stream can be redirected to a file for later viewing. The

form for the program execution is the program name followed by zero or more command

line parameters (with their associated file name, if necessary).

5.8.4 Data Screen Design

Since there will be no sophisticated user interface, the data screen design is not necessary.

5.8.5 Report Formats

The following output will be presented to the user:

• The program will display simple status messages after a specified number of lines

have been processed. The frequency of these messages is set by using the –L

command line parameter and if none is specified, then no messages will be output

to the screen.

• The program will output the error messages to the standard error stream in the

following format:

<date> <time> <input filename> <user id> <line number> <error message>

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 22

5.9 Supporting Diagrams

5.9.1 Flow Diagram

This diagram demonstrates how the LDMS fits into the client system. The LII will be the

sole user in the current model. The US Code in ASCII format must be downloaded by

LII and used as input to the LDMS. The public can access the US code in XML format

only through the LII.

Cornell LIIHouse

LDMS

Public

U.S. Code
(ASCII)

U.S. Code
(ASCII)

U.S. Code
(XML)

U.S. Code

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 23

5.9.2 Culture Diagram

This diagram shows particular cultural and situational design caveats. The LII and

LDMS have little control over the input due to the fact that the House of Representatives

controls the format and availability of the US Code. The lag in the cultural diagram is

between the LII and Public and not between the LII and LDMS because the source of the

lag stems from the House of Representatives and their several month delay in

transcribing the US Code in paper to an ASCII formatted text.

Cornell LII
House

LDMS
Format of

code is not
negotiable.

Seriously faulty input
must be manually
resolved.

XML should be
double-checked.

“Why does
publishing take so

long?”
Public

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 24

5.9.3 Context Diagram

This diagram represents the behavioral relationship between the various objects, systems,

and the LDMS.

House of
Representatives

U.S. Code

Legal Data
Markup System

Cornell
Legal

Information
Institute

XML

Produces
Uses as Input

Downloads

Produces

Executes

Publishes

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 25

6. DTD Design

6.1 Conceptual Schema

In the above class diagram, each element in the XML DTD is shown as a class. The

attribute list of each class is shown as protected attributes, while elements in each class

are shown as public attributes with appropriate dependencies. Each dependency also

includes the cardinality requirement.

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 26

6.2 Tag Descriptions

• XREF is the element that will mark the cross-references.

o TARGET is an attribute that contains the EID of the cross-referenced

material.

§ Originally ID-Ref was considered as the type for TARGET, but the

ID-Ref requires that the ID being referenced is present in the current

XML document. Therefore it was too limiting for our cross-title

(cross-XML file) referencing purposes.

• DATATEXT is a generic tag designed to be the US Code’s equivalent to XML

PCDATA.

• STRUCTDIV is a generic tag designed to mark the structural divisions of the US

Code, e.g. Titles, Chapters, Subchapters, Sections, etc.

o NAME is the label name of the division, e.g. “Chapter”, “Section”, etc.

o VLEVEL is the depth of the division. For an example if the Table of Contents

is organized by Title, Chapter, Subchapter, and Section, then Title will have

VLEVEL=0, Chapter=1, Subchapter=2, Section=4.

o HLEVEL is the sequential order number of the division. For an example, the

first chapter in a title will have HLEVEL=0, second chapter will have

HLEVEL=1, etc.

o EID is a globally unique string identifier for the structural division. These

will be the values to be referenced from XREF::TARGET’s. It is of type ID.

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 27

• TITLEDATA is a group of dashline-tag sequences. Dashlines, i.e. tags found in the

ASCII formatted US Code, delimit particular portions of the document and all

portions of any document are delimited by these dashlines. There are numerous such

portions in any given title, each portion forming its own particular mini-group.

TITLEDATA is used to preserve that relationship.

o NAVGROUP is an element that encapsulates the dashline tags that will be

used for navigational purposes. The tags in NAVGROUP do not contain any

legally useful data, but they are a sort of meta-tag that identifies the

subsequent legal data.

§ CITE contains the data from dashline tag –CITE–. It contains the

label portion of the catchline, i.e. the label “Chapter,” “Section,” etc.,

and the number for the label, e.g. “Section 2b” that labels the current

TITLEDATA portion. In addition, it contains the current title number

and the identifier USC (for US Code).

§ EXPCITE is an expanded CITE. It notes the hierarchy of catchlines,

up to but not including the bottom most level of the TOC.

• DIVEXPCITE marks the text of each level within the

hierarchy.

§ HEAD contains similar information as CITE but with greater local

scope. It also contains the name for the current TOC section.

• STATUTE marks up the actual legal data, i.e. the actual words of the law.

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 28

o STATAMEND marks up the amendments made to a statute, and therefore can

only be found inside a STATUTE tag.

o SOURCE marks the various sources relevant to the current STATUTE.

§ DIVSOURCE marks an individual source with the dashline tag

–SOURCE–. These are delimited by semi-colons in the input.

• CROSS contains particularly worthy cross-references relevant to the TITLEDATA

section.

• SECREF contains the various other sections that reference the current section.

• MISC1 through MISC8 are simply additional information regarding the particular

TITLEDATA portion. The differences between the tags are simply their relative

location to other tags.

• REFTEXT, COD, CHANGE, TRANS, EXEC contain further information regarding

the TITLEDATA portion. REFTEXT contains further information regarding

references previously mentioned. CHANGE notes various changes, e.g. change of

name for an organization previously mentioned. TRANS contains the transitive

information for the particular portion.

6.3 Document Type Definition

<!-- XML DTD LII Ver. 0.51-->

<!--XREF is the tag for cross-reference-->
<!ELEMENT XREF (#PCDATA)>
 <!ATTLIST XREF
 TARGET CDATA #REQUIRED>

<!--DATATEXT is the generic tag for the texts-->

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 29

<!--DATATEXT may include various other elements that can be found within the text,
e.g. crossreferences, tables, additional DATATEXT's etc.-->
<!--DATATEXTNAME marks the preceding header-esque line-->
<!ELEMENT DATATEXT (DATATEXTNAME?, (XREF|#PCDATA)+)>
 <!--INDENTLEVEL is the count of indentation depth, i.e. how many levels of white-
space delimited texts there exists at the current DATATEXT.-->
 <!ATTLIST DATATEXT
 INDENTLEVEL DIGIT #IMPLIED
 EID ID #IMPLIED>

<!--STRUCTDIV is the generic structural divison tag.-->
<!ELEMENT STRUCTDIV (#PCDATA, TITLEDATA, STRUCTDIV*)>
 <!--NAME denotes the label of the division, e.g. Title, Subtitle, Chapter, etc.-->
 <!--VLEVEL denotes the vertical depth of the tag. Starts at 0.-->
 <!--HLEVEL denotes the sequencial (horizontal) order of the tag. Starts at 0.-->
 <!ATTLIST STRUCTDIV
 NAME CDATA #REQUIRED
 VLEVEL DIGIT #REQUIRED
 HLEVEL DIGIT #REQUIRED
 EID ID #REQUIRED>

<!--TITLEDATA contains the sequence of ordered dashline tags. Within each title there
will be several sets of TITLEDATA-->
<!ELEMENT TITLEDATA (NAVGROUP, STATUTE?, MISC1?, REFTEXT?,
MISC2?, COD?, MISC3?, CHANGE?, MISC4?, TRANS?, MISC5?, EXEC?, MISC6?,
CROSS?, MISC7?, SECREF?, MISC8?)>

<!--NAVGROUP contains the navigational dashline information of the title, i.e. the
current section within the table of content. It is required in the beginning of each
TITLEDATA-->
<!ELEMENT NAVGROUP (CITE, EXPCITE, HEAD)>
 <!ELEMENT CITE (#PCDATA)>
 <!--TITLENUMBER is the current title number-->
 <!ATTLIST CITE
 TITLENUMBER DIGIT #REQUIRED>

 <!ELEMENT EXPCITE (DIVEXPCITE+)>
 <!ATTLIST EXPCITE
 LEVEL DIGIT #IMPLIED>
 <!--DIVEXPCITE is a divider within EXPCITE. Each DIVEXPCITE corresponds to
a catchline. It is divided by specific pattern, e.g. TITLE 27 --->
 <!ELEMENT DIVEXPCITE (#PCDATA)>

 <!ELEMENT HEAD (#PCDATA)>

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 30

<!--STATUTE dashline contains the actual law text. SOURCE and STATAMEND
dashlines must be matched to a statute, i.e. included within the STATUTE element.-->
<!ELEMENT STATUTE (DATATEXT+, SOURCE?, STATAMEND?)>
 <!ELEMENT SOURCE (DIVSOURCE+)>
 <!--DIVSOURCE is separated by semicolon-->
 <!ELEMENT DIVSOURCE (#PCDATA)>

 <!ELEMENT STATAMEND (DATATEXT+)>

<!--MISC1 through MISC8 are identical texts, except in terms of physical location. e.g.
MISC1 is found between REFTEXT and STATAMEND, etc.-->
<!ELEMENT MISC1 (DATATEXT+)>
<!ELEMENT REFTEXT (DATATEXT+)>

<!ELEMENT MISC2 (DATATEXT+)>
<!ELEMENT COD (DATATEXT+)>

<!ELEMENT MISC3 (DATATEXT+)>
<!ELEMENT CHANGE (DATATEXT+)>

<!ELEMENT MISC4 (DATATEXT+)>
<!ELEMENT TRANS (DATATEXT+)>

<!ELEMENT MISC5 (DATATEXT+)>
<!ELEMENT EXEC (DATATEXT+)>

<!ELEMENT MISC6 (DATATEXT+)>

<!--CROSS dashlines denote the various crossreferences from this portion of the
document to other titles and/or sections.-->
<!ELEMENT CROSS (DATATEXT+)>

<!--SECREF lists the various sections that have this section listed in their crossreference-
->
<!ELEMENT MISC7 (DATATEXT+)>
<!ELEMENT SECREF (DATATEXT+)>

<!ELEMENT MISC8 (DATATEXT+)>

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 31

7. Packaging

7.1 Documentation

7.1.1 Source Level Documentation

It is deemed vitally important for development and maintenance that all source code is

thoroughly documented, especially when code segments are written with specific

functional requirements in mind. No code shall be approved for inclusion in builds

without accompanying source level documentation and peer review of such

documentation. This portion of the documentation will be included as comments in the

source files, and separate text files in the source code directory tree.

7.1.2 Program Design Document

Development of the LDMS shall be documented by a program design document (PDD)

outlining the implementation. It shall be the central reference for developers responsible

for understanding, maintaining, and extending the LDMS. The PDD shall contain a high

level view of the LDMS processing engine, detail individual processing components, and

display all interfaces, within and external to, the system. To aid in supporting the LDMS,

no development diverging from the requirements shall occur without peer approval,

without modifying requirements, nor without modifying the PDD.

7.1.3 DTD Design Document

Development of an appropriate DTD shall be documented by a DTD design document

(DDD). It shall be the sole reference for developers responsible for understanding,

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 32

maintaining, and extending the DTD. The DDD shall contain a list of all elements and

element attributes with details of their use. To aid in supporting the LDMS, no

modifications to the DTD shall occur without peer approval, or without modifying the

DDD.

This portion of the documentation will be included as comments in the DTD file, and

within this design document.

7.2 Source Code

• None of the source code for the various prototypes will be delivered.

• None of the code for testing purposes will be delivered.

• All of the source code for the final version will be provided.

7.3 Executables

There will be a single executable script file that will be used to start the program.

There will be no other executables in the project.

7.4 Data Files

Document Type Definition (DTD) file will be delivered. This file shall contain the

definitions for tags used by the program.

7.5 Installation

Simply copy the project directory into the desired location.

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 33

The relative paths within the directory must remain identical.

Also Perl interpreter must have been installed in the system, and the correct path to the

interpreter binary must be specified in the head of the executable script.

The process is simple and the likely hood, of additional installations beyond the first, is

low; therefore, there will be no additional installation tools.

8. Supporting Information

8.1 Description of Responsibilities

Each developer was charged with the responsibility to oversee a major area of the

delivery of this software design document.

Omar Mehmood is responsible for working on the DTD design and high level UML

component and module design, writing sections 1-4, 5.5, 5.6, 5.8.3, 5.8.4, 5.8.5, 5.9, and

8 of the SDD, creating the UML diagram for StoreAndOutputErrors, revising the UML

class diagram descriptions, and compiling and editing the entire SDD document.

Ju Joh worked on the DTD design, wrote sections 6 and 7 of the SDD, and created the

DTD Class diagram, the Context Diagram, the Culture Diagram, and the Flow Diagram.

Sylvia Kwakye is responsible for merging other software design documents with our

requirements template to create our SDD template. She also worked on the DTD design,

edited the entire SDD document, created UML diagrams for WhiteSpacePatternMatching

and WordPatternMatching, and prepared the slides for sections 1-5.2.

Legal Data Markup Software Version: 1.0
Software Design Document Date: 12/07/00

CS 501- Software Engineering Fall 2000 Page 34

Brian Williams is primarily responsible for co-presenting the SDD to the client and the

professor. His is also responsible for working on the DTD design, creating the UML

diagram and description for StoreAndOutputFile, and presenting our SDD to the clients.

Charles Shagong is principally responsible for co-presenting the SDD to the client and

the professor. Additionally, he co-designed the UML class diagram for the StateMachine

and created the Status module, defined the relationships between the modules in the class

diagram, edited the SDD, and provided input to the DTD design.

Nidhi Loyalka is primarily responsible for writing sections 5.1, 5.3, 5.4, 5.7, 5.8.1, and

5.8.2 of the SDD. She also drew the UML diagram for the Input module, co-created the

UML diagram for the StateMachine module, and helped define the relationships between

the modules.

Jason Lee is primarily responsible for creating the slides for sections 5.3 to the end of

SDD except for section 5.9, which was a collaboration between he and Sylvia Kwakye.

He also assisted in the development of the DTD design and created the overall UML

component diagram.

