Network-aware Application Adaptation for Mobile Hosts

Benjamin Atkin and Kenneth P. Birman
Department of Computer Science, Cornell University, Ithaca, NY
{bat ki n, ken}@s. cornel | . edu

Abstract

Mobile hosts in a wireless network can experience highly
variable network performance. Adapting to network con-
ditions can help mask this variability. For instance, a
client-server application can defer inessential work and
otherwise reduce communication when the quality of
connection to the server is poor. This paper describes an
approach to application adaptation which differs from
the usual mode-based technique. It also discusses two
implementations of modeless adaptation: ATP, a library
for bandwidth-aware communication, and MFS, a cache
manager for a distributed file system.

1 Introduction

One of the central problems in writing software to run
on mobile hosts is variability in network performance.
A mobile host using a wireless network can experience
rapid and large-scale changes in bandwidth availabil-
ity. If an application does not adapt its network com-
munication to these changes, they can interfere with the
performance seen by the user. Prior work in adapting
applications to perform well on mobile or bandwidth-
constrained hosts has included adaptation in file systems
[6] and web browsing [3], and more general approaches
for client-server systems [4] and resource-constrained
applications [5].

These systems have chiefly employed what we term
modal adaptation, in which an application has a (usually
small) number of modes of operation, each with a partic-
ular bandwidth utilisation, and chooses a mode depend-
ing on the available bandwidth. For instance, a Coda file
system client changes its writeback policy depending on
whether it is weakly or strongly connected to the server,
and a web browser might fetch degraded images from a
web server in place of the highest-quality images [3].

However, modal adaptation is not always suitable. A
high degree of bandwidth variation may result in rapid

The authors were supported in part by DARPA under AFRL grant
RADC F30602-99-1-0532, and by AFOSR under MURI grant
F49620-02-1-0233.

changes between modes, or the communication exhib-
ited by the application may not naturally fit a coarse-
grained modal division. Such a modeless application
might send and receive multiple types of data of vary-
ing degrees of importance, and allow fine-grained adap-
tation to bandwidth variation. For instance, a distributed
file system client could concurrently fetch files, write
back shared files, write back “private” files, and prefetch
files. Some of these tasks can be pushed into the back-
ground, and some serve only to improve performance,
rather than affecting the semantics of the file system.

The remainder of this paper discusses ATP, a library
which supports modeless adaptation through prioritised
communication, and MFS, a cache manager for a dis-
tributed file system, which uses ATP in combination with
file system-specific techniques to adapt itself to band-
width availability.

2 Communication adaptation

Our initial work [1] investigated the usefulness of a Re-
mote Procedure Call (RPC) library supporting multi-
ple priority levels as a tool for adapting communication
to network variations. This led us to develop ATP, a
message-oriented network protocol which runs over ker-
nel UDP, and does its own fragmentation and retrans-
missions to ensure reliable delivery. Messages can be
marked with a priority and a send timeout to control how
they are sent: ATP delivers queued messages in priority
order and notifies the sender if a message cannot be sent
before its timeout expires. We have compared the per-
formance of ATP to various TCP-based approaches [1],
and while TCP has been highly-tuned to operate well in
wireless networks [2], its bytestream-oriented interface,
and the uncontrollable contention for bandwidth which
can arise between multiple streams, make ATP prefer-
able for many workloads we have measured.

ATP allows either explicit or implicit adjustments to
bandwidth changes. Timeouts on send operations allow
an application to receive an explicit notification when
there is insufficient bandwidth to transmit a message. In



Modal adaptation

800 —— true bandwidth
bandwidth used

o 50 100 150 200 250 300
time (s)

Modeless adaptation

800 —— true bandwidth
bandwidth used

o 50 100 150 200 250 300
time (s)

Figure 1: Modal versus modeless adaptation with ATP. The dark horizontal lines in the graphs indicate operating modes; the left
graph shows performance with modal adaptation, and the right graph shows a scheme in which there are four classes of messages
being sent simultaneously, of increasing priorities (the lowest line corresponds to the highest priority). The modeless scheme
achieves higher utilisation (48.5 MB of data sent) because it always has messages to send, while the modal scheme is dependent
on a rapid and accurate estimate of the available bandwidth in order to select its correct operating mode (41.5 MB sent). These

graphs are reproduced from[1].

contrast, priorities allow an application to make use of
speculative communication, in which low-priority mes-
sages can be scheduled for transmission, without inter-
fering with the transmission of high-priority messages
when bandwidth is low. Experiments have indicated that
making use of priorities in ATP can allow a more ef-
ficient use of bandwidth than is possible with a modal
adaptation scheme, as Figure 1 illustrates.

3 Filesystem adaptation

After implementing ATP, we have continued by exper-
imenting with modeless adaptation closer to the appli-
cation level. Mobile file systems are well-understood
and have been extensively studied [6], but even so, the
caching techniques used in file systems are broadly ap-
plicable, and most existing work in mobile file systems
has focused on modal adaptation.

We are implementing and evaluating MFS, a flexible
cache manager for a mobile file system client. MFS uses
a fetch-on-read, delayed-writeback caching scheme, but
differs from previous approaches in two ways: first, it
employs RPC prioritisation to adapt to changing band-
width, and second, it makes aggressive use of file access
information to improve its caching strategy.

RPC prioritisation allows the cache manager to ex-
ecute RPCs for background tasks, such as prefetching
and file writeback, without interfering with file valida-
tions and fetches to satisfy cache misses. File access
statistics, such as associativity groups for files which are
commonly co-accessed, and whether files are shared be-
tween clients or are private, affect the order in which
files are prefetched and written back. If bandwidth is
low, it may be acceptable that accesses to some types of
files (for instance, executable files) may be serviced us-

ing a stale version in the cache, rather than initiating a
fetch which will block for a long period. Priorities al-
low MFS to initiate RPCs to write back a shared file and
a non-shared file concurrently, knowing that the non-
shared file will only use “surplus” bandwidth:; shared
files have higher priority because they are accessed by
other clients as well as the modifying client.

MFS’s performance is being evaluated with a vari-
ety of workloads and bandwidth traces. Our initial ex-
periments have demonstrated that prioritised communi-
cation can substantially outperform a non-adaptive dis-
tributed file system when bandwidth is variable, by pri-
oritising cache validations over writeback traffic. Fur-
ther experiments will compare MFS to modal schemes
incorporating logging and delayed writeback.

References

[1] B. Atkin and K. P. Birman. Evaluation of an adaptive transport
protocol. In Proceedings of the 22nd Annual Joint Conference
of the IEEE Computer and Communications Societies (Infocom
2003), Apr. 2003.

[2] H. Elaarag. Improving TCP performance over mobile networks.
ACM Computing Surveys, 34(3):357-374, Sept. 2002.

[3] A. Fox, S. D. Gribble, E. A. Brewer, and E. Amir. Adapting to
network and client variation via on-demand dynamic distillation.
In Proceedings of the Seventh International Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems, pages 160-170, Cambridge, Massachusetts, Oct. 1996.

[4] A. D. Joseph, J. A. Tauber, and M. F. Kaashoek. Mobile com-
puting with the Rover Toolkit. IEEE Transactions on Computers:
Soecial issue on Mobile Computing, 46(3):337-352, Mar. 1997.

[5] B. D. Noble and M. Satyanarayanan. Experience with adaptive
mobile applications in Odyssey. Mobile Networks and Applica-
tions, 4(4), 1999.

[6] M. Satyanarayanan. The evolution of Coda. ACM Transactions
on Computer Systems, 20(2):85-124, May 2002.



