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Abstract

The Ellipsoid NDF is a new normal distribution function (NDF)
that we introduce and use in the accompanying paper. It can be
used with microfacet BRDFs to model the reflection and refraction
of light from surfaces. This distribution is a generalization of the
widely used isotropic GGX/Trowbridge-Reitz distribution. The El-
lipsoid model is based on the surface statistics of an arbitrary 3D
ellipsoid allowing both anisotropy and rotations of the distribution.
This document describes the derivation of the ellipsoid NDF along
with a corresponding shadowing/masking term, which is needed for
energy conservation, and a low-variance importance sampling strat-
egy that guarantees that the sample weights never exceed one.

1 Introduction to Ellipsoid NDF

The Ellipsoid normal distribution function (NDF) can be compactly
expressed as:

D(m) =
X+(m ·n)

π |A| ‖A n‖ ‖A−Tm‖4
(1)

where m is the microfacet normal, n is the geometric normal of
the macrosurface, and A is an 3x3 matrix with determinant |A| and
whose inverse transpose is denoted as A−T. The normals are repre-
sented as 3 element column vectors with unit Euclidian norm (i.e.
‖m‖ = ‖n‖ = 1). The numerator restricts m to the hemisphere
centered around n using the indicator function for positive numbers
(i.e. X+(x) = 1 if x ≥ 0 and is zero otherwise).

The 3x3 matrix A controls the shape of the distribution. Although
the matrix contains 9 elements, there are actually only 5 useful
degrees of freedom. Scaling the matrix by a constant (e.g., c A)
and left multiplication by an orthogonal matrix (e.g., Q A) does not
change the distribution, thus many different matrices can produce
the same distribution. It is convenient to work in a coordinate sys-
tem where the macrosurface normal n is aligned with the z-axis and
then specify the matrix A as the product of a orthogonal rotation
matrix R and a diagonal scaling matrix S as:

A = S R where S =


αx 0 0
0 αy 0
0 0 1


and RTR = I (2)

A 3D rotation matrix provides three degrees of freedom while the
scaling matrix provides another two to span the space of all possible
ellipsoidal distributions. In this case |A| = |S| = αxαy . If we set
the rotation matrix to just be the identity (i.e. R = I or no rotation),
then the distribution reduces to be the same as the anisotropic dis-
tribution GTR2aniso in [Burley 2012, Eq. 13]. And if we further
set αx = αy = α, then the distribution becomes identical to the
isotropic GGX/Trowbridge-Reitz distribution [Walter et al. 2007;
Trowbridge and Reitz 1975]. As in those previous models, the α
parameters control the width of the distribution in two orthogonal
directions and correspond to notions of surface roughness.

There are many ways to parameterize the space of 3D rotations.
One that we have found convenient is to express the rotation as a

product of three axial rotations:

R = Rx(θx ) Ry(θy ) Rz(θz ) (3)

=


1 0 0
0 cos θx − sinθx
0 sin θx cos θx





cos θy 0 sin θy
0 1 0

− sinθy 0 cos θy





cos θz − sinθz 0
sin θz cos θz 0

0 0 1


In this space the three rotation parameters and their effects on the
distribution are easy to understand. θz rotates the distribution in
the tangent plane to align the axes of anisotropy (whose roughness
is controlled by αx and αy respectively) with the desired principal
directions. Then θx and θy allow shifting the maximal value of the
distribution away from the macrosurface normal direction n. Thus
if θx or θy are non-zero, then we get an asymmetric or skewed dis-
tribution. This is an effect that is not usually supported by NDFs in
graphics but something that we have observed in some of our mea-
sured data. This parameterization is simple and intuitive to control
when θx and θy are small, which has been generally true in our
data. For larger rotations though, alternative representations for ro-
tations such as quaternions might be preferable. For the symmetric
cases, such as GGX, when θx = 0 and θy = 0 then we have An = n
and ‖An‖ = 1.

1.1 Ellipsoid BRDF

The reflection pattern from a surface is described by its bidirec-
tional reflectance distribution function (BRDF), denoted fr. Micro-
facet theory [Torrance and Sparrow 1967; Blinn 1977; Cook and
Torrance 1982] approximates the BRDF in terms of the surface’s
normal distribution function as [Walter et al. 2007]:

fr(ψ,ω) =
D(h) G(ψ,ω,h) F (ψ ·h)

4 |ψ ·n| |ω ·n|
where h =

ψ + ω
‖ψ + ω‖

(4)

for light which arrives from direction ψ and is reflected in direction
ω. The derived direction h is often called the half-direction (or half-
vector). We can use the ellipsoid NDF for D. The fresnel factor F
can be computed using the standard fresnel equations based on the
material’s complex index of refraction. The only other piece we
need is a suitable shadowing-masking term G.

Shadowing-masking terms are essential in microfacet models to
preserve energy conservation and prevent unrealistic behavior
at near-grazing angles. We recommend the following shading-
masking term, which we show later guarantees energy conservation
when used with the ellipsoid NDF:

G(ψ,ω,m) = G1(ψ,m) G1(ω,m) (5)

G1(u,m) = min
(
1,

2 ‖An‖2 |u ·n|
‖Au‖ ‖An‖ + (Au) · (An)

)
X+(u ·m) (6)

If desired, transmission or refraction through the surface could be
modeled using the microfacet BSDF definitions from [Walter et al.
2007] along with an extended shadowing/masking term:

G(ψ,ω,m) = G1(sgn(ψ ·n) ψ, m) G1(sgn(ω ·n)ω, m) (7)



ψ Direction from which light arrives at surface
ω Direction into which light is scattered
n Large-scale, or average, surface normal
m Local microsurface normal
D Normal distribution function (NDF)
G Bidirectional shadowing-masking function
G1 Monodirectional shadowing function
A Ellipsoid shape matrix
Ce Constant related to ellipsoid size
A⊥

e Projected area of ellipsoid
A⊥

`
Projected area of ellipsoidal lune

X+(x) Positive indicator function (= 1 if x ≥ 0 else 0)

Figure 1: List of important symbols.

where sgn the sign function which is +1 for positive numbers and
−1 for negative ones.

We now have all of the definitions needed evaluate the ellipsoid
microfacet BRDF. However in many applications, it is also very
useful to be able to randomly sample a BRDF (e.g., in Monte Carlo
rendering algorithms). Given one of the directions, ψ orω, we want
to be able to generate the other direction with a probability that is
roughly proportional to fr(ψ,ω). In section 4, we describe high
quality sampling schemes for the ellipsoid BRDFs. Note since our
BRDFs obey reciprocity (i.e. fr(ψ,ω) = fr(ω,ψ)), the sampling
methods are the same for both directions.

2 Derivation of Ellipsoid NDF

This section derives the normal distribution of a 3D ellipsoid, which
together with a normalization constraint for microfacet NDFs, de-
fines the ellipsoid NDF. While many different NDFs have been pro-
posed, two of the most widely used in computer graphics are the
Beckmann and GGX distributions. The Beckmann distribution is
derived from assuming Gaussian random statistics for the surface
and has proved a good model for some surfaces. In a previous pa-
per [Walter et al. 2007], we measured several surfaces and noted
that Beckmann was unable to provide a good fit for the rougher
surfaces in our dataset. We tried many different functions until we
found one that was analytically tractable and provided a good fit for
our ground glass sample, which we termed the GGX1 distribution.
However GGX is actually mathematically identical to an earlier
NDF model proposed by Trowbridge and Reitz [Trowbridge and
Reitz 1975]2, which coincidently they also matched to measured
data from a ground glass sample. Unlike GGX, TrowbridgeReitz
was derived by computing the NDF of a special class of ellipsoids,
called spheroids, or ellipsoids of revolution. Unfortunately their
method does not generalize to arbitrary, or triaxial, ellipsoids which
are not surfaces of revolution. Instead we use an alternate approach
based on implicit surfaces to derive the NDF for general ellipsoids,
which naturally extends the isotropic GGX/TrowbridgeReitz distri-
butions to handle anisotropy and rotation.

Many different surfaces can share the same NDF, so we need not
assume our surface actually consists of ellipsoids, but only that it
has a similar NDF to one. Deriving NDFs from a simple convex
shape, such as a ellipsoid, is intuitively appealing and also allows
us to solve some of the related integrals geometrically, which may
be easier. One natural way to define an arbitrary ellipsoid is using

1The name GGX originally stood for ground glass unknown.
2To my knowledge, Brent Burley was the first person notice the equiva-

lence of GGX and Trowbridge-Reitz in 2011, using trig identities.

an implicit surface of all points p⇀ that satisfy this condition:

f (p⇀) = p⇀TATA p⇀ − C2
e = 0 (8)

where A is a 3×3 matrix as discussed earlier and Ce is a constant
related to the size of the ellipsoid.

The NDF appears in microfacet theory because it is used to convert
an area integral into an integral over microsurface normals. This
transformation is sometimes called a Gauss map, and its Jacobian
is given by the Gaussian curvature, Kg. The NDF is the Jacobian
needed for this change of variables from surface-area to normal-
density along with a normalization term and can be defined as:

D(m) =
1

A⊥
e (n)

dA
dm
=

1
A⊥

e (n) Kg(m)
(9)

where the normalization factor A⊥
e (n) is the projected area of the

ellipsoid in the direction n, dA is the area measure over the micro-
surface, dm is the solid angle measure over surface normals, and
Kg(m) is the surface’s Gaussian curvature at the point where its
local surface normal is equal to m. This is well defined since for
non-degenerate ellipsoids, each surface normal m occurs at only a
single point on the ellipsoid.

2.1 Gaussian Curvature of Ellipsoids

The Gaussian curvature of an implicit surface is given by [Goldman
2005, Eq. 4.1]:

Kg =
(∇ f )Tadj(H)∇ f

‖∇ f ‖4
(10)

where ∇ f is the gradient of the implicit function and adj(H) is the
adjugate of its Hessian which, in this case, can be expressed as:

adj(H) = |H| H−1 when |H| , 0 (11)

H = ∇2 f = 2 ATA (12)

∇ f = 2 ATAp⇀ = Hp⇀ (13)

Substituting these values, we get:

Kg =
|H| (Hp⇀)TH−1(Hp⇀)

‖Hp⇀‖4
(14)

This gives us the Gaussian curvature except, that we want it ex-
pressed in terms of the microsurface normal m instead of surface
position p⇀ which are related by:

m =
∇ f
‖∇ f ‖

=
Hp⇀

‖Hp⇀‖
(15)

Substituting this into the numerator we get:

Kg =
|H|mTH−1m
‖Hp⇀‖2

(16)

To get rid of the p⇀ in the denominator, consider the following ex-
pansion:

mTH−1m =
(Hp⇀)TH−1(Hp⇀)

‖Hp⇀‖2
=

2p⇀TATAp⇀

‖Hp⇀‖2
=

2C2
e

‖Hp⇀‖2

=⇒ ‖Hp⇀‖2 =
2C2

e

mTH−1m
(17)



We can then express the Gaussian curvature as:

Kg =
|H|

(
mTH−1m

)2

2C2
e

(18)

Next we use the relations that |H| = 8 |A|2 and:

mTH−1m =
1
2

mTA−1A−Tm =
1
2



A−Tm




2
(19)

to express the Gaussian curvature as:

Kg =
|A|2 


A−Tm




4

C2
e

(20)

Now that we have a suitable expression for the Gaussian curvature,
next we need to compute the projected area of an ellipsoid.

2.2 Projected Area of Ellipsoids

The projected area of a convex shape, such as an ellipsoid, in a
direction u can be defined by an integral over its surface S:

A⊥

e (u) =
∫
S

X+(u ·m) (u ·m) dp⇀ (21)

where

m =
ATAp⇀



ATAp⇀




(22)

from equations 15 and 12. This integral is difficult to solve directly
for general ellipsoids, so we will instead use a more geometric solu-
tion approach. We can find the silhouette of the ellipsoid by taking
all points where the local surface normal is perpendicular to a view
direction u which is equivalent to solving for the condition:

0 = u ·m

0 = u · (ATAp⇀) = (ATAu) · p⇀ (23)

Notice that this is also the equation for a plane passing through the
origin and perpendicular to the vector ATAu. Hence the silhouette
must be an ellipse lying in this plane (since the intersection of a
plane and an ellipsoid is always an ellipse). This silhouette ellipse
necessarily has the same projected area as the ellipsoid.

To compute the area of this ellipse, let us consider points p⇀◦ in a
space transformed by the affine transform A and defined by:

p⇀◦ = Ap⇀ and p⇀ = A−1 p⇀◦ (24)

In this transformed space, the implicit equation for the ellipsoid
becomes p⇀◦

T p⇀◦ − C2
e = 0, which means the ellipsoid has been

transformed into a sphere with radius Ce. Spheres are much eas-
ier to analyze, so we can start our computation in this sphere-space
and then transform the results back to ellipsoid-space. The silhou-
ette in this space is an intersection of a sphere and a plane passing
through its center, so it is a circle with area πC2

e . To compute the
un-transformed ellipse area, we can use the following identity for
cross-products:

(Ma⇀) × (Mb⇀) = |M|M−T(a⇀ × b⇀) (25)

where M is any non-singular matrix and a⇀ and b⇀ are 3D vectors.
Cross-products transform in the same way as the perpendiculars to
planes (i.e. both are bivectors or covariant), and their lengths are
proportional to the corresponding areas in their respective spaces.

Thus if our ellipse is in a plane perpendicular to ATAu, then the
corresponding circle will be perpendicular to |A|A−TATAu in the
sphere-space. Moreover the ratio between the lengths of these vec-
tors is equal to the ratio between the areas of the silhouette ellipse
and circle in their respective spaces.

Finally we have to account for the fact that the ellipse silhouette
plane may not be perpendicular to u by multiplying by the dot prod-
uct between its unit plane normal and u. Putting these three terms
together we get:

A⊥

e (u) =
(
πC2

e
) (

‖ATAu‖
|A| ‖A−TATAu‖

) (
(ATAu) ·u
‖ATAu‖

)

=
πC2

e ‖Au‖
|A|

(26)

This agrees with previous results for the projected area of an ellip-
soid (e.g., [Vickers 1996] albeit in different notation).3 Now we
can combine equations 9, 20, and 26, to complete our derivation of
equation 1 for the ellipsoid NDF. �

2.3 Ellipsoidal Lunes and Their Projected Area

Next we generalize the result above to compute projected areas of
partial ellipsoids, which we call ellipsoidal lunes. Although not
needed to define the ellipsoid NDF itself, we will need to do this for
related functions such as the shadowing-masking and importance
sampling. When using the ellipsoid NDF in a microfacet model,
we actually use only half of the ellipsoid because we are only in-
terested in portions where m · n > 0. As per the discussion above,
this corresponds to cutting the ellipsoid in half by a plane that is
perpendicular to the vector ATAn. It is useful to be able to compute
the projected area of such a half ellipsoid along an arbitrary direc-
tion u, where we additionally restrict ourselves to portions of the
ellipsoid where m ·u > 0. This corresponds to cutting the ellipsoid
by two planes, both of which pass through its center, and keeping
only the portion on the positive side of both planes. On a sphere
such a region is called a spherical lune and by extension we will
refer to such a region as an ellipsoidal lune.

We can define the projected area of such an ellipsoidal lune by an
integral over the ellipsoid surface S:

A⊥

` (u,v) =
∫
S

X+(u ·m) X+(v ·m) (u ·m) dp⇀ (27)

Comparing to equation 21, we can see that A⊥
e (u) = A⊥

`
(u,u), so

this is a generalization of the ellipsoid projected area problem. We
follow the same solution approach as before. Using equation 24,
we start by working in a transformed space where the ellipsoid be-
comes a sphere with radius Ce, and the ellipsoidal lune becomes
a spherical lune. Note that for a sphere, the silhouette curves are
simply great circles in planes perpendicular to the corresponding
projection directions, which is not generally true for ellipsoids. Let
the angle between the normals of the two planes defining a spher-
ical lune be θ` . Then the projected area of a spherical lune along
one of these normals is given by π

2 C2
e (1 + cos θ` ). The vectors Au

and Av are perpendiculars to these planes in sphere space, so we
can normalize and take their dot product to compute the cos θ` .

Once we know the projected area of the spherical lune, we can ac-
count for the change in area when transforming back to the ellipsoid

3We are fortunate that the projected area can be expressed so simply.
The total surface area of a general ellipsoid has no solution in terms of
elementary functions and is instead expressed in terms of elliptic integrals.



space, and compute the corresponding projected area, in the same
manner as in equation 26 to get:

A⊥

` (u,v) =
π

2
C2

e

(
1 +

Au ·Av
‖Au‖ ‖Av‖

) (
‖ATAu‖
|A| ‖Au‖

) (
(ATAu) ·u
‖ATAu‖

)

=
πC2

e (‖Au‖ ‖Av‖ + Au ·Av)
2 |A| ‖Av‖

(28)

2.4 Conventions for Ce

The ellipsoid size constant Ce appears in many of our intermedi-
ate equations, but not in our final expressions. This is because the
NDF and its related functions are defined using ratios between ar-
eas such that the Ce factors always cancel out. During computations
however, it is often useful to select a particular value for Ce and we
are free to choose any convenient value. One convention we sug-
gest is to pick Ce such that A⊥

e (n) = 1 by inverting equation 26:

Ce =

√
|A|

π ‖An‖
(29)

which conceptually simplifies some of the equations. However
computationally is sometimes cheaper to simply choose:

Ce = 1 (30)

as we do in section 4.

3 Shadowing-masking Approximation

For a rough surface, generally some areas will not be visible from
the lighting direction (i.e. shadowed) and some will not not visi-
ble from the viewing direction (i.e. masked). Ignoring this effect
would result in unrealistic behavior, especially at near-grazing an-
gles. The shadowing-masking term G(ψ,ω,m) is defined as the
fraction of the surface with local normal m that is visible from both
the light ψ and viewing ω directions. Thus it produces values in
the range [0,1]. The exact G function for a surface is highly depen-
dent on its fine-scale details and can be very different even for sur-
faces with the same NDF. In practice the exact G function is almost
always unknown, and most models settle instead for an approxi-
mation that is energy-conserving and has plausible behavior. One
common energy-conserving G is the V-Groove function [Torrance
and Sparrow 1967], however its behavior is atypical of most real
world surfaces, and thus we do not recommend using it. Instead
we use an approximation approach that is often called the Smith
shadowing-masking.

We start with the assumption that the bi-directional shadowing-
masking term G can be well approximated as the separable product
of two mono-directional shadowing terms G1 (see equation 5). We
further approximate G1 as being independent of the local surface
normal m (except for a check to see if it is back-facing with respect
to the relevant direction). Under these approximations, G1 can be
computed using an integral of the NDF [Smith 1967; Walter et al.
2007]. Unfortunately, for the ellipsoid NDF we were not able to di-
rectly solve this integral analytically. As discussed in [Smith 1967;
Heitz 2014], this integral gives exactly the term needed to make the
projected area of the visible (i.e. unshadowed) part of the micro-
surface equal to the projected area of the macro-surface, under the
assumptions above. This provides us with an alternate geometric
way to define G1.

When viewing the surface from direction u, surface locations which
are back-facing (i.e. where u ·m < 0) must necessarily be in shadow
(i.e. G1 = 0 in this case). For the rest of the surface, the visible

projected area constraint for the ellipsoid NDF can be expressed in
terms of the projected area of the ellipsoidal lune as:

A⊥

` (u,n) G1(u) ≤ A⊥

e (n) |u ·n| (31)

where the left-hand side is the visible projected area of the micro-
surface and the right-hand side is the projected area of the corre-
sponding macro-surface (i.e. a flat surface perpendicular to n). Ide-
ally we would like to enforce this as an equality constraint, but for
some parameter settings of the ellipsoid NDF we will settle for the
inequality4, which is still sufficient to ensure energy conservation.
The following expression for G1 satisfies these constraints:

G1(u,m) = min


1,

A⊥
e (n) |u ·n|
A⊥

`
(u,n)


 X+(u ·m) (32)

where the X+() term ensures that back-facing portions of the sur-
face are shadowed and the minimum operation ensures G1 ≤ 1
(visible surface cannot be larger than the total surface). Substituting
equations 26 and 28 into this equation gives the ellipsoid shadowing
term presented in equation 6. �

4 Importance Sampling

Often we know one of the two directions, ψ or ω, and would like
to randomly generate the other direction with a probability based
on the BRDF fr(ψ,ω). This process is referred to as importance
sampling. Ideally the probability would be exactly proportional to
the BRDF (times a cosine factor), but in practice, we generally set-
tle for a function that is only approximately proportional. Because
our BRDFs obey reciprocity (i.e. fr(ψ,ω) = fr(ω,ψ)), we can use
the same method regardless of which of the two directions we are
sampling. Without loss of generality, we will assume here that ψ is
known and we want to randomly sample ω.

The standard method for sampling microfacet BRDFs is to first ran-
domly sample a half direction m, and then use it determine the other
desired direction. The original sampling method for GGX [Wal-
ter et al. 2007] generates half directions with a probability given
by: ph(m) = D(m) |m ·n|. This probability is independent of the
known direction ψ and works best when ψ is close to n. However
for grazing angles, the sampling can sometimes be poor (i.e. ex-
hibit high variance). A better sampling strategy is to choose half
directions with a probability proportional to D(m) |m ·ψ | and such
improved sampling methods are already available for the GGX and
Beckmann NDFs [Heitz and d’Eon 2014]. In this section we de-
velop such a sampling method for the ellipsoid NDF.

Working out the normalization term, since probability density func-
tions must integrate to one, our half angle sampling probability for
the ellipsoid NDF will be:

ph(m) =
A⊥

e (n)
A⊥

`
(ψ,n)

X+(m ·ψ) D(m) |m ·ψ | (33)

By design, this normalization term is closely related to our mono-
directional shadowing term G1. Our ellipsoid importance sampling
can also be used for sampling GGX and GTR2aniso NDFs, since
these can be viewed as special cases of the ellipsoid NDF. In these
cases we achieve similar sampling quality to prior methods [Heitz
and d’Eon 2014], though with a few small advantages that we will
discuss later.

4The inequality is only needed where the NDF is asymmetric, such as
when θx , 0 or θy , 0. In such cases the microsurface projected area can
be smaller than the projected area of the macrosurface for some directions.
To keep G1 physically plausible, we then add a constraint that G1 ≤ 1.



Importance sampling an NDF is conceptually quite easy if we have
an explicit representation for the microsurface, such as our ellip-
soid. We can generate half directions m with the probability above
by shooting random rays at the surface along the known direction ψ
and using the m from the corresponding points they hit on the sur-
face. The computational cost however will vary depending on how
we implement this process. Below we briefly outline three ways to
implement this importance sampling:

Version 1. One way to generate such rays is to randomly sample
points on the silhouette of a bounding volume for the surface. Then
we generate a ray5 passing through that point with direction -ψ.
If the ray intersects the surface (i.e. the ellipsoid) at a valid point
(i.e. inside the lune where m · n ≥ 0 and m · ψ ≥ 0), we use the
corresponding intersection point’s surface normal as m. Otherwise
we “reject” this ray and repeat the process until a valid hit point is
found. Thus this is a form of rejection sampling.

If we use a sphere for the bounding volume, then the silhouette is a
circle whose area can be easily sampled using standard techniques.
The drawback with this version is that the rejection rate may be
quite high and we may have to generate and test many random rays
to create each sample.

Version 2. We can improve the version above by using the el-
lipsoid as its own bounding volume, which will usually be much
tighter than a bounding sphere. To generate random samples on the
ellipsoid’s silhouette, we can use the transformed space from equa-
tion 24. Recall that in this space the ellipsoid becomes a sphere
with radius Ce and that the direction ψ corresponds to the direction
Aψ in this space. We generate a point p⇀◦ by randomly sampling
a point in the circle perpendicular to Aψ and then transform this
back using equation 24 to create a random point on the ellipsoid’s
silhouette. This point plus the direction -ψ defines the random ray,
and then we can proceed as above, testing random rays until we get
a valid point.

Even better, we can project the point onto the sphere along the di-
rection Aψ before transforming back to the ellipsoid space. For a
sphere this is trivial to do analytically, and then we are guaranteed
the point is already on the ellipsoid’s surface, removing the need
for ray intersection testing. However the point may lie outside of
the valid ellipsoidal lune, so we still may need to generate multiple
points before we get a valid one. Thus we still have to use rejection
sampling, but the rejection rate is typically much lower than with
the first version.

Version 3. We can further improve this procedure to get rid of the
need for rejection sampling, by only generating points inside the
valid ellipsoidal lune. In the transformed sphere-space, the ellip-
soidal lune become a spherical lune. The projected area, or silhou-
ette, of a spherical lune is a crescent shape bounded on one side by
a hemi-circle and on the other by a hemi-ellipse. Its area is equal to
an ellipse formed by compressing a circle along one axis by a factor
of 1

2 (1 + cos θ` ) (see Section 2.3). Moreover we can transform this
ellipse to the crescent shape using an area-preserving skew trans-
form. Thus the algorithm proceeds as follows. In sphere space, we
generate a random point on the silhouette circle, then we apply a
2D affine compress-and-skew transform to convert this to a random
point on the crescent. Next we project it along the direction Aψ to
get a point on the sphere, and then transform this into the ellipsoid
space. This is guaranteed to generate a point on the desired ellip-
soidal lune and with the desired probability distribution, and thus
testing and rejection sampling are no longer needed.

5Note these rays are really oriented lines.

4.1 Importance Sampling Procedure

In this section gives a set of equations implementing the sampling
strategy outlined above (version 3). This is divided into 5 steps be-
low (a-e). For this section, we set Ce = 1 to simplify the equations
and assume the determinant of A is positive.

(a) Sample a random point on the unit disk. Let ξ1 and ξ2
be two uniform random numbers in the range [0,1]. Then we can
generate a random point [xa , ya] on the unit radius disk in the XY
plane via:

a = 2ξ1 − 1 (34)
b = 2ξ2 − 1 (35)

xa =

a cos
(
πb
4a

)
if |a | > |b|

b sin
(
πa
4b

)
otherwise

(36)

ya =

a sin
(
πb
4a

)
if |a | > |b|

b cos
(
πa
4b

)
otherwise

(37)

where we have used the concentric mapping [Shirley and Chiu
1997]. To avoid divide-by-zero issues implementations will also
need to check if a and b are both effectively zero (within some
floating point precision) and set xa = ya = 0 in that case. The con-
centric mapping has much lower distortion than alternatives such
as a simple polar mapping. This is beneficial if you are using strat-
ified, quasi-random, blue-noise, or other structured sampling pat-
terns leading to reduced noise and faster convergence. You can use
any uniform-area mapping from the square to disk but we recom-
mend using the concentric mapping.

(b) Compress the disk to a crescent and project to 3D spherical
lune. We are working in a sphere space (i.e. a space where ellipsoid
has been warped to a sphere) and we want to map from the disk
(i.e. the silhouette of a sphere) to a crescent (i.e. the silhouette of
a spherical lune). We can accomplish this by compressing the disk
in x by a factor of s = 1

2 (1 + cos θ` ) and applying a y-dependent
translation to x via:

s =
1
2

(
1 +

Aψ ·An
‖Aψ‖ ‖An‖

)
(38)

xb = sxa + (1 − s)
√

1 − y2
a (39)

yb = ya (40)

zb =
√

1 − x2
b
− y2

b
(41)

where we also selected a z coordinate to project the point from the
2D crescent onto the 3D sphere.

(c) Rotate spherical lune into correct alignment. Next we rotate
the spherical lune to align with the ψ and n directions by construct-
ing appropriate orthonormal basis vectors: e1,e2,e3. We set e3 to
be collinear with Aψ, (i.e. the incident direction in the sphere space)
while setting e1 to be the perpendicular direction closest to An.

e3 =
Aψ
‖Aψ‖

(42)

e2 =
Aψ × An
‖Aψ × An‖

=
A−T(ψ × n)



A−T(ψ × n)




(43)

e1 = e2 × e3 (44)

Note that if ψ and n are collinear then their cross product will be
zero and the construction of e2 above will fail. In this case we



can choose e2 to be any direction perpendicular to e3. Practical
implementations will need to detect this case and handle it (e.g.,
using [Frisvad 2012]).

(d) Map back to ellipsoid to get corresponding micronormal m.

pc = xbe1 + ybe2 + zbe3 (45)

m =
ATpc


ATpc




(46)

where pc is our random point on the spherical lune, Apc would be
the corresponding point on the ellipsoidal lune, and m is its sur-
face normal on the ellipsoid. This procedure generates random half
directions m with our target probability density (equation 33).

(e) Generate outgoing direction ω from m. Now that we have
a sampled half direction, we can follow the standard procedures
for generating the outgoing direction ω by reflecting the incident
direction ψ across m (e.g., see [Walter et al. 2007]).

ω = 2 (ψ ·m) m − ψ (47)

po(ω) =
ph(m)

4 |ψ ·m|
=

A⊥
e (n)

4A⊥

`
(ψ,n)

X+(m ·ψ) D(m) (48)

The corresponding weight for this sampled direction ω is:

weight(ω) =
fr(ψ,ω) |ω ·n|

po(ω)
(49)

=
G1(ψ,m) G1(ω,m) F (ψ ·m)

|ψ ·n|
A⊥

`
(ψ,n)

A⊥
e (n)

(50)

≤ G1(ω,m) F (ψ ·m) (51)
≤ 1 (52)

where we have used the microfacet BRDF (equation 4) along with
our suggested ellipsoid shadowing/masking functions. The first in-
equality is due to the min operation in our definition of G1 (equa-
tion 32). If θx and θy are zero, such as for a GGX or GTR2aniso
NDF, then the min operation is unnecessary and this is actually an
equality. The second inequality follows from the fact that both G1
and F produce values in the range zero to one.

4.2 Reduction to importance sampling GGX

If there is no skew (e.g., θx = 0 and θy = 0) then the ellipsoid NDF
reduces to GGX or its anisotropic extension GTR2aniso, and the
above procedure can be used to importance sample these NDFs. In
this case we have An

‖An‖ = n and weight(ω) = G1(ω,m) F (ψ ·m)
which simplifies some computations, and they can be further sim-
plified if we work in a coordinate system aligned with n and the
principal directions of roughness where A is just a diagonal matrix.

High quality importance sampling of GGX was first described in
[Heitz and d’Eon 2014] using the algebraic approach of solving for
and inverting the related one dimensional cumulative distribution
functions (CDF). While our geometry-based importance sampling
mapping and the prior algebra-based one are different, they both
target the same probability density function (PDF) for m and thus
are mostly equivalent. Our sphere-space transform is essentially
the same as their slope stretching operation except performed in a
different space.

Nevertheless there are a few advantages to our geometry-based im-
portance sampling procedure. In the algebraic approach, one of the
CDFs could not be inverted analytically so a rational approximation
is used instead. This causes a small discrepancy between the target

and actual importance sampling PDFs. In our test there was an av-
erage relative error of 0.4% in the algebra-based method’s sampling
probabilities. This small error is likely insignificant for most graph-
ics applications but could be an issue for applications with higher
accuracy requirements. Our approach does involve any approxima-
tions and thus is more accurate. Also when used with the concentric
mapping as we suggest, our mapping has lower distortion which
is advantageous if used with structured sampling methods (though
if used with a simple polar mapping then our distortion would be
higher than for the algebraic approach).

5 Discussion

5.1 Open Issues

Manufacturability. In order to ensure our microsurface is a height
field, we defined the ellipsoid NDF using the half of an ellipsoid
where m · n ≥ 0. From equation 23, we can see this is equivalent
to slicing the ellipsoid in half by a plane perpendicular to ATAn,
which means that the average surface normal of our microsurface
is ATAn. However when θx or θy are non-zero, then in general
ATAn , n which can be a contradiction since we claimed that n was
the average or large-scale normal of our surface. For rendering, as
long as θx and θy are small the discrepancy is likely not significant,
but if the angles are large or we actually wanted to manufacture
such surfaces, this could be problematic if the discrepancy persists
across larger regions of the surface.

There are many different ways one could modify the NDF to get
the correct the average normal. For example, we could always split
the ellipsoid by a plane perpendicular to n, though in this case the
microsurface would no longer always be a height field. A better al-
ternative might be to add some additional vertical microsurface area
(i.e. where m · n = 0) to the NDF. Essentially a vertical extension
from the cut plane of the ellipsoid back to a plane perpendicular to
n. Since vertical surfaces do not affect A⊥

e (n) and do not generate
valid reflection directions (would reflect light downward into the
wrong hemisphere), only the shadowing-masking term would need
to be modified (at least for reflections, it might not work as well for
refraction). It remains future work to determine if and when this
issue may be significant and what the best remedies may be.

Relation to normal maps. Normal maps are often used to model
meso-scale surface normals that are closely related NDF skew phe-
nomena the ellipsoid NDF is designed to support. And normal
maps can similarly cause a shifting of the maximum of a BRDF
away from the direction of the surface normal. Compared to skewed
NDFs, normal maps have the advantage that they are widely used
and can be applied to any BRDF model, not just microfacet ones.
However they also have some significant disadvantages. Unlike our
skewed NDF model, normal maps often violate energy conserva-
tion, break reciprocity, and can lead to singularities or ill-defined
behavior in some cases (e.g., for directions that are at or below the
horizon of the shading normal). In future, it would be interesting to
perform a more detailed comparison between the skewed NDF and
normal map approaches.

5.2 Relation to the SGGX microflake distribution

The SGGX microflake model [Heitz et al. 2015] was also derived
based on the surface normals of arbitrary 3D ellipsoids. Our devel-
opment of the ellipsoid NDF was conducted independently of and
concurrently with the development of the SGGX model.6 Since

6SGGX was published first but this was after both papers had been sub-
mitted and accepted for publication.



both are based on the same underlying mathematical model, SSGX
and our ellipsoid NDF are closely related with many similarities.
However because they are applied to somewhat different domains
there are several differences between them. SGGX is a 3D volu-
metric scattering model (i.e. a microflake distribution), while our
ellipsoid NDF is a 2D surface scattering model (i.e. a microfacet
distribution).

The SGGX defines its ellipsoids by a symmetric matrix S while
we use a non-symmetric matrix A, however the two are convertible
via the relation S = ATA (and their SGGX matrix S should not
be confused with our scaling matrix S). Normalizing microflake
distributions can be problematic so SGGX shows how to avoid this
issue by combining the scattering coefficient with the volumetric
phase function. Microfacet distributions, however, do need to be
normalized which is why our NDF includes a normalizing term of
‖An‖ in the denominator that is not present in SGGX.

For the volumetric ellipsoid case there is no masking and the shad-
owing is relatively simple. One only needs to ensure the micro-
normal is not back-facing with respect to the incident direction
(e.g., ψ ·m ≥ 0). The situation is more complicated for surface mi-
crofacet distributions because we also have to consider the macro-
surface normal n. This double constraint (e.g., ψ · m ≥ 0 and
n · m ≥ 0) affects both the shadowing/masking and importance
sampling and required us to develop methods for computing and
sampling ellipsoid lunes, which are not needed for SGGX. Con-
versely the SGGX work develops multiple techniques that are not
considered here but that are essential for their volumetric scattering
applications, including projection operators from other distribution,
filtering steps needed for multi-scale computation, and considera-
tion of diffuse scattering cases.

A Revision History

September 2015: Version that appears in the ACM digital library
as supplemental material for paper ”Predicting Surface Appearance
from Measured Microgeometry of Metal Surfaces”.

May 2016: Fixed typo in equation 33 and changed surrounding
text to use m instead of h to be more consistent with the rest of
the text. Significantly expanded section 4 to more clearly describe
the importance sampling procedure and better reference prior work.
Added discussion in section 5.2 of relationship to the concurrent
SGGX work. Other small text changes throughout.
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