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Announcements

N
N

@ If you are on the fence about this class
= Today is a good day (today is Add Deadline)

#Not in CMS?
#4411 Projects must be done Iin pairs

= According to CMS, many of you are not paired
up.

¢

*

Please pair up on CMS
Please meet at the blackboard after class to find a

partner or post on 4411 piazza.
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Threads share memory

Threads have:

» Private registers

» context switching saves and restores registers when
switching from thread to thread

= Shared “global” memory
» global means not stack memory

= Usually private stack
+» pointers into stacks across threads frowned upon

AN




Two threads, one variable

N
L/

Two threads updating a single shared variable "amount”
= One thread wants to decrement amount by $10K

= The other thread wants to decrement amount by 50%

amount = 100,000;

amount = amount - 10,000;

amount = 0.50 * amount;

What happens when two threads execute concurrently?
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Two threads, one variable

N

amount = 100,000;

rl = load from amount
rl = rl-10,000;
store rl to amount

r2 = load from amount
re=0b *r2
store rZ2 to amount

amount= ?

AN




Two threads, one variable

N

amount = 100,000;

r2 = load from amount
rée =05 *r2
store rZ2 to amount

rl = load from amount
rl = rl-10,000:;
store rl to amount

amount= ?

AN




Two threads, one variable

N

amount = 100,000;

rl = load from amount
rl = rl-10,000;
store rl to amount

r2 = load from amount

rée =0b *r2
store rZ2 to amount

amount= ?
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Shared counters

N

# One possible result: everything works!

= although different, either order is correct
4 Another possible result: lost update!

- Wrong

- Difficult to debug

Called a “race condition”
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Race conditions

8
N
@ Definition: timing dependent error involving shared state
s Once thread A starts, it needs to “race” to finish
s Whether RC happens depends on thread schedule

+ different “schedules” or “interleavings’ (total order
on machine instructions)

@ All possible interleavings should be safe

= Correspond to some sequential order of user-defined
“operations” (here: withdraw, pay-taxes, etc.)
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Race conditions...

-
L/

...are hard to detect and debug:
= Number of possible interleavings is huge
= Some interleavings are good
= Some interleavings are bad:
» But bad interleavings may rarely happen!
+» Works 100x # no race condition
= Timing dependent = small changes can hide bug
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Example: races with queues

-
L/

@2 concurrent enqueue() operations?
@2 concurrent dequeue() operations?

i

TAIL HEAD

What could possibly go wrong?

11
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Critical Section

-
L/

Code that can be executed by only one
thread at a time

Time ? Tl ?TZ

CSEnter(); CSEnter();
Critical section Critical section
CSExit(); CSExit();

? T1 ?TZ

12
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Critical Section

~N

Perhaps the threads loop (perhaps not!)

? T1 ?TZ

CSEnter(); CSEnter();
Critical section Critical section
CSExit(); CSExit();

? T1 ?TZ

13
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Critical Section Goals

~N

@ We would like

= Safety: No more than one thread can be in a
critical section at any time

m Liveness: A thread that is seeking to enter the
critical section will eventually succeed

m Fairness: If two threads are both trying to enter
a critical section, they have equal chances of
success

@ ... in practice, fairness is rarely guaranteed

14
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Too much milk problem

“@ Two roommates want to ensure that the fridge is
always stocked with milk

» If the fridge is empty = need to restock it
= But they don’t want to buy too much milk

# Caveats

= Can only communicate by reading and writing onto a
notepad on the fridge

= Notepad can have different cells, labeled by a string
(just like variables)

@ Write the pseudo-code to ensure that at most one
roommate goes to buy milk

1
> 1
N\




Solving the problem

N
L/

A first idea: no protection

if fridge_empty():
buy_milk()

— Is this Safe? Live? Fair?

if fridge_empty():
buy_milk()

16
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Solving the problem

N,
A second idea:
= Have a boolean flag, out-to-buy-milk. Initially false.

while(outtobuymilk) while(outtobuymilk)
do_nothing(): do_nothing();

if fridge_empty(): if fridge_empty():
outtobuymilk :=true outtobuymilk :=true
buy_milk() buy_milk()
outtobuymilk := false outtobuymilk := false

— Is this Safe? Live? Fair?

17
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Solving the problem

A third idea:
= Have two boolean flags, one for each roommate.
Initially false.
greenbusy := true redbusy := true
if not redbusy and if not greenbusy and
fridge_empty(): fridge_empty():
buy_milk() buy_milk()
greenbusy := false redbusy := false

— Is this Safe? Live? Fair?

18
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Solving the problem

N

A fourth idea:

= Have two boolean flags, one for each roommate.
Initially false. Asymmetric

greenbusy = frue redbusy = true

while redbusy: if not greenbusy and
do_nothing() fridge_empty():

if fridge_empty(): buy_milk()
buy_milk() redbusy = false

greenbusy = false

— Is this Safe? Live? Fair?

19
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Solving the problem

N

A fourth idea:

= Have two boolean flags, one for each roommate.
Initially false. Asymmetric

greenbusy = frue redbusy = true

while redbusy: if not greenbusy and
do_nothing() fridge_empty():

if fridge_empty(): buy_milk()
buy_milk() redbusy = false

greenbusy = false

— Really complicated, even for a simple example, hard to
ascertain that it is correct

— Asymmetric code, hard to generalize, unfair 20
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Solving the problem, really

“ The final attempt (Peterson’s solution):
= Adding another binary variable: turn: { red, green }

greenbusy := true redbusy := true

turn := red turn := green

while redbusy and while greenbusy and

turn == red: turn == green:

do_nothing() do_nothing()

if fridge_empty(): if fridge_empty():
buy_milk() buy_milk()

greenbusy := false redbusy := false

— Really complicated, even for a simple example, hard to
ascertain that it is correct

— Hard to generalize, inefficient, ... 21
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Hardware Solution

-
L/

@ Use more powerful hardware primitives to
provide a mutual exclusion primitive

@ Typically relies on a multi-cycle bus operation
that atomically reads and updates a memory
location

#® Example Conceptual Spec of Test-And-Set:

ATOMIC int TestAndSet(int *var) {
int oldVal := *var;
*var = 1;
return oldVal;

}

22
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Buying Milk Solved with TAS

-
L/

Shared variable: int outtobuymilk, initially O

while(TAS(&outtobuymilk) == 1)  while(TAS(&outtobuymilk) == 1)

do_nothing(); do_nothing();
if fridge_empty(): if fridge_empty():
buy._milk() buy._milk()

outtobuymilk := O outtobuymilk := O

23
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Spinlocks

N

spinlock_acquire(int *lock) {
while(test_and_set(lock) == 1)
/* do nothing */;
}

spinlock_release(int *lock) {
*lock = O;
}

24
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Buying Milk with Spinlock

N

Shared spinlock: int outtobuymilk, initially O

spinlock_acquire(&outtobuymilk); spinlock_acquire(&outtobuymilk);

if fridge_empty(): if fridge_empty():
buy_milk() buy_milk()
spinlock_release(outtobuymilk):  spinlock_release(outtobuymilk);

25

AN




Spinlock Issues

N

@ Participants not in critical section must spin
- wasting CPU cycles

= Replace the “do nothing” loop with a “yield()” ?
Processes would still be scheduled and descheduled

@ Need better primitive:

= allows one process to pass through
= all others to sleep until they can be executed again

26
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Semaph()re Dijkstra 1962

~N

Y . . .
# Non-negative integer with atomic increment and decrement
s S := new Semaphore(initial_value) // must initialize!

# Can only be modified by:

s P(S): decrement or block if already 0
= V(S): increment and wake up waiting thread if any

m No interface to read the value

# These operations have the following semantics

P(S){ V(S){
while(S == 0) S +=1;
; }
S-=1;

27
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Semaphore implementation
for true parallelism

N struct Sema { int lock = O; int count; };
N P(Sema *s) {
for ever
if (test_and_set(&s->lock) == 0) {
if (s->count > Q) break;
else s->lock := O; // OUCH --- busy waiting until count > O
}
s->count -= 1;
s->lock := O;
}

V(Sema *s){
while (test_and_set(&s->lock) == 1)
/* do nothing */;
s->count += 1;
s->lock := O;

28
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Semaphore implementation for

non-preemptive threading
N struct Sema { Queue waitQ; int count; };

P(Sema *s) {
if (s->count > 0) s->count -= 1;
else {
s->waitQ.eng(curThread);
thread_stop(): // sets status to WAITING and runs another thread
// continues here after thread is restarted using thread_start()

}
V(Sema *s){
if (s->waitQ.empty()) s->count += 1
else {
assert(s->count == 0);
Thread t = s->waitQ.deq();

thread_start(t); // sets status to RUNNABLE
} can be made to work for pre-emptive threading on a
} uniprocessor by disabling interrupts 29
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Binary Semaphore

~N

/<> Semaphore value is either 0 or 1

= Used for mutual exclusion (sema as a more efficient lock)
= Initially 1 in that case:

semaphore S

S.init(1);
Thread1(): Thread2():
P(S): P(S):;
CriticalSection(); CriticalSection();
V(S); V(S);
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Counting Semaphores

~N

|/
4 Sema count can be any integer

s Used for signaling, or counting resources

m Typically: one thread performs P() to wait for event, another
thread performs V() to alert waiting thread that an event occurred

semaphore packetarrived
packetarrived.init(0);

PacketProcessor(): NetworkingThread():
x = retrieve_packet_from_card(): P(packetarrived);
enqueue(packetq, x); x = dequeue(packetq);
V(packetarrived); print_contents(x);

31
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Classical Synchronization
Problems

32
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Bounded Buffer

-
L/

@2+ threads communicate with some
threads producing data that others
consume

® Example: compiler preprocessor produces
a source file that compiler’s parser
consumes

33
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Producer-Consumer Problem

-
L/

# Imagine an unbounded (infinite) buffer
@ Producer process writes data to buffer
s Writes to In and moves rightwards

@ Consumer process reads data from buffer
= Reads from Out and moves rightwards

= Should not try to consume if there is no data

Out In

Need an infinite buffer

34
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Producer-Consumer Problem

-
L/

¢ Bounded buffer: size N

m Access entry 0... N-1, then “wrap around” to 0 again

@ Producer process writes data to buffer

m Don’t write more than N “un-eaten” items!

@ Consumer process reads data from buffer

s Don’t consume if there is no data!

In Out

35
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Producer-Consumer Code, vl

N int array[N];
g int in, out;
void produce (int item) { int consume() {
// add item to buffer // remove item
array[in] = item; int item = array[out];
int+; < [X = (x +1)%N op ————— OUT++;
} wrap-around inc. return item;
of your choice] }
Problems:

« Consumer could consume when nothing is therel!
 Producer could overwrite not-yet-consumed data!

36
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Solving with semaphores

~N

‘Use of 2 Semaphores offers a clean & simple solution

nFilled: keeps track of buffer entries in use;, ensures
consumer only consumes when something is there

= initialized to O,
= incremented by producer
= decremented by consumer

nEmpty: keeps track of empty buffer entries; ensures
producer only produces when there is room in the buffer

= initialized to N
= decremented by producer
= incremented by consumer

37
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Producer-Consumer Code, v2

e

Shared: Semaphores nEmpty , nFilled; int array[N];
Init: nEmpty = N; /* # empty buffer entries */ int in, out;
nFilled =0; /* # full buffer entries */

void produce (int item) { int consume() {
P(nEmpty):; // verify room for item P(nFilled); // verify item there
// add item to buffer // remove item
array[in] = item; int item = array[out];
in++; out++;
V(nFilled); // "new iteml!” V(nEmpty); // "more room!”
} return item;
}

38
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Does v2 work?

N
Y .
Observation:
s Producer & consumer each have own indices (in,out)
s Semaphores prevent concurrent reading/writing of same buffer entry

- Works! But only if there is only 1 producer and 1 consumer

What if there are multiple producers or consumers?
= Multiple threads using and modifying in & out
m Particularly bad if a thread gets interrupted...

produce: consume:
// add it to buffer // remove item
array[in] = item; int item = array[out];
here _Tn++; or here _gu’r++:
39
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Mutex

-
L/

€ Mutex: implemented using a Binary semaphore that is
initialized to 1
® Provides mutual exclusion to the critical section of code

produce: consume:
P(mutex_p); P(mutex_c);
// add it to buffer // remove item
array[in] = item; int item = array[out];
in++: out++;
V(mutex_p); V(mutex_c):

Intuition: effectively makes these 2 lines of code atomic.
40

AN




Producer-Consumer Code, v3

-
N

Shared: Semaphores mutex_p , mutex_c , nEmpty , nFilled| int array[N];
Init: mutex_p =1, /* for mutual exclusion */ int in, out;

mutex_c =1;
nEmpty =N; /* # empty buffer entries */
nFilled =0; /* # full buffer entries */

int consume() {
P(nFilled); // verify item there
P(mutex_c);

void produce (int item) {
P(nEmpty); // verify room for item
P(mutex_p):
// add item to buffer
array[in] = item;

// remove item

int item = array[out];
out++;

V(mutex_c);

in++;
V(mutex_p):
V(nFilled); // "new item!”

Ill

V(nEmpty). // "more room

} return item;

AN




Busy Waiting considered Harmful

N
N

mutex = Semaphore(1) & This solution works, but it loops

continuously until there is an item
in the buffer

for ever: # This wasted valuable CPU cycles
P(mutex) # In this case, you need a
if buffer is empty: semaphore for waiting and
signalin
V(mutex) J J

4 You may also need a mutex

confinue semaphore for updating the
get item from buffer buffer
V(mutex)

process item

42
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Producer-Consumer Applications

~N

/© Applications:

s Data from bar-code reader consumed by device driver

m File data: computer - printer spooler = line printer device driver
s Web server produces data consumed by client’s web browser

@ Example: "“pipe” (| ) in Unix
> cat file | sort | unig | more

> prog | sort

4 Thought questions:
= where’s the bounded buffer?

= how “big” should the buffer be, in an ideal world?

43
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Readers and Writers

-
L/

# In this problem, threads share data that some
threads “read” and other threads “write”

@ Goal:

= Allow:
» multiple concurrent readers
+ only a single writer at a time
s Constraint: if a writer is active, readers must wait

44
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Readers-Writers Problem

N
\/
# Courtois et al 1971

# Models access to a database

= Reader: thread that looks at the database, but won't change it
= Writer: thread that modifies the database

¢ Example: making an airline reservation

n When you browse to look at flight schedules the web site is acting
as a reader on your behalf

m When you reserve a seat, the web site has to write into the
database to make the reservation

45
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Readers-Writers Problem

8
“@ N threads share 1 object in memory

= Some write: 1 writer active at a time

= Some read: n readers active simultaneously
@ Insight: generalizes the critical section concept

@ Need to clarify:
= Writer is active & a combo of readers/writers show up:
Who should get in next?
s Writer is waiting & endless of stream of readers comes.
Fair for them to become active?
# For now: back-and-forth turn-taking:
= If @ reader is waiting, readers get in next
= If @ writer is waiting, one writer gets in next

46
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Readers-Writers

N

mutex = Semaphore(1)

wrl = Semaphore(1)

rcount = O;

write() {

}

wrl.P();
/*perform write */

wrl.V();

read () {

mutex.P();

rcount++;

if (rcount == 1)
wrl.P();

mutex.V();

/* perform read */

mutex.P();

rcount--;

if (rcount == 0)
wrl.V();

mutex.V();

47
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Readers-Writers Notes

-
L/

& If there is a writer
= First reader blocks on wrl
s Other readers block on mutex

# Once a reader is active, all readers get to go through
= Which reader gets in first?

# The last reader to exit signals a writer
= If no writer, then readers can continue

# If readers and writers waiting on wrl, and writer exits
= Who gets to go in first?

® Why doesn't a writer need to use mutex?

48
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Does this work as we hoped?

~N

/
#® When readers active = no writer can enter
s Writers wait @ P(wrl)
#® When writer is active - nobody can enter
= Any other reader or writer will wait (where?)

@ Back-and-forth isn't so fair:
= Any number of readers can enter in a row
s Readers can “starve” writers

# A fair back-and-forth solution with semaphores is
really tricky!
= Tryit! (don't spend too much time...)

49
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Process I
P(S)

CS

P(S)

Process j
V(S)

CS

V(S)

Process k
P(S)
CS

Common programming errors

50

AN



More common mistakes

8
/
# Conditional code that can change

code flow in the critical section P(S)

# Usual causes: code updates (bug if(somethin +h
fixes, added functionality) by 't(something or other)
someone other than the original return;
author of the code cS

V(S)

51
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N

Language Support for
Concurrency

52




Revisiting semaphores!

N
N
@ Semaphores are “low-level” primitives
= Small errors:
- Easily bring system to grinding halt
- Very difficult to debug

€ Two usage models:
= Mutual exclusion: the “real” abstraction is a critical section

= Communication: threads use semaphores to communicate (e.g.,
bounded buffer example)

III

@ Simplification: Provide concurrency support in compiler
- Enter Monitors

53
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Monitors

~N

Y
4 Hoare 1974
# Abstract Data Type for handling/defining shared resources
# Comprises:

» Shared Private Data
» The resource
+ Cannot be accessed from outside

s Procedures that operate on the data
+ (Gateway to the resource

+ Can only act on data local to the monitor

= Synchronization primitives
+ Among threads that access the procedures

54
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Monitor Semantics

N
L/

4 Monitors guarantee mutual exclusion

= Only one thread can execute monitor procedure at any time
+ “in the monitor”

55
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Structure of a Monitor

{

Monitor monitor_name

// shared variable declarations

procedure P1(....) {

}
procedure P2(. .. .){

}
|;>r'ocedur'e PN(....){

}

initialization_code(. .. .){

For example:

Monitor stack

{

}

int top;
void push(any_t *) {

}
any_t * pop() {

}

initialization_code() {

Only one operation can

execute at a time

56
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Condition Variables

NV,
4 Monitors can define Condition Variables:
m Condition x;
= Provides a mechanism to wait for events
+ Example events: resources available, any writers, ...
# 3 operations on Condition Variables

= x.wait(): release monitor lock, sleep until woken up (or you wake up
on your own)

= x.signal (): wake at least one process waiting on condition (if there is
one)

+ No history associated with signal
= x.broadcast(): wake all processes waiting on condition
» Useful for resource manager

57
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Using Condition Variables

D
# To wait for some condition:

while not some_predicate():

CV.wait()

a this releases the monitor lock and allows another
thread to enter

= as CV.wait() returns, lock is automatically reacquired
® When the condition becomes satisfied:

CV.broadcast(): wakes up all threads
or CV.signal(): wakes up at least one

58
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Types of wait queues

.
/
€ Monitors have two kinds of “wait” queues

= Entry to the monitor (“the lobby”): has a queue of threads waiting
to obtain mutual exclusion so they can enter

= Condition variables (“the bedrooms”): each condition variable has
a queue of threads waiting on the associated condition

request
lock

bathroom wait ‘ bedroom

Y

'y .
A\ l wait ‘ bedroom
- release lock
wait ‘ bedroom
59
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Condition Variables # Semaphores

-
N
@ Access to monitor is controlled by a lock
= Wait: blocks thread and gives up the monitor lock
+ To call wait, thread has to be in monitor, hence the lock
+ Semaphore P() blocks thread only if value less than 0O
= Signal: causes waiting thread to wake up
+ If there is no waiting thread, the signal is lost

+ V() increments value, so future threads need not wait on P()
» Condition variables have no history!

@ However they can be used to implement each other

60
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Hoare vs. Mesa Semantics

-
L/

# Hoare Semantics: monitor lock is transferred directly from
the signaling thread to the newly woken up thread

= But it is typically not desirable to force the signaling thread to relinquish
the monitor lock immediately to a woken up thread

= Confounds scheduling with synchronization, penalizes threads

® Mesa Semantics: Every real system simply puts a woken up
thread on the monitor entry queue (“the lobby”), but does not
immediately run that thread, or transfer the monitor lock

61
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Language Support

-
L/

4 Can be embedded in programming language:

Synchronization code added by compiler, enforced at runtime
Mesa/Cedar from Xerox PARC

Java: synchronized, wait, notify, notifyall

C#: lock, wait (with timeouts) , pulse, pulseall

Python: acquire, release, wait, notify, notifyAll

# Monitors easier and safer than semaphores

Compiler can check

Lock acquire and release are implicit and cannot be forgotten

62
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N

Monitor Solutions to Classical
Problems

63
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A Simple Monitor

N
N

Monitor EventTracker {
int numburgers = O;
condition hungrycustomer:;

void customerenter() {

while (numburgers == 0)
hungrycustomer.wait()

numburgers -= 1

}

void produceburger() {
++numburger;
hungrycustomer.signal():

}

# Because condition variables lack
state, all state must be kept in
the monitor

# The condition for which the
threads are waiting is necessarily
made explicit in the code

€ numburgers > 0

# Hoare vs. Mesa semantics

#® What happens if there are lots
of customers?

64
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int numburgers = 0;
condition hungrycustomer;

N

void customerenter() { ~ void produceburger() {
while (humburgers == 0) ++numburger:
hungrycustomer.wait() hungrycustomer.signal();
numburgers -= 1 printf().
} }

lock = \‘Q\‘\m\\m&\\

hungrycustomer

# release lock

(o))

5
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Producer Consumer using Monitors

-
%

Monitor Producer_Consumer { char consume() {
char buf[SIZE]; while(n == 0)
int n=0, tail =0, head = 0; wait(not_empty):;
condition not_empty, not_full; ch = buf[tail % SIZE];
tail++;
void produce(char ch) { n--;
while(n == SIZE) notify(not_full);
wait(not_full); return ch;
buf[head%SIZE] = ch; }
head++;
N+ What if no thread is waiting when notify() called?

notify(not_empty); Then signalis a “no-op”. Very different from

} calling V() on a semaphore — semaphores

remember how many times V() was called!
66
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~N

Readers and Writers

Monitor ReadersNWriters

int WaitingWriters = 0, WaitingReaders = 0, NReaders = 0, NWriters = 0;

Condition CanRead, CanWrite;

void BeginWrite()
assert NReaders == 0 or NWriters ==
++Waiting\Writers;
while NWriters > 0 or NReaders >0
CanWrite.wait()
--WaitingWriters;
NWriters = 1;

void EndWrite()
assert NWriters == 1 and NReaders ==
NWriters := 0;
if WaitingWriters > 0
CanWrite.signal();
else if WaitingReaders > 0
CanRead.broadcast();

void BeginRead()
assert NReaders == 0 or NWriters == 0;
++WaitingReaders;
while NWriters > 0 or WaitingWriters > 0
CanRead.wait();
--WaitingReaders;
++NReaders;

void EndRead()
assert NReaders > 0 and NWriters == 0;
--NReaders;
if NReaders == 0 and WaitingWriters > 0
CanWrite.signal();

68
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Understanding the Solution

N
L/

@ A writer can enter if there is no other active
writer and no readers are waiting

#® A reader can enter if there is no active
writer and no writers are waiting

69
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Understanding the Solution

>
®When a writer finishes, it checks to see if
any readers are waiting
m If so, it lets all of them enter

s If not, and there is a writer waiting, it lets one
of them enter

#®When the last reader finishes, it lets a
writer in (if any is there)

70
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Understanding the Solution

@It wants to be fair
s If a writer is waiting, readers queue up

m If a reader (or another writer) is active or
waiting, writers queue up

= ... this is mostly fair, although once it lets a
reader in, it lets ALL waiting readers in all at
once, even if some showed up “after” other
waiting writers

/1
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Subtle aspects?

D

# Condition variables force the actual conditions
that a thread is waiting for to be made explicit in
the code

s The comparison preceding the “wait()" call concisely
specifies what the thread is waiting for

# The fact that condition variables themselves have
no state forces the monitor to explicitly keep the
state that is important for synchronization

= This is a good thing

72
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Barbershop Problem

-
L/

#0ne possible version:
= A barbershop holds up to k clients
= N barbers work on clients
= M clients total want their hair cut

m Each client will have their hair cut by the first
barber available

73
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Implementing the Barbershop

~N

(1) Identify the waits

m Customers?
s Barbers?

(2) Create condition variables for each
(3) Create counters to trigger the waiting
(4) Create signals for the waits

74
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Barrier Synchronization

N

Important synchronization
primitive in high-performance
parallel programs

nThreads threads divvy up
work and run rounds of
computations separated by
barriers

Implementing barriersis not
easy. The solution to the right
uses a “double-turnstile”.

Can you see why a single
“turnstile” would not work?

def barrier():
assert nLeaving == 0 and nArrived < nThreads
nArrived++
if nArrived == nThreads:
nLeaving = nThreads
cond1.broadcast()
else:
while nArrived < nThreads:
cond1.wait()

assert nArrived == nThreads and nLeaving > 0

nLeaving--
if nLeaving == O:
nArrived =0

cond2.broadcast()

else:
while nLeaving > 0:
cond2.wait()
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Mapping to Real Languages

N
N
class RWilock: def readAcquire(self):
def __init__ (self): with self.lock:
self.lock = Lock() self.nWaitingReaders += 1
self.readCond = Condition(self.lock) while self.nWaitingWriters > 0 or self.nActiveWriters > 0:
self.writeCond = Condition(self.lock) self.readCond.wait()
self.nActiveReaders = 0 self.nWaitingReaders -= 1
self.nActiveWriters = 0 self.nActiveReaders +=1
self.nWaitingReaders = 0
self.nWaitingWriters = 0 def readRelease(self):
with self.lock:
self.nActiveReaders -= 1
signal() == notify() if self.nActiveReaders == 0 and self.nWaitingWriters > 0:
broadcast) == notifyAll() self.writeCond.notify()

= Python monitors are simulated by explicitly allocating a
lock and acquiring and releasing it (with the “with”
statement) when necessary

= More flexible than Hoare’s approach 6

AN



To conclude

N,
# Race conditions are a pain!
# We studied several ways to handle them
= Each has its own pros and cons
# Support in Python, Java, C# has simplified writing multithreaded

applications

= Java and C# support at most one condition variable per object, so are slightly
more limited

# Some new program analysis tools automate checking to make sure
your code is using synchronization correctly

= The hard part for these is to figure out what “correct” means!
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