Synchronization

Prof. Bracy and Van Renesse
CS 4410
Cornell University

based on slides designed by Prof. Sirer

AN

Announcements

N
N

@ If you are on the fence about this class
= Today is a good day (today is Add Deadline)

#Not in CMS?
#4411 Projects must be done Iin pairs

= According to CMS, many of you are not paired
up.

¢

*

Please pair up on CMS
Please meet at the blackboard after class to find a

partner or post on 4411 piazza.

AN

Threads share memory

Threads have:

» Private registers

» context switching saves and restores registers when
switching from thread to thread

= Shared “global” memory
» global means not stack memory

= Usually private stack
+» pointers into stacks across threads frowned upon

AN

Two threads, one variable

N
L/

Two threads updating a single shared variable "amount”
= One thread wants to decrement amount by $10K

= The other thread wants to decrement amount by 50%

amount = 100,000;

amount = amount - 10,000;

amount = 0.50 * amount;

What happens when two threads execute concurrently?

AN

Two threads, one variable

N

amount = 100,000;

rl = load from amount
rl = rl-10,000;
store rl to amount

r2 = load from amount
re=0b *r2
store rZ2 to amount

amount= ?

AN

Two threads, one variable

N

amount = 100,000;

r2 = load from amount
rée =05 *r2
store rZ2 to amount

rl = load from amount
rl = rl-10,000:;
store rl to amount

amount= ?

AN

Two threads, one variable

N

amount = 100,000;

rl = load from amount
rl = rl-10,000;
store rl to amount

r2 = load from amount

rée =0b *r2
store rZ2 to amount

amount= ?

AN

Shared counters

N

One possible result: everything works!

= although different, either order is correct
4 Another possible result: lost update!

- Wrong

- Difficult to debug

Called a “race condition”

AN

Race conditions

8
N
@ Definition: timing dependent error involving shared state
s Once thread A starts, it needs to “race” to finish
s Whether RC happens depends on thread schedule

+ different “schedules” or “interleavings’ (total order
on machine instructions)

@ All possible interleavings should be safe

= Correspond to some sequential order of user-defined
“operations” (here: withdraw, pay-taxes, etc.)

AN

Race conditions...

-
L/

...are hard to detect and debug:
= Number of possible interleavings is huge
= Some interleavings are good
= Some interleavings are bad:
» But bad interleavings may rarely happen!
+» Works 100x # no race condition
= Timing dependent = small changes can hide bug

10

AN

Example: races with queues

-
L/

@2 concurrent enqueue() operations?
@2 concurrent dequeue() operations?

i

TAIL HEAD

What could possibly go wrong?

11

AN

Critical Section

-
L/

Code that can be executed by only one
thread at a time

Time ? Tl ?TZ

CSEnter(); CSEnter();
Critical section Critical section
CSExit(); CSExit();

? T1 ?TZ

12

AN

Critical Section

~N

Perhaps the threads loop (perhaps not!)

? T1 ?TZ

CSEnter(); CSEnter();
Critical section Critical section
CSExit(); CSExit();

? T1 ?TZ

13

AN

Critical Section Goals

~N

@ We would like

= Safety: No more than one thread can be in a
critical section at any time

m Liveness: A thread that is seeking to enter the
critical section will eventually succeed

m Fairness: If two threads are both trying to enter
a critical section, they have equal chances of
success

@ ... in practice, fairness is rarely guaranteed

14

AN

Too much milk problem

“@ Two roommates want to ensure that the fridge is
always stocked with milk

» If the fridge is empty = need to restock it
= But they don’t want to buy too much milk

Caveats

= Can only communicate by reading and writing onto a
notepad on the fridge

= Notepad can have different cells, labeled by a string
(just like variables)

@ Write the pseudo-code to ensure that at most one
roommate goes to buy milk

1
> 1
N\

Solving the problem

N
L/

A first idea: no protection

if fridge_empty():
buy_milk()

— Is this Safe? Live? Fair?

if fridge_empty():
buy_milk()

16

AN

Solving the problem

N,
A second idea:
= Have a boolean flag, out-to-buy-milk. Initially false.

while(outtobuymilk) while(outtobuymilk)
do_nothing(): do_nothing();

if fridge_empty(): if fridge_empty():
outtobuymilk :=true outtobuymilk :=true
buy_milk() buy_milk()
outtobuymilk := false outtobuymilk := false

— Is this Safe? Live? Fair?

17

AN

Solving the problem

A third idea:
= Have two boolean flags, one for each roommate.
Initially false.
greenbusy := true redbusy := true
if not redbusy and if not greenbusy and
fridge_empty(): fridge_empty():
buy_milk() buy_milk()
greenbusy := false redbusy := false

— Is this Safe? Live? Fair?

18

AN

Solving the problem

N

A fourth idea:

= Have two boolean flags, one for each roommate.
Initially false. Asymmetric

greenbusy = frue redbusy = true

while redbusy: if not greenbusy and
do_nothing() fridge_empty():

if fridge_empty(): buy_milk()
buy_milk() redbusy = false

greenbusy = false

— Is this Safe? Live? Fair?

19

AN

Solving the problem

N

A fourth idea:

= Have two boolean flags, one for each roommate.
Initially false. Asymmetric

greenbusy = frue redbusy = true

while redbusy: if not greenbusy and
do_nothing() fridge_empty():

if fridge_empty(): buy_milk()
buy_milk() redbusy = false

greenbusy = false

— Really complicated, even for a simple example, hard to
ascertain that it is correct

— Asymmetric code, hard to generalize, unfair 20

AN

Solving the problem, really

“ The final attempt (Peterson’s solution):
= Adding another binary variable: turn: { red, green }

greenbusy := true redbusy := true

turn := red turn := green

while redbusy and while greenbusy and

turn == red: turn == green:

do_nothing() do_nothing()

if fridge_empty(): if fridge_empty():
buy_milk() buy_milk()

greenbusy := false redbusy := false

— Really complicated, even for a simple example, hard to
ascertain that it is correct

— Hard to generalize, inefficient, ... 21

AN

Hardware Solution

-
L/

@ Use more powerful hardware primitives to
provide a mutual exclusion primitive

@ Typically relies on a multi-cycle bus operation
that atomically reads and updates a memory
location

#® Example Conceptual Spec of Test-And-Set:

ATOMIC int TestAndSet(int *var) {
int oldVal := *var;
*var = 1;
return oldVal;

}

22

AN

Buying Milk Solved with TAS

-
L/

Shared variable: int outtobuymilk, initially O

while(TAS(&outtobuymilk) == 1) while(TAS(&outtobuymilk) == 1)

do_nothing(); do_nothing();
if fridge_empty(): if fridge_empty():
buy._milk() buy._milk()

outtobuymilk := O outtobuymilk := O

23

AN

Spinlocks

N

spinlock_acquire(int *lock) {
while(test_and_set(lock) == 1)
/* do nothing */;
}

spinlock_release(int *lock) {
*lock = O;
}

24

AN

Buying Milk with Spinlock

N

Shared spinlock: int outtobuymilk, initially O

spinlock_acquire(&outtobuymilk); spinlock_acquire(&outtobuymilk);

if fridge_empty(): if fridge_empty():
buy_milk() buy_milk()
spinlock_release(outtobuymilk): spinlock_release(outtobuymilk);

25

AN

Spinlock Issues

N

@ Participants not in critical section must spin
- wasting CPU cycles

= Replace the “do nothing” loop with a “yield()” ?
Processes would still be scheduled and descheduled

@ Need better primitive:

= allows one process to pass through
= all others to sleep until they can be executed again

26

AN

Semaph()re Dijkstra 1962

~N

Y . . .
Non-negative integer with atomic increment and decrement
s S := new Semaphore(initial_value) // must initialize!

Can only be modified by:

s P(S): decrement or block if already 0
= V(S): increment and wake up waiting thread if any

m No interface to read the value

These operations have the following semantics

P(S){ V(S){
while(S == 0) S +=1;
; }
S-=1;

27

AN

Semaphore implementation
for true parallelism

N struct Sema { int lock = O; int count; };
N P(Sema *s) {
for ever
if (test_and_set(&s->lock) == 0) {
if (s->count > Q) break;
else s->lock := O; // OUCH --- busy waiting until count > O
}
s->count -= 1;
s->lock := O;
}

V(Sema *s){
while (test_and_set(&s->lock) == 1)
/* do nothing */;
s->count += 1;
s->lock := O;

28

AN

Semaphore implementation for

non-preemptive threading
N struct Sema { Queue waitQ; int count; };

P(Sema *s) {
if (s->count > 0) s->count -= 1;
else {
s->waitQ.eng(curThread);
thread_stop(): // sets status to WAITING and runs another thread
// continues here after thread is restarted using thread_start()

}
V(Sema *s){
if (s->waitQ.empty()) s->count += 1
else {
assert(s->count == 0);
Thread t = s->waitQ.deq();

thread_start(t); // sets status to RUNNABLE
} can be made to work for pre-emptive threading on a
} uniprocessor by disabling interrupts 29

AN

Binary Semaphore

~N

/<> Semaphore value is either 0 or 1

= Used for mutual exclusion (sema as a more efficient lock)
= Initially 1 in that case:

semaphore S

S.init(1);
Thread1(): Thread2():
P(S): P(S):;
CriticalSection(); CriticalSection();
V(S); V(S);

AN

Counting Semaphores

~N

|/
4 Sema count can be any integer

s Used for signaling, or counting resources

m Typically: one thread performs P() to wait for event, another
thread performs V() to alert waiting thread that an event occurred

semaphore packetarrived
packetarrived.init(0);

PacketProcessor(): NetworkingThread():
x = retrieve_packet_from_card(): P(packetarrived);
enqueue(packetq, x); x = dequeue(packetq);
V(packetarrived); print_contents(x);

31

AN

N

Classical Synchronization
Problems

32

AN

Bounded Buffer

-
L/

@2+ threads communicate with some
threads producing data that others
consume

® Example: compiler preprocessor produces
a source file that compiler’s parser
consumes

33

AN

Producer-Consumer Problem

-
L/

Imagine an unbounded (infinite) buffer
@ Producer process writes data to buffer
s Writes to In and moves rightwards

@ Consumer process reads data from buffer
= Reads from Out and moves rightwards

= Should not try to consume if there is no data

Out In

Need an infinite buffer

34

AN

Producer-Consumer Problem

-
L/

¢ Bounded buffer: size N

m Access entry 0... N-1, then “wrap around” to 0 again

@ Producer process writes data to buffer

m Don’t write more than N “un-eaten” items!

@ Consumer process reads data from buffer

s Don’t consume if there is no data!

In Out

35

AN

Producer-Consumer Code, vl

N int array[N];
g int in, out;
void produce (int item) { int consume() {
// add item to buffer // remove item
array[in] = item; int item = array[out];
int+; < [X = (x +1)%N op ————— OUT++;
} wrap-around inc. return item;
of your choice] }
Problems:

« Consumer could consume when nothing is therel!
 Producer could overwrite not-yet-consumed data!

36

AN

Solving with semaphores

~N

‘Use of 2 Semaphores offers a clean & simple solution

nFilled: keeps track of buffer entries in use;, ensures
consumer only consumes when something is there

= initialized to O,
= incremented by producer
= decremented by consumer

nEmpty: keeps track of empty buffer entries; ensures
producer only produces when there is room in the buffer

= initialized to N
= decremented by producer
= incremented by consumer

37

AN

Producer-Consumer Code, v2

e

Shared: Semaphores nEmpty , nFilled; int array[N];
Init: nEmpty = N; /* # empty buffer entries */ int in, out;
nFilled =0; /* # full buffer entries */

void produce (int item) { int consume() {
P(nEmpty):; // verify room for item P(nFilled); // verify item there
// add item to buffer // remove item
array[in] = item; int item = array[out];
in++; out++;
V(nFilled); // "new iteml!” V(nEmpty); // "more room!”
} return item;
}

38

AN

Does v2 work?

N
Y .
Observation:
s Producer & consumer each have own indices (in,out)
s Semaphores prevent concurrent reading/writing of same buffer entry

- Works! But only if there is only 1 producer and 1 consumer

What if there are multiple producers or consumers?
= Multiple threads using and modifying in & out
m Particularly bad if a thread gets interrupted...

produce: consume:
// add it to buffer // remove item
array[in] = item; int item = array[out];
here _Tn++; or here _gu’r++:
39
(1,
1/

Mutex

-
L/

€ Mutex: implemented using a Binary semaphore that is
initialized to 1
® Provides mutual exclusion to the critical section of code

produce: consume:
P(mutex_p); P(mutex_c);
// add it to buffer // remove item
array[in] = item; int item = array[out];
in++: out++;
V(mutex_p); V(mutex_c):

Intuition: effectively makes these 2 lines of code atomic.
40

AN

Producer-Consumer Code, v3

-
N

Shared: Semaphores mutex_p , mutex_c , nEmpty , nFilled| int array[N];
Init: mutex_p =1, /* for mutual exclusion */ int in, out;

mutex_c =1;
nEmpty =N; /* # empty buffer entries */
nFilled =0; /* # full buffer entries */

int consume() {
P(nFilled); // verify item there
P(mutex_c);

void produce (int item) {
P(nEmpty); // verify room for item
P(mutex_p):
// add item to buffer
array[in] = item;

// remove item

int item = array[out];
out++;

V(mutex_c);

in++;
V(mutex_p):
V(nFilled); // "new item!”

Ill

V(nEmpty). // "more room

} return item;

AN

Busy Waiting considered Harmful

N
N

mutex = Semaphore(1) & This solution works, but it loops

continuously until there is an item
in the buffer

for ever: # This wasted valuable CPU cycles
P(mutex) # In this case, you need a
if buffer is empty: semaphore for waiting and
signalin
V(mutex) J J

4 You may also need a mutex

confinue semaphore for updating the
get item from buffer buffer
V(mutex)

process item

42

AN

Producer-Consumer Applications

~N

/© Applications:

s Data from bar-code reader consumed by device driver

m File data: computer - printer spooler = line printer device driver
s Web server produces data consumed by client’s web browser

@ Example: "“pipe” (|) in Unix
> cat file | sort | unig | more

> prog | sort

4 Thought questions:
= where’s the bounded buffer?

= how “big” should the buffer be, in an ideal world?

43

AN

Readers and Writers

-
L/

In this problem, threads share data that some
threads “read” and other threads “write”

@ Goal:

= Allow:
» multiple concurrent readers
+ only a single writer at a time
s Constraint: if a writer is active, readers must wait

44

AN

Readers-Writers Problem

N
\/
Courtois et al 1971

Models access to a database

= Reader: thread that looks at the database, but won't change it
= Writer: thread that modifies the database

¢ Example: making an airline reservation

n When you browse to look at flight schedules the web site is acting
as a reader on your behalf

m When you reserve a seat, the web site has to write into the
database to make the reservation

45

AN

Readers-Writers Problem

8
“@ N threads share 1 object in memory

= Some write: 1 writer active at a time

= Some read: n readers active simultaneously
@ Insight: generalizes the critical section concept

@ Need to clarify:
= Writer is active & a combo of readers/writers show up:
Who should get in next?
s Writer is waiting & endless of stream of readers comes.
Fair for them to become active?
For now: back-and-forth turn-taking:
= If @ reader is waiting, readers get in next
= If @ writer is waiting, one writer gets in next

46

AN

Readers-Writers

N

mutex = Semaphore(1)

wrl = Semaphore(1)

rcount = O;

write() {

}

wrl.P();
/*perform write */

wrl.V();

read () {

mutex.P();

rcount++;

if (rcount == 1)
wrl.P();

mutex.V();

/* perform read */

mutex.P();

rcount--;

if (rcount == 0)
wrl.V();

mutex.V();

47

AN

Readers-Writers Notes

-
L/

& If there is a writer
= First reader blocks on wrl
s Other readers block on mutex

Once a reader is active, all readers get to go through
= Which reader gets in first?

The last reader to exit signals a writer
= If no writer, then readers can continue

If readers and writers waiting on wrl, and writer exits
= Who gets to go in first?

® Why doesn't a writer need to use mutex?

48

AN

Does this work as we hoped?

~N

/
#® When readers active = no writer can enter
s Writers wait @ P(wrl)
#® When writer is active - nobody can enter
= Any other reader or writer will wait (where?)

@ Back-and-forth isn't so fair:
= Any number of readers can enter in a row
s Readers can “starve” writers

A fair back-and-forth solution with semaphores is
really tricky!
= Tryit! (don't spend too much time...)

49

AN

N

Process I
P(S)

CS

P(S)

Process j
V(S)

CS

V(S)

Process k
P(S)
CS

Common programming errors

50

AN

More common mistakes

8
/
Conditional code that can change

code flow in the critical section P(S)

Usual causes: code updates (bug if(somethin +h
fixes, added functionality) by 't(something or other)
someone other than the original return;
author of the code cS

V(S)

51

AN

N

Language Support for
Concurrency

52

Revisiting semaphores!

N
N
@ Semaphores are “low-level” primitives
= Small errors:
- Easily bring system to grinding halt
- Very difficult to debug

€ Two usage models:
= Mutual exclusion: the “real” abstraction is a critical section

= Communication: threads use semaphores to communicate (e.g.,
bounded buffer example)

III

@ Simplification: Provide concurrency support in compiler
- Enter Monitors

53

AN

Monitors

~N

Y
4 Hoare 1974
Abstract Data Type for handling/defining shared resources
Comprises:

» Shared Private Data
» The resource
+ Cannot be accessed from outside

s Procedures that operate on the data
+ (Gateway to the resource

+ Can only act on data local to the monitor

= Synchronization primitives
+ Among threads that access the procedures

54

AN

Monitor Semantics

N
L/

4 Monitors guarantee mutual exclusion

= Only one thread can execute monitor procedure at any time
+ “in the monitor”

55

AN

Structure of a Monitor

{

Monitor monitor_name

// shared variable declarations

procedure P1(....) {

}
procedure P2(. .. .){

}
|;>r'ocedur'e PN(....){

}

initialization_code(. .. .){

For example:

Monitor stack

{

}

int top;
void push(any_t *) {

}
any_t * pop() {

}

initialization_code() {

Only one operation can

execute at a time

56

AN

Condition Variables

NV,
4 Monitors can define Condition Variables:
m Condition x;
= Provides a mechanism to wait for events
+ Example events: resources available, any writers, ...
3 operations on Condition Variables

= x.wait(): release monitor lock, sleep until woken up (or you wake up
on your own)

= x.signal (): wake at least one process waiting on condition (if there is
one)

+ No history associated with signal
= x.broadcast(): wake all processes waiting on condition
» Useful for resource manager

57

AN

Using Condition Variables

D
To wait for some condition:

while not some_predicate():

CV.wait()

a this releases the monitor lock and allows another
thread to enter

= as CV.wait() returns, lock is automatically reacquired
® When the condition becomes satisfied:

CV.broadcast(): wakes up all threads
or CV.signal(): wakes up at least one

58

AN

Types of wait queues

.
/
€ Monitors have two kinds of “wait” queues

= Entry to the monitor (“the lobby”): has a queue of threads waiting
to obtain mutual exclusion so they can enter

= Condition variables (“the bedrooms”): each condition variable has
a queue of threads waiting on the associated condition

request
lock

bathroom wait ‘ bedroom

Y

'y .
A\ l wait ‘ bedroom
- release lock
wait ‘ bedroom
59

AN

Condition Variables # Semaphores

-
N
@ Access to monitor is controlled by a lock
= Wait: blocks thread and gives up the monitor lock
+ To call wait, thread has to be in monitor, hence the lock
+ Semaphore P() blocks thread only if value less than 0O
= Signal: causes waiting thread to wake up
+ If there is no waiting thread, the signal is lost

+ V() increments value, so future threads need not wait on P()
» Condition variables have no history!

@ However they can be used to implement each other

60

AN

Hoare vs. Mesa Semantics

-
L/

Hoare Semantics: monitor lock is transferred directly from
the signaling thread to the newly woken up thread

= But it is typically not desirable to force the signaling thread to relinquish
the monitor lock immediately to a woken up thread

= Confounds scheduling with synchronization, penalizes threads

® Mesa Semantics: Every real system simply puts a woken up
thread on the monitor entry queue (“the lobby”), but does not
immediately run that thread, or transfer the monitor lock

61

AN

Language Support

-
L/

4 Can be embedded in programming language:

Synchronization code added by compiler, enforced at runtime
Mesa/Cedar from Xerox PARC

Java: synchronized, wait, notify, notifyall

C#: lock, wait (with timeouts) , pulse, pulseall

Python: acquire, release, wait, notify, notifyAll

Monitors easier and safer than semaphores

Compiler can check

Lock acquire and release are implicit and cannot be forgotten

62

AN

N

Monitor Solutions to Classical
Problems

63

AN

A Simple Monitor

N
N

Monitor EventTracker {
int numburgers = O;
condition hungrycustomer:;

void customerenter() {

while (numburgers == 0)
hungrycustomer.wait()

numburgers -= 1

}

void produceburger() {
++numburger;
hungrycustomer.signal():

}

Because condition variables lack
state, all state must be kept in
the monitor

The condition for which the
threads are waiting is necessarily
made explicit in the code

€ numburgers > 0

Hoare vs. Mesa semantics

#® What happens if there are lots
of customers?

64

AN

int numburgers = 0;
condition hungrycustomer;

N

void customerenter() { ~ void produceburger() {
while (humburgers == 0) ++numburger:
hungrycustomer.wait() hungrycustomer.signal();
numburgers -= 1 printf().
} }

lock = \‘Q\‘\m\\m&\\

hungrycustomer

release lock

(o))

5

AN

Producer Consumer using Monitors

-
%

Monitor Producer_Consumer { char consume() {
char buf[SIZE]; while(n == 0)
int n=0, tail =0, head = 0; wait(not_empty):;
condition not_empty, not_full; ch = buf[tail % SIZE];
tail++;
void produce(char ch) { n--;
while(n == SIZE) notify(not_full);
wait(not_full); return ch;
buf[head%SIZE] = ch; }
head++;
N+ What if no thread is waiting when notify() called?

notify(not_empty); Then signalis a “no-op”. Very different from

} calling V() on a semaphore — semaphores

remember how many times V() was called!
66

1,
J

~N

Readers and Writers

Monitor ReadersNWriters

int WaitingWriters = 0, WaitingReaders = 0, NReaders = 0, NWriters = 0;

Condition CanRead, CanWrite;

void BeginWrite()
assert NReaders == 0 or NWriters ==
++Waiting\Writers;
while NWriters > 0 or NReaders >0
CanWrite.wait()
--WaitingWriters;
NWriters = 1;

void EndWrite()
assert NWriters == 1 and NReaders ==
NWriters := 0;
if WaitingWriters > 0
CanWrite.signal();
else if WaitingReaders > 0
CanRead.broadcast();

void BeginRead()
assert NReaders == 0 or NWriters == 0;
++WaitingReaders;
while NWriters > 0 or WaitingWriters > 0
CanRead.wait();
--WaitingReaders;
++NReaders;

void EndRead()
assert NReaders > 0 and NWriters == 0;
--NReaders;
if NReaders == 0 and WaitingWriters > 0
CanWrite.signal();

68

AN

Understanding the Solution

N
L/

@ A writer can enter if there is no other active
writer and no readers are waiting

#® A reader can enter if there is no active
writer and no writers are waiting

69

AN

Understanding the Solution

>
®When a writer finishes, it checks to see if
any readers are waiting
m If so, it lets all of them enter

s If not, and there is a writer waiting, it lets one
of them enter

#®When the last reader finishes, it lets a
writer in (if any is there)

70

AN

Understanding the Solution

@It wants to be fair
s If a writer is waiting, readers queue up

m If a reader (or another writer) is active or
waiting, writers queue up

= ... this is mostly fair, although once it lets a
reader in, it lets ALL waiting readers in all at
once, even if some showed up “after” other
waiting writers

/1

AN

Subtle aspects?

D

Condition variables force the actual conditions
that a thread is waiting for to be made explicit in
the code

s The comparison preceding the “wait()" call concisely
specifies what the thread is waiting for

The fact that condition variables themselves have
no state forces the monitor to explicitly keep the
state that is important for synchronization

= This is a good thing

72

AN

Barbershop Problem

-
L/

#0ne possible version:
= A barbershop holds up to k clients
= N barbers work on clients
= M clients total want their hair cut

m Each client will have their hair cut by the first
barber available

73

AN

Implementing the Barbershop

~N

(1) Identify the waits

m Customers?
s Barbers?

(2) Create condition variables for each
(3) Create counters to trigger the waiting
(4) Create signals for the waits

74

AN

Barrier Synchronization

N

Important synchronization
primitive in high-performance
parallel programs

nThreads threads divvy up
work and run rounds of
computations separated by
barriers

Implementing barriersis not
easy. The solution to the right
uses a “double-turnstile”.

Can you see why a single
“turnstile” would not work?

def barrier():
assert nLeaving == 0 and nArrived < nThreads
nArrived++
if nArrived == nThreads:
nLeaving = nThreads
cond1.broadcast()
else:
while nArrived < nThreads:
cond1.wait()

assert nArrived == nThreads and nLeaving > 0

nLeaving--
if nLeaving == O:
nArrived =0

cond2.broadcast()

else:
while nLeaving > 0:
cond2.wait()

75

AN

Mapping to Real Languages

N
N
class RWilock: def readAcquire(self):
def __init__ (self): with self.lock:
self.lock = Lock() self.nWaitingReaders += 1
self.readCond = Condition(self.lock) while self.nWaitingWriters > 0 or self.nActiveWriters > 0:
self.writeCond = Condition(self.lock) self.readCond.wait()
self.nActiveReaders = 0 self.nWaitingReaders -= 1
self.nActiveWriters = 0 self.nActiveReaders +=1
self.nWaitingReaders = 0
self.nWaitingWriters = 0 def readRelease(self):
with self.lock:
self.nActiveReaders -= 1
signal() == notify() if self.nActiveReaders == 0 and self.nWaitingWriters > 0:
broadcast) == notifyAll() self.writeCond.notify()

= Python monitors are simulated by explicitly allocating a
lock and acquiring and releasing it (with the “with”
statement) when necessary

= More flexible than Hoare’s approach 6

AN

To conclude

N,
Race conditions are a pain!
We studied several ways to handle them
= Each has its own pros and cons
Support in Python, Java, C# has simplified writing multithreaded

applications

= Java and C# support at most one condition variable per object, so are slightly
more limited

Some new program analysis tools automate checking to make sure
your code is using synchronization correctly

= The hard part for these is to figure out what “correct” means!

77

AN

