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Introduction & overview

"ones

From Boolean to intuitionistic & quantum logic Plan, overall & today

both logic & probability,

via indexed categories e This is part of an ongoing research project aiming at an
A axiomatisation of categorical quantum logic
o For the wider picture, see
Effect Algebras & toposes www.cs.ru.nl/B.Jacobs/TALKS/quantum-logic-6up.pdf
Effect Modules via subobject logic . . .
AJ ¢ e Today: focus on the basic part: predicates and instruments
allow partial v T | o predicates form an effect algebra (or module)

e they arise as maps of the foom X — 141

Quantum logic \
Orthomodular lattice Heyting algebra o we show both examples and the general construction
e and also their relation to states

drop distribum drop double negation e instruments do the associated measurement operation
keep double negation Boolean keep distributivity e measurement options and side-effects are made explicit
logic/algebra o useful for guarded commands and dynamic logic
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e Sets, the category of sets and functions Effect algebras axiomatise the unit interval [0, 1] with its (partial!)

o K{(D), the Kleisli category of the distribution monad D addition + and “negation” x 1 —x.

* additionally KX(G), for the Giry monad G A Partial Commutative Monoid (PCM) consists of a set M with
zero 0 € M and partial operation @: M x M — M, which is

e Opposite categories Rng®? or Quant®? or DistLat®?, of rings, cuitably commutative and associative
quantales, distributive lattices 0 y L < defined ’
ne writes x It x @ y Is defined.

o (Cstaryp)°P with of C*-algebras, and variations Y Y

o completely positive maps, W*-algebras, subunital maps An effect algebra is a PCM in which each element x has a unique

e the crucial, but trivial mental steps are: ‘orthosuplement’ x* with x @ x* =1 (= 0+)
® not to use Hilbert spaces, but C*-algebras Additionally, x L 1 = x = 0 must hold.
® to work in the opposite category . . . i
® to use unital positive (UP) maps instead of *-homomorphisms There is then a partial order, via x < y iff y = x @ z, for some z.
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Homomorphisms of effect algebras

A homomorphism of effect algebras f: X — Y satisfies:
o f(1)=1
e if x L x’ then both f(x) L f(x’) and f(x @ x") = f(x) @ f(x').

This yields a category EA of effect algebras.

Example:

o A probability measure yields a map Xx — [0,1] in EA.
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Naturality of partiality

George Boole in 1854 thought of disjunction as a partial operation

AN INVESTIGATION
“Now those laws have been de-
termined from the study of in-
stances, in all of which it has
g e been a necessary condition, that
THE MATUEHATICAL THEORIES OF LOGIO the classes or thingS added to-
- s gether in thought should be mutu-
ally exclusive. The expression x+y
. seems indeed uninterpretable, un-
DONEE ROOLR 1D less it be assumed that the things
- represented by x and the things
represented by y are entirely sep-
LoNDON arate; that they embrace no indi-
£ viduals in common.” (p.66)

THE LAWS OF THOUGHT,
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Effect modules

Effect modules are effect algebras with a scalar multiplication, with
scalars not from R or C, but from [0, 1].
(Or more generally from an “effect monoid”, ie. effect algebra with multiplication)

An effect module M is a effect algebra with an action
[0,1] x M — M that is a “bihomomorphism”

A map of effect modules is a map of effect algebras that commutes
with scalar multiplication.

We get a category EMod — EA.
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In a category with final object 1 and coproducts + Predicate examples: Boolean & fuzzy logic

Effect modules, main examples

Probabilistic examples
e Fuzzy predicates [0, 1]X on a set X, with scalar multiplication

r-p def Ax € X.r-p(x).

o Measurable predicates Hom(X, [0, 1]), for a measurable space
X, with the same scalar multiplication.

Quantum examples
o Effects E(H) on a Hilbert space: operators A: H — H
satisfying 0 < A </, with scalar multiplication (r, A) — rA.
o Effects in a C*-algebra A: positive elements below the unit:
0,1]a={acA|0<a<1}.

This one covers the previous three illustrations.
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e Anntestisamap X - n-1=1+.--+41
e a predicate is a 2-test, ie. amap X - 1+4+1=2
e notation: Pred(X) = Hom(X,?2)

o We get some logical structure for free:

1=(1%1+1) 0=(1%1+1) pi:(xi1+1m—é““>]1+1)

Then pt+ =p, 0+ =1, 1t =0.

e Predicates 1 — 1+ 1 on 1 will be called scalars
o they carry a monoid structure p- g = [p, k2] © q
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e In Sets, maps X — 1+ 1 = 2 correspond to subsets of X
e an n-test X — n-1 = n corresponds to a disjoint cover of X

e In the Kleisli category K¢(D), for a set X,
Kleisli map X ——2
function X —=D(2) = [0,1]

fuzzy predicate in [0, 1]X

o Similarly, in K¢(G) predicates on a measurable space X are

o measurable (fuzzy) functions X — [0, 1]
e i.e. [0,1]-valued random/stochastic variables

The scalars in Sets are {0, 1}, and in K{(D), K{(G) they are [0,1].
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Predicates in distributive lattices

e We work in the opposite category DistLatP
e more about this opposite later

e 1 and + in DistLat®? are initial and product in DistLat
o What is the initial distributive lattice? 2 = {0, 1}

e For a distributive lattice L we get bijective correspondences:
L—=1+1 in DistLat®P

2x2——=1|[ in DistLat

complementable elements x € L

where: x is complementable if there is a (necessarily unique)
x' € LwithxAx ' =0and xVx' =1

o f:2x2— L gives x =f(1,0) and x" = £(0,1)

o these complementable elements form a Boolean sublattice
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Predicates in rings, continued

inaring R is

Predicates in rings

e We play the same game in Rng®® — with rings having a unit
o the initial ring is: Z
e We now have correspondences, for a ring R,
R—>1+1 in Rng?
7Zx7Z—R in Rng

idempotents r € R
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Aside: tests and the Pierce decomposition

@ an effect algebra
® a Boolean algebra, in case R is commutative

(2) is well-known, (1) is new.

In Pred(R) one has:
erlsiffrs=0=sr,andinthatcase: r@s=r+s
e orthocomplement r- =1—r
o r < s iff rs =r = sr, with 0 bottom and 1 top.

We get functors: Rng CRng

Predi \LPred
EA<——BA
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Predicates in

ales (with unit)

e An n-test R — n-1in Rng® corresponds to:

e a ring homomorphism f: Z" — R
e nidempotents e; = f(|/)) € R with e; +---+ e, =1 and
e,vej:Oforiyéj.

e Such an n-test is an essential ingredient of the Pierce
decomposition of the ring R.

R = EB,-J eiRe;
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Cx-algebras (with un

e The same game in Quant®? yields:
o predicates are idempotents with complements
o they form an effect algebra again

o We get a similar diagram:
Quant <— CQuant

Pred\L \LPred
EA<—BA
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The complex numbers C are initial in Cstaryp, so final in
(Cstaryp)°P. Hence, 1+1=Ca C = C?, so:

A—>2 in (Cstaryp)°P
C2——=A

effect in [0,1]a C A

in Cstaryp

This A+ [0,1]4 is a full&faithful functor Cstaryp — EMod.
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Why all these opposite categories? The underlying result

In non-deterministic program semantics there are bijective

correspondences: Proposition

X ——=P(Y) Assuming coproducts in B are “nice"”,
P(X) —=P(Y) V-preserving @ each Pred(X) is an effect module over the scalars Pred(1)
P(Y) ‘(TP(X) /\-preserving @ this yields a functor (or “indexed category”)
wp(s
Pred

_ fred op
The opposite (—)°P arises when we look at maps as predicate = EMod

transformers, working backwards.
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States States and validity examples

e In Sets, states are elements (and predicates subsets), and:
= e {0,1
A state on object X isa map w: 1 — X. x=p P(x) {0.1}
Write Stat(X) = Hom(1, X). e In K((D), states are distributions ¢ € D(X), and:
For a predicate p: X — 1 + 1 define the validity probability via an
eEp = Y p(x)-e(x) € [0,1]

abstract version of the Born rule:
X

def
wEp = pow:l—1+41
e In KU(G), states are probability measures ¢ € G(X), and:

bp = /pcw(x) € 0,1]

Lemma Stat(X) is a convex sets, closed under convex sums with

scalars adding to 1. e In (Cstaryp)°P, states are positive unital maps A — C, and:

wikEp = wlp) € [0,1]
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We read maps in B in the following manner If B has nice coproducts, there is a state-and-effect triangle:
states w:l— X Hom( M)
programs  f: X — Y (EMody)°P ConvM
predicates q: Y —1+4+1 Hom M) where M = Pred(1)
Hom(—,141)=Pred Stat=Hom(1,—) = Stat(2)
Each f: X — Y yields two “transformer” maps:
state transformer f. = f o (—): Stat(X) — Stat(Y) .- . S
{ predicate transformer f* = (—) o f = wp(f): Pred(Y) — Pred(X) Validity = yields two natural transformations:

EMod,,)°P Convy
There is the "Galois”" equation for the validity probability

(f@Eaq) = (WEf@) = 15Xy 2141). Hm(w(h /4@6« M)
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Tests and instruments

We also require:

For each n-test p: X = n-1=1+ .-+ 1 there is an instrument
instrp: X = n- X =X+ ---+ X in B satisfying:

P

X - n-1
n-!

n-X

satisfying some “coherence” conditions.

instrp X

These instruments capture both:
o the different outcome options, via the coproducts X +---+ X
o the side-effect (aka. observer effect) of a test p is:
instrp V=[id,...,id]
X— X+ X———>X
If this map is the identity, we call p side-effect free.

Jacobs 13 June 2014 Quantum Predicates and Instruments

Instruments Radboud University Nijmegen :

Jacobs 13 June 2014

Instruments: examples

e An n-test in Sets consists of disjoint subsets P; C X that
cover X, and gives instr,: X — n- X by:

instrp(x) = kix iff x € P
e An n-test in K/(D) consists of n predicates p;: X — [0, 1]
that sum to 1, so we get map instr,: X — D(n- X) by:
instrp(x) = p1(x)k1x + - - + pp(x)knx
e In KU(G) we get instr,: X — G(n- X), with for M € ¥,
instrp(x)(kiM) = p(x)(i) - Tm(x)
® An n-test in a C*-algebra A consist of effects e; € [0,1]4

summing to 1, and gives instrs: A — n- A in (Cstaryp)°P
instrz: A" — A in Cstaryp, with:

instrs(xt, - Xn) = V1 X1 Ve + -+ Ve X+ /e

, SO
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Side-effect freeness

o Tests/predicates are side-effect-free in
o Sets
e in K{(D) and KU(G)
e in commutative C*-algebras

e In fact, one can prove: a C*-algebra is commutative iff all its
effects are side-effect-free.
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Quantum instruments

e Instruments X — X + .- 4+ X distinguish
o different outcomes, via coproduct options
o side-effects (aka. observer effect)
e The notion of instrument goes back to
o Davies & Lewis, An Operational Approach to Quantum
Probability, CMP 1970
o Ozawa, Quantum measuring processes of continuous
observables, JMP 1984
o See also: Heinosaari & Zimon book, 2012

o We give a categorical formalisation of discrete instruments
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Conclusions

Final remarks

e (*-algebraically, an instrument on A is a measurable-
set-indexed collection of subunital completely positive maps:

(a--4)
Mex
such that:

o fom = Z, fu,, for a pairwise disjoint collection M; € X
e fx is unital, where X is the underlying space of ¥ C P(X).

e Here: instrz: A" — Avia instrg(a1,...,an) = Y ;\/€ - ai - /&
o take the discrete measurable space n, with £ = P(n)
o define for M € X, the map fyy: A— A by:

fu(a) = ZieM\/&Tf' a-\/e

o the additivity condition holds by construction
e and: f(1) = instre(1) =3, e =1
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Effect algebras/modules arise naturally
e not only in examples: fuzzy predicates, idempotents in a ring,
effects in C*-algebras
e but also from basic categorical structure

o States-and-effect triangles capture basics of program

semantics
e duality between state- and predicate-transformations

o Axiomatisation of (categorical) gantum logic is well underway,
via several basic assumptions (paper soon finished)

e A corresponding calculus of types, terms and formulas has
been developed by Robin Adams (QPL'14)
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