

Main examples

Effect algebras, definition

- Sets, the category of sets and functions
- Kl(D), the Kleisli category of the distribution monad D
 additionally Kl(G), for the Giry monad G
- Opposite categories Rng^{op} or Quant^{op} or DistLat^{op}, of rings, quantales, distributive lattices
- $(Cstar_{\rm UP})^{\rm op}$ with of *C**-algebras, and variations
 - completely positive maps, W^* -algebras, subunital maps
 - the crucial, but trivial mental steps are:
 - not to use Hilbert spaces, but C^* -algebras
 - to work in the opposite category
 - to use unital positive (UP) maps instead of *-homomorphisms

Effect algebras axiomatise the unit interval [0, 1] with its (partial!) addition + and "negation" $x \mapsto 1 - x$.

A Partial Commutative Monoid (PCM) consists of a set M with zero $0 \in M$ and partial operation $\odot: M \times M \to M$, which is suitably commutative and associative.

One writes $x \perp y$ if $x \odot y$ is defined.

An effect algebra is a PCM in which each element x has a unique 'orthosuplement' x^{\perp} with $x \otimes x^{\perp} = 1$ ($= 0^{\perp}$) Additionally, $x \perp 1 \Rightarrow x = 0$ must hold.

There is then a partial order, via $x \le y$ iff $y = x \otimes z$, for some z.

Quantum examples

- Effects $\mathcal{E}(H)$ on a Hilbert space: operators $A: H \to H$ satisfying 0 < A < I, with scalar multiplication $(r, A) \mapsto rA$.
- Effects in a C*-algebra A: positive elements below the unit: $[0,1]_A = \{a \in A \mid 0 < a < 1\}.$

This one covers the previous three illustrations.

Jacobs	13 June 2014	Quantum Predicates and Instruments		Jacobs	13 June 2014	Quantum Predicates and Instruments	
	Introduction & overview Predicates Instruments Conclusions	Radboud University Nijmege	n 💮		Introduction & overview Predicates Instruments Conclusions	Radboud University Nijmeger	Ŵ
In a categor	<mark>y with final obj</mark> e	ct 1 and coproducts $+$	Predicate examples: Boolean & fuzzy logic				

• An *n*-test is a map $X \rightarrow n \cdot 1 = 1 + \cdots + 1$

 $[0,1] \times M \to M$ that is a "bihomomorphism"

with scalar multiplication.

We get a category **EMod** \hookrightarrow **EA**.

- a predicate is a 2-test, ie. a map $X \rightarrow 1 + 1 = 2$ • notation: Pred(X) = Hom(X, 2)
- We get some logical structure for free:

$$1 = (1 \stackrel{\kappa_1}{\Rightarrow} 1 + 1) \quad 0 = (1 \stackrel{\kappa_2}{\Rightarrow} 1 + 1) \quad p^{\perp} = (X \stackrel{p}{\Rightarrow} 1 + 1 \stackrel{[\kappa_2, \kappa_1]}{\cong} 1 + 1)$$

A map of effect modules is a map of effect algebras that commutes

Then $p^{\perp \perp} = p, 0^{\perp} = 1, 1^{\perp} = 0.$

• Predicates $1 \rightarrow 1 + 1$ on 1 will be called scalars • they carry a monoid structure $p \cdot q = [p, \kappa_2] \circ q$

- In **Sets**, maps $X \rightarrow 1 + 1 = 2$ correspond to subsets of X • an *n*-test $X \to n \cdot 1 = n$ corresponds to a disjoint cover of X
- In the Kleisli category $\mathcal{K}\ell(\mathcal{D})$, for a set X,

Kleisli map
$$X \longrightarrow 2$$

function $X \longrightarrow \mathcal{D}(2) = [0, 1]$

- fuzzy predicate in $[0,1]^X$
- Similarly, in $\mathcal{K}\ell(\mathcal{G})$ predicates on a measurable space X are • measurable (fuzzy) functions $X \rightarrow [0, 1]$
 - i.e. [0, 1]-valued random/stochastic variables

The scalars in **Sets** are $\{0,1\}$, and in $\mathcal{K}\ell(\mathcal{D}), \mathcal{K}\ell(\mathcal{G})$ they are [0,1].

13 June 2014 Quantum Predicates and Instruments 25 / 34 Jacobs 13 June 2014 Quantum Predicates and Instruments 26 / 34

Jacobs	15 Julie 2014	Qualitum redicates and instruments	30/34	340003	15 Julie 2014	Qualitum redicates and instruments	51/54
	Introduction & overview Predicates Instruments Conclusions	Radboud University Nijmeger	1		Introduction & overview Predicates Instruments Conclusions	Radboud University Nijmegen	٢
The Davies/Lewis and Ozawa formulation				Final remarks			

 C*-algebraically, an instrument on A is a measurableset-indexed collection of subunital completely positive maps:

$$\left(A \xrightarrow{f_M} A\right)_{M \in \Sigma}$$

such that:

- f_{QiMi} = Σ_i f_{Mi}, for a pairwise disjoint collection M_i ∈ Σ
 f_X is unital, where X is the underlying space of Σ ⊆ P(X).
- Here: $instr_{\vec{e}}: A^n \to A$ via $instr_{\vec{e}}(a_1, \ldots, a_n) = \sum_i \sqrt{e_i} \cdot a_i \cdot \sqrt{e_i}$
 - take the discrete measurable space n, with $\Sigma = \mathcal{P}(n)$
 - define for $M \in \Sigma$, the map $f_M : A \to A$ by:

$$f_M(a) = \sum_{i \in M} \sqrt{e_i} \cdot a \cdot \sqrt{e_i}$$

- the additivity condition holds by construction
- and: $f_n(1) = instr_{\vec{e}}(1) = \sum_i e_i = 1$.

- Effect algebras/modules arise naturally
 - · not only in examples: fuzzy predicates, idempotents in a ring, effects in C^* -algebras
 - · but also from basic categorical structure
- States-and-effect triangles capture basics of program semantics
 - duality between state- and predicate-transformations
- Axiomatisation of (categorical) gantum logic is well underway. via several basic assumptions (paper soon finished)
- A corresponding calculus of types, terms and formulas has been developed by Robin Adams (QPL'14)