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Abstract— This position paper addresses the distributed eval-
uation of join operations across a heterogeneous network. We
first argue that distributed joins arise naturally in a variety
of networked applications. We then discuss the key challenges
involved in the distribution, namely how to partition the join
operator and how to place the resulting partitions on the
network, in order to minimize output latencies. We then sketch
solution strategies that leverage information about input value
distributions and network characteristics. We conclude with some
implementation issues and open problems.

I. I NTRODUCTION

Many emerging distributed systems applications need data
routing or indexing functionality at the application layer. In
particular, a common requirement of many applications is
that of establishingrendezvous points, specific network points
where portions of application functionality can be locally
executed. Such rendezvous points are used to “match” data
and/or queries injected from different network locations.

Consider the following application scenarios:

• In many data-centric sensor networks applications (e.g.,
distributed storage [17] and indexing [12]), lookup opera-
tions or query requests can be answered without flooding,
if both sensor data and the requests are routed to the same
rendezvous locations.

• In massively multiplayer online games (MMORPGs),
a publish/subscribe model can be effectively used to
perform distributed state management, whereby each
player receives only the events that fall into her “area-
of-interest” that refers to the portion of the virtual game
world with which the player can interact. For example, in
most current games, the virtual world is statically divided
into a set of zones with players receiving all events in
their current zone. An alternative more efficient approach
is to adjust the zones dynamically, primarily based on
the players’ virtual locations. In either case, each player
need only interact with servers that maintain the relevant
zone(s).

We argue that the distributed matching functionality re-
quired by these applications can be generalized and abstracted
as a distributed join operation that takes inputs from the read
and write stages of the application pipeline. For instance, in
the publish/subscribe scenario, profiles represent stored state
in the system, enabling continuous matching against events
as they arrive. Under the relational model, this matching of
events and profiles can be considered as a join of the “events”
relation and the “subscriptions” relation. The key benefit of the

join abstraction in this context is that this operation can be op-
timized by leveraging application semantics, encapsulated as a
variety of statistics such as input rates, data-value frequencies,
etc.

In this paper, we introduce a framework for the continuous
evaluation of a join operator in a highly-distributed manner.
Our primary optimization criterion is the delay of an output
tuple, produced by a successful match on two input tuples.
We leverage two key characteristics in our study –network
locality anddata locality. Here network locality refers to the
proximity among the network locations of the input sources.
Data locality refers to the similarity among the data sources in
terms of the input values produced, and the frequency at which
these values are produced. The latter also captures temporal
properties of the inputs, such as the synchronicities of the input
values.

We initially describe a placement primitive, needed for any
deployment algorithm. This primitive tackles the basic issue
of where to place a single join operator on the network. The
first question we pose for a broader deployment is “how
do we determine a parallelization (orpartitioning) of the
join operator, to support distributed evaluation?” We outline
a solution strategy considering data locality in probabilistic
value distributions for each input source. Our second question
is “how should we place these partitions of our join operator
at network sites to optimize on tuple latency?” We address this
issue with a join replication mechanism that utilizes our basic
placement primitive. We replicate considering network locality
in source locations, in conjunction with the semantic behaviour
of sources, to construct a tree of join operator replicas. In
short, our solution strives to reflect trends in each data source’s
value distribution, as corresponding trends in the networked
execution of the join operator.

Figure 1 depicts an overview of these challenges and our
proposal. Our networked join operates on a partitioned data
space, evaluating each partition on a structured operator replica
graph. We perform content-based routing to deliver tuples from
our data sources to these operator replicas. Throughout this
process, we attempt to structure our deployment to rapidly
output any successful join of input tuples.

To the best of our knowledge, no present day system
considers the combination of network and data locality in
their design. Existing distributed hash tables (DHTs), such
as Chord [19], Bamboo [10], and CAN [16], provide lookup
functionality, serving primarily as an index for stored data.
The PIER system [9] discusses several techniques for widely
distributed joins, yet uses these DHTs as an unstructured



Fig. 1. Networked join evaluation overview: to support a distributed
deployment of a join operator we i) partition the data space, ii) assign replicas,
connected in a tree, to process tuples in each partition. Sources may then send
tuples to their nearest replica, via a content-based routing mechanism.

rendezvous. By hashing the join key attribute, and thus per-
forming the join at an arbitrary site, PIER eliminates any data
or network locality in either the attribute or the sources. Other
relevant systems, such as Mercury [3] and DIM [12], have
investigated efficient support for multi-attribute range queries
in networked environments. These efforts primarily focus on
load distribution and balancing, and do not consider leveraging
the locationand data similarity trends.

In contrast to the previous efforts, our proposal, with the
aid of probabilistic models of value distributions, attempts to
identify frequently occurring matches and the network origins
of these matches. This information is then used to structure the
rendezvous points of inputs from multiple sources, enabling
sources to rapidly and efficiently route their tuples to be joined.
The rest of the paper discusses this networked join model,
outlining the key challenges and our initial ideas towards an
efficient and practical solution.

II. N ETWORKED JOIN MODEL

In the rest of the paper, we assume an infrastructure model
consisting of a substantial set of heterogeneous network hosts,
connected through a wide-area network. However, our basic
approach and principles are general and applicable to other
settings (such as wireless sensor networks) as well.

Our processing follows a continuous query model, as found
in stream processing systems (e.g., Aurora [2], Borealis [1]).
Under this model, a continuous stream of tuples drives a push-
based control flow and evaluation of the join operator. We
assume our join operator is associated with a window, and for
simplicity, assume each stream maintains its own window.

We begin with a simple scenario exemplifying how we
intend to exploit data and network locality. Consider four sites,
A, B, C and D. Sites A and B produce a certain range of values
at a high rate, while sites C and D produce a different set of
values at a high rate. We claim that processing these tuples in a
centralized manner, where all four sites push data to a single
network location, does not exploit trends in the underlying
value distribution. Hence, we propose creating twoinstances

Fig. 2. Simplified, motivating example: we propose exploiting data locality.
In this scenario, where sites A and B join with high probability on “low”
values, and sites C and D join over “high” values, we create two partitions,
and place each partition to optimize for its relevant sources.

of the operator, one placed near sites A and B to handle the
range of values frequently emanating from these sources, and
another placed near sites C and D. This is abstractly illustrated
in Figure 2.

In addition to data locality, we investigate techniques to
exploit network locality between the sources. Here we focus on
placing replicas of instances, based on the network proximity
of sources. Abstractly, we attempt to ensure nearby sources
produce output tuples with low latency, at a nearby site, rather
than at a single (centralized) partition instance.

In the rest of this section, we first describe the behaviour of
our join operator, in terms of input and output rates, and then
introduce a probabilistic definition of join selectivity (inspired
by [7]).

A. Modelling Data Sources

The join operator’s sources may be arbitrary network sites.
We assume each source maintains a probabilistic model repre-
senting the probability density function (pdf) over any values it
produces. These pdfs may be obtained as a simple histogram,
or with standard learning algorithms and distribution fitting
techniques. The input tuples are comprised of multiple at-
tributes, implying these pdfs are joint distributions. We may
marginalize this joint pdf to obtain the pdf for any combination
of attributes. With this model, each source is able to provide
the probability of producing a specific value.

B. Probabilistic Join Evaluation

The join operates on tuples from all sources based on a
join predicate. In the scope of this paper, we consider the
equi-join operator, but remark the principles applied here
may be generalized to arbitrary joins (we return to this issue
shortly). Using the data source model described above, we
may compute the expected output rate of our join operator
as follows. For a single pair of sources, the output rate is the
product of the total input rate, and the probability of two tuples
having identical join key values. Since the join key attributes
are likely to be a subset of the joining relations’ attributes,
this probability is equivalent to a product of each source’s
joint distributions, marginalized over the join key attributes.



This model of output rates is too simple for a stream-
based model, where join operators are defined with windows
to support asynchronous inputs. In this model, we abstract
away window semantics, such as whether the operator has a
window for each stream, or whether the window is a band.
We simply assume we are able to ascertain a distribution
yielding the probability of a specific value existing in the
operator’s window. We refer to such a distribution as a window
distribution. For a join operator with one window per stream
and source, and a sliding policy of simply removing the oldest
tuple in the window, the window distribution is equivalent to
thenth power of the input distribution, wheren is the window
size.

Given such a window distribution, we may obtain the
expected output rate of a source pair as a product of (1) one
source’s input rate, (2) the same source’s marginal distribution
of join key attributes, and (3) the window distribution of
the second source. Clearly, any pair of sources may join
to produce an output tuple. Furthermore, the join occurs
over all possible join key values. The generalization to other
types of join operators, with arbitrary join predicates, may be
accomplished through the definition of anindicator function
yielding whether the values join.

III. C HALLENGES IN DEPLOYING NETWORKED JOINS

We now outline three key problems in deploying networked
joins, all targeted at minimizing the total expected network
delay of a tuple. We address: (1) how to place an operator
in the network; (2) how to identify localization opportunities,
by differentiating sources based on the values they produce;
and (3) how to select a set of sites to execute our join, as a
resource allocation problem.

A. Operator Placement Problem

Our first challenge is to determine a well-suited location for
a single join. This placement problem is present in any com-
plex deployment problem, and necessitates a placement primi-
tive. We leverage source probability distributions to determine
this location. We assign each source a weight corresponding to
its mean output probability, relative to the total for all sources.
We refer to this weight as a source’scontribution factor.
We place our operator at a centroid of sources, ensuring that
the contribution factor is decreasingly correlated to distance.
Clearly, a site meeting this exact property may not exist in our
network. Thus, we refer to our centroid as the site minimizing
an error function, based on a sum of squares, of the difference
in sources’ contribution factors, and the fractional distance of
sources from the centroid.

B. Join Partitioning Problem

Another challenge involves deciding how many operators to
deploy. The issue here is to properly partition the join attribute
value domain to minimize the total expected network delay of
a tuple. Our grounds for posing this question is as follows.
Each pair of sources will have differing expected output rates,
across the join attribute value domain. By partitioning the

value domain into subsets, we may choose different sites
on the network to process tuples with different join attribute
values. Provided we then tailor the selection of processing site
for each subset, based on the network locations of sources
most likely to produce join attribute values in our subset, we
claim the desired end effect when compared to a single site
processing the entire value domain. In short, the end effect is
due to processing tuples with join attribute values that sources
are likely to produce, at sites close to these sources.

This solution requires a content-based routing mechanism to
route tuples according to the partitioning scheme. The server
infrastructure must collaborate to maintain this routing mech-
anism as an overlay network. Recent literature [3] contains
overlay network construction algorithms using a combination
of short, and long distance links, without the use of a global
hash function.

C. Instance Replication Problem

Following the partitioning of the join attribute value domain,
we need to assign sites to evaluate operator instances. Repli-
cating join partitions and executing them in concert present
an opportunity to further optimize the expected tuple delay, as
we describe below.

The replication challenge is to select sites that are well-
suited to execute operator replicas. We consider a site well-
suited if it is near to sources producing inputs that are likely
to join. We view this challenge as a task to construct areplica
graph, whose vertices are the sources and the replicas. The
graph’s edges denote the connectivity of sources to replicas,
and replicas to themselves. Our graph must contain at least one
root replica, defined as a replica reachable from all sources.
Since this root is reachable by all sources, we may if necessary,
compute the entire join at the root to ensure correctness. In
our model, we place the root replica at the centroid of sources,
as described in the operator placement problem.

Each input tuple may then join with other tuples, at any
replica on the path between the source, and a root replica. We
define the total expected delay as the sum, across all sources,
of the expected delay between an input tuple, and each output
it causes. The expected delay is a product of network distance
from source to replica, and the probability of a tuple joining
with state at the replica.

This problem is defined for a general replica graph which
may include cycles and multiple root replicas. In the scope of
this paper, we consider only tree topologies for replica graphs.
We highlight two rules that each replica needs to follow to en-
sure correctness of the join. First, a replica forwards all tuples
it receives towards the root, to ensure correct computation of
the join. Second, a replica only considers joining tuples it
receives ondifferent branches of the replica tree. Overall, a
tree topology has the benefit of lower total tuple duplication
while forwarding along the replica path.

IV. PARTITIONING AND REPLICATION STRATEGIES

We now briefly describe our initial ideas towards solving
the challenges outlined above. First, we discuss our mechanism



for computing and exchanging pairwise source join probability
distributions. We then move on to discuss how to determine
partitions using these distributions. Finally, we sketch our
strategy in selecting source groups for our tree-shaped replica
graphs.

A. Probability Distribution Exchange Protocol

Our sources exchange their local models using an epidemic
protocol to generate pairwise join probability distributions.
This allows our search algorithm to operate in the pairwise
probability space, in terms of which our objective function is
defined. To improve convergence in this protocol, we propose
the following diffusion heuristic. Each source maintains its
model as a histogram, and sources order histogram buckets by
decreasing value probability. Sources gossip in rounds along
this ordering and selectively forward using local probabilities
as bounds on pairwise probabilities. The intended effect here
is that only pairs of sources with high join probabilities will
exchange the majority of their buckets, while sources with low
join probabilities will not gossip much.

B. Domain Partitioning Protocol

We now outline a strategy for selecting subsets of the
value domain, to solve the aforementioned join partitioning
problem. Our goal is to differentiate the sources by their output
distributions, as greatly as possible, and optimally place our
instances for similar groups of sources.

The distribution exchange protocol described above enables
a search algorithm to operate in a search space of pairwise
output probability distributions. Our search for partitions at-
tempts to find subsets of the value domain, so as to maximize
the difference in pairwise output distributions over all possible
combinations of sources pairs.

Fig. 3. Partitioning protocol overview: we select our partition boundaries
at the intersection points of pairwise source pdfs, in a progressive manner
starting at the intersection with greatest probability.

Our first step is to compute the intersection points of
pairwise output distributions in a progressive manner. The
intuition here is that subdividing partitions that do not contain
intersection points will not lead to any further maximization
of the total pairwise difference. One simple heuristic for com-
puting intersections in a progressive manner is in decreasing
order of the output probability of the intersection point.

Next, we collapse neighbouring partitions, meeting a spe-
cific criteria, into a single partition. This criteria requires
computing the total gradient of all pairwise distributions within
each partition. We choose to coalesce neighbouring partitions
with negative total gradient. Partitioning the distribution from
its local minimum or maximum enables us to consider two dis-
tribution segments independently. For a partition containing a
distribution segment of entirely negative gradient, its absolute
value ensures a positive contribution to our objective.

Our final step ranks our potential partitions in increasing
values of total gradient. Given an upper bound on the number
of partitions we may select,m, we choose the firstm2 − 1
partitions in our ranking, and coalesce the remaining partitions
between the selected ones. The upper bound we mention
captures our claim that partitioning the value domain too finely
will not yield any further optimization. Determining such a
bound would prove useful as a termination criteria in our
search.

C. Operator Replication Algorithm

Once we have our partitions, we propose the following
strategy to solve the instance replication problem. First, we
scale pair-wise output distributions by the network separation
of the appropriate source pairs. Our algorithm attempts to se-
lect groups of sources within this multidimensional space. We
prune the search space using a heuristic based on network dis-
tances. This heuristic eliminates pairwise distributions, whose
sources are separated by a distance greater than the distance
between either source and the centroid (of all sources).

Our algorithm then attempts to approximate a Voronoi
diagram of this multidimensional space over the point set of
all sources and the site representing the centroid of sources.
For intuition, this procedure attempts to capture sources that
are likely to join, and are nearby to each other. We use the
resulting cells in our Voronoi diagram as our source groups.
We construct our replica graph as a spanning tree connecting
each cell. The root of this spanning tree is chosen as the cell
containing the centroid of all sources. The root’s children are
chosen as the cells neighbouring the root’s cell. This process
continues until our tree spans all cells. Our algorithm then
instantiates replicas attempting to place each replica by as a
centroid for each cell.

V. A DAPTIVE PARTITIONING , AND REPLICATION

Now, we briefly discuss some of the issues our mechanisms
will have to address, to be effective in dynamic, long-running
distributed systems. We focus on the question of adaptivity,
describing our requirements on operators for adaptive parti-
tioning, and distribution models to cope with varying data
distributions over time.

A. Maintaining Partitioned State

In order to support dynamic repartitioning, where we may
acquiesce operators or partition them further, we plan to rely
upon operator implementations supporting these semantics on
their specific states. In addition to function calls supporting the



bootstrapping, and serialization of state (as found in the Flux
system [18]), we require functions to support the injection
and extraction of state elements, stored as a side effect of
processing inputs ofspecificattribute values. For example, in
the case of incremental partitioning, these values correspond to
the attribute values of tuples to be routed to the new operator
instance. This requires identification of state elements, as part
of the extraction process.

Another issue is the blocking effect of adapting the number
of partitions. In order to ensure complete processing of in-
puts during the transition, existing schemes employ buffering
techniques. In a wide-area system, modifying the deployment
of partitions requires interaction with the underlying content-
based routing layer. During the transition period of a partition,
the routing layer thus has to support the necessary buffering.

B. Time-Varying Value Distributions

In the algorithms above, we measure models of the data, as
inputs to our framework, to widely partition and distribute a
single operator. In a long-running system, with the semantics
of an infinite input stream, leveraging the entire history of
tuples may not form a strong basis for the model, especially
with distributions that evolve, and change over time. Instead,
we may wish to be more selective in the use of historical
inputs, choosing relevant tuples based on either a temporal
or semantic criteria (e.g., an age function, or by the value’s
statistical significance over a window).

This selective use of history must coexist with updates
to the model in an online manner, as tuples arrive. Recent
work on approximate summaries of streams (e.g., sketches,
wavelet-based histograms [8]) have highlighted the necessity
for single-pass, constant time methods of updating models.
Unlike these works, we are leveraging an input model to guide
our optimization algorithms, and not to actually approximate
the query itself.

VI. RELATED WORK

The most prominent work on partitioning operators lies in
parallel databases research. This literature encompasses topics
such as hash-based joins [5], handling workload skew [6], and
spatial joins [15]. While all of these works provide a plethora
of partitioning techniques and join evaluation algorithms, to
the best of our knowledge, none consider the effects of
heterogeneously distributed data access, across a wide-area
network, to support the operation. This lack of access locality
can adversely affect the expected tuple delay.

The presence of a slow (and costly) medium for data
access has been investigated in sensor networks. Systems
such as Cougar [20], and TinyDB [13] have investigated
query processing techniques and both energy and bandwidth
optimization mechanisms. Data centric and geographic routing
techniques have also appeared in sensor networks [11], [17],
[12]. Finally the use of probabilistic models has been proposed
to in the context of acquisitional, and distributed inference
problems ([4], [14]).

VII. C ONCLUDING REMARKS

We introduced a framework for in-network join evaluation
and discussed pertinent algorithmic and architectural chal-
lenges. We are currently detailing the initial solutions outlined
here, guided by a network game and a wireless real-time
collaboration application. We plan to deploy these applications
on top of the Borealis [1] distributed stream processing engine.
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