
Generalized Online Auctions with Time Varying Values

Abstract
Online auctions mechanism design for
re-usable goods has wide application
fields, such as network storage distri-
bution, computing resources allocation.
Agent′s types, especially values, may
vary while they are waiting for being al-
located. But the variation of agent′s val-
ues are rarely discussed. We consider
the mechanism design for allocation of
online resources between agents whose
values vary with time. After extending
the classic pricing strategy, we propose
a generalized mechanism which resists
bid-cheating and derive the upper bound
of competitive ratio within constant fac-
tors with the offline optimal solution. We
also prove that this mechanism remains
effective, despite of the misreport of the
arrival and departure time, in the scenario
of decreasing values.

1 Introduction
The online mechanism is aimed for settings where multiple
agents arrive and depart overtime, the allocation decisions
and payment determinations have to be made on the fly with-
out any knowledge of future arrivals.

Solutions to many interesting decision problems in dy-
namic multi-agent environments have referred to the online
mechanism design, e.g., selling seats on an airplane to buy-
ers arriving over time and allocating computational resources
(storage space, CPU, etc.). [Gerding et al., 2011] designed
a novel online auction protocol for electric vehicle charging.
[Shi et al., 2014] discussed an online combinatorial auction
designed in the cloud computing paradigm.

In most designs of the online mechanism, authors treat the
values of agents as constants over time, or for simplicity, they
only consider unit job length and unit requirement, [Wu et al.,
2014]. However, in practice, these strict restrictions are rarely
satisfied. For instance, in online cloud computing resources
allocation, agents require multi-unit of storage resources to
finish the job, and the requirement continues multiple time
slots. Time variations also exist. The degree of emergency

usually decreases with time passing, and causes the agent’s
value to drop. Therefore, establishing a generalized online
auction model taking into account of the above factors is
highly necessary.

In this paper, we propose a generalized model for online
auctions, taking into account of agents’ varying values over
time (special but important scenarios, such as decreasing val-
ues and constant values, are included.) In the model, each
agent reports to the auctioneer its type and and initial value
which may vary over time. The varying factor function of
each agent is assumed to be public knowledge and not in-
cluded in the reported type. And for simplicity of analysis,
we do not consider the possibility of misreport on number of
instances and job length. We leave them for the future work.

Our objective is to design a mechanism for the model
which ensures strategy-proofness not only for values, but also
for the arrival and departure time. [Lavi and Nisan, 2000]
proved that without any restriction on the types of possible
misreports, it is impossible to achieve a bounded competitive
ratio. Thus, in our model, we naturally eliminate the possibil-
ity of reports of early arrivals and late departures.

We present a new online mechanism for the proposed gen-
eralized model. For the allocation stage, we adopt dynamic
programming which is computationally efficient. For the
pricing stage, instead of taking the minimum of the criti-
cal prices over one period, we naturally extend Myerson’s
Lemma and use the dominant strategy constraint to narrow
down the payment to a single candidate.

The paper is organized as follows. Section 2 introduces the
model and the basic background knowledge. Section 4 fo-
cuses on the detailed design of our mechanism. In the first
part of Section 4, we explain the process of virtual bid gener-
ation. Then, we introduce the dynamic programming alloca-
tion method designed for multiple goods allocation and then
give an analysis for the upper bound of competitive ratio. In
the third part of Section 4, we introduce our extension on the
classic lemma which helps to derive the unique price, which
ensures truthfulness on bids report. In Section 5, we give the
simulation results on social welfare. In Section 6, we review
the related works. Finally, we conclude with some future di-
rections in Section 7.

2 Preliminaries
In this section, we introduce the model of online auction with
time varying values, and briefly review the related solution
concepts used in this paper from game theory.

2.1 Auction Model
We consider the problem of online auction mechanism de-
sign for trading M re-usable homogeneous items over a fi-
nite time interval. We further divide the time interval into T
equal length slots: T = {1, 2, · · · , T}. There are n agents
N = {1, 2, · · · , N}, and they arrive and leave the auction in
a random order. Agent i ∈ N arrives at the auction at ai, and
demands for wi items for li continuous time slots to execute
her job before the deadline (or departure time) di. The valu-
ation function of the agent i is vi(t), meaning that the agent
has valuation vi(t) on the job, once she obtains wi allocated
items at time t, and last for the coming consecutive li slots.
We also denote the intrinsic valuation by vi, i.e., vi = vi(ai).
The job request of the agent i can be expressed as a vector of
five elements: θi = (ai, di,mi, li, vi), which is also called as
type in mechanism design. Let vector θ = (θ1, θ2, · · · , θN)
denote the types of all the agents. In the time varying value
scenario, the agent i’s valuation function can be expressed as:

vi(t) =

{
max(vi × fi(t) + hi(t), 0), t ∈ [ai, di − li],
0, otherwise,

(1)
where fi(t) and hi(t) are multiplication and addition varying
functions, respectively. Different from the valuation model
in [Wu et al., 2014] , we do not restrict fi(t) and hi(t) to any
specific formats, but only require that fi(t) should be mono-
tone and non-decreasing, which is the necessary condition for
the existence of the strategy-proof online auction mechanism
in the time varying value setting. We illustrate some repre-
sentative valuation functions as follows:

• Exponential Varying: fi(t) = η(t−ai), where η ∈ (0, 1),
and hi(t) = β.

• Quadratic Varying: fi(t) = β, hi(t) = δ(t− ai+di

2)2.

• Joint Varying: fi(t) = η(t−ai), hi(t) = δ(t − ai+di

2)2,
where η ∈ (0, 1).

• No Varying: fi(t) = 1, hi(t) = 0.

In this paper, we assume that the varying parameters η,
β and δ are public knowledge, and the agents share com-
mon varying parameters, and then the valuation function,
which is similar to the assumption made in paper []. We
further assume that the valuation gap is bound by κ, i.e.,
maxai≤t≤di−li vi(t)/minai≤t≤di−li vi(t) ≤ κ.

Once an agent i ∈ N enters into the online auction, she
submits a declared type θ̂i = (âi, d̂i,mi, li, v̂i), which may
not be necessarily equal to her type θi, to a trusted auction-
eer. In this paper, we do not design truthful online auction to
resist all possible misreports, because it has been proven that
to resist any type of misreport, an auction may suffer serve
degradation in revenue and efficiency [Hajiaghayi, 2005]. we
focus on the scenario, in which the selfish and rational agent
can cheat the arrival time ai, departure time di, as well as the

intrinsic valuation vi during the bidding process. In contrast
to these misreporting patterns, we argue that the agent has
less incentive to misreport the number of demanded items mi

and the job length li. By requesting for more items or longer
job length, the agent has to pay more than necessary to sat-
isfy her job request. When asking for shorter job length or
less items, the agent cannot finish her job. In addition, we
restrict that the agents can only report late arrival times and
early departure times, e.g., âi ≥ ai and d̂i ≤ di, because we
can prevent the agents from reporting early arrival and late
departure by adopting the heart-beat scheme in []. We use
vector θ̂ = (θ̂1, θ̂2, · · · , θ̂N) to denote the declared types of
all agents.

At each time slot t ∈ T, the auctioneer first calculates the
bid bi(t) for each active agent i ∈ Na, whose departure time
is larger than the current time t, i.e., âi < t < d̂i, by us-
ing her declared information θ̂i and the equation (Please re-
fer to Section 4 for the detailed discussion on the bid calcu-
lation.). Given the bidding profile of the active agents Na

at time t: b(t) = (b1(t), b2(t), · · · , b|Na|(t)), the auction-
eer then allocates M items, including idle items and those
in used by working jobs, to the active agents. We note that
the new arriving agents with high bids may interrupt some
working jobs. We call the agent i ∈ N as a winner when
her job runs for li continuous time slots before the dead-
line d̂i without any interruption. We use xi(θ̂) = 1 to de-
note that the agent i is a winner when the declare informa-
tion is θ̂; otherwise xi(θ̂) = 0. Finally, according to the
declared information θ̂ of agents, the auctioneer determines
the payment pi(θ̂) for each agent i at her declared departure
time d̂i. The payments to the losing agents are set to ze-
ros. We use vector x(θ̂) = (x1(θ̂), x2(θ̂), · · · , xN (θ̂)) and
p(θ̂) = (p1(θ̂), p2(θ̂), · · · , pN (θ̂)) to represent the alloca-
tion rule and payment rule in an online auction, respectively.

The utility ui of each agent i ∈ N is defined as the dif-
ference between her valuation on the allocated items and the
payment:

ui(θ̂) =

{
vi(ti(θ̂))× xi(θ̂)− pi(θ̂), i ∈W,

0, otherwise,
(2)

where W is the set of winning agents, and ti(θ̂) is the alloca-
tion time of the winner i ∈W when the declared information
profile is θ̂.

In this paper, the agents are rational and selfish, and always
want maximize their utilities by strategically reporting their
private information. In contrast to this selfish goals, the ob-
jective of the auctioneer is to maximize social welfare, which
is defined as follows.

Definition 1 (Social Welfare). The social welfare in an online
auction with time varying value is the sum of winners’ valua-
tion over the allocated items at their corresponding winning
time slots, i.e.,

SW =
∑
i∈W

vi(ti(θ̂)). (3)

2.2 Solution Concepts
A strong solution concept from mechanism design is domi-
nant strategy.

Definition 2 (Dominant Strategy). Strategy θi is agent i’s
dominant strategy, if for any strategy θ̂i 6= θi and any other
player’s strategy profile θ−i, we have

ui(θi,θ−i) ≥ ui(θ̂i,θ−i). (4)

Intuitively, a dominant strategy of a player is a strategy that
maximizes her utility, regardless of what strategy profile the
other players choose.

The solution to the afore mentioned online auction is a
kind of direct revelation mechanism, in which the strategies
of the agents are to directly propose bids based on their types.
The concept of dominant strategy is the basis of incentive-
compatible direct revelation mechanism, which means that
revealing truthful information is a dominant strategy for every
player. An accompanying concept is individual-rationality,
which means that every player participating in the game ex-
pects to gain no less utility than staying outside. We now
can introduce the definition of strategy-proof direct revela-
tion mechanism.

Definition 3 (Strategy-Proof Direct Revelation Mechanism).
A direct revelation mechanism is strategy-proof, when it sat-
isfies both incentive-compatibility and individual-rationality.

The objective of this work is to design strategy-proof on-
line auction mechanisms in time varying values setting.

3 Characterizing Strategy-Proofness
In this section, we present a characterization theorem for
strategy-proof online mechanisms with time varying values.
This can be considered as a generalization of the well-known
Myerson theorem for the truthful mechanisms with one-
parameter agents. Specifically, we claim that the necessary
and sufficient condition for a payment rule that truthfully im-
plement an allocation rule in time varying values setting is
that the function F (θ) = f(t(θ)) × x(θ) must satisfy the
monotonicity criterion. We first give the definition of this
monotone criterion.

Definition 4 (Monotonicity). In an online auction, we say
a type θi = (ai, di, vi) dominates another type θ̂i =

(âi, d̂i, v̂i), denoted by θi � θ̂i, if ai ≤ âi, di ≥ d̂i and
vi > v̂i. The function Fi(θ) = fi(ti(θ)) × xi(θ) is mono-
tone, if for every agent i, θi � θ̂i and the reported types of
the other agent θ−i, we have Fi(θi,θ−i) ≥ Fi(θ̂i,θ−i).

We now present our major result: the necessary and suffi-
cient condition for the existence of strategy-proof online auc-
tions with time varying values.

Theorem 1. There exist a payment rule p(θ) such that the
online auction (x(θ),p(θ)) in time varying values setting is
strategy-proof if and only if the function Fi(θ) = fi(ti(θ))×
xi(θ) is monotone for each agent i ∈ N.

Proof. To simplify the notations, we introduce Hi(θ) =
hi(ti(θ))×xi(θ) for each agent i ∈ N. We first prove the “if”

part. Let Fi(θ) be the monotone function for each agent i ∈
N and a type vector θ = (θi,θ−i), where θi = (ai, di, vi).
We set the payment rule as

pi(θ) =

K∑
k=1

[
vki ∆F

i (ai, di, v
k
i) + ∆H

i (ai, di, v
k
i)
]
, (5)

The sequence v0
i , v

1
i , v

2
i , · · · , vKi is a list of K valuations,

which are the break points of function Fi(θ) or Hi(θ). In
general, we assume vk1

i ≤ vk2
i for k1 ≤ k2, v0

i = 0 and
vKi ≤ vi. The function ∆F

i (ai, di, v
k
i) (or ∆H

i (ai, di, v
k
i))

represents the jump of Fi(θ) (or Hi(θ)) at (θki ,θ−i), where
θki = (ai, di, v

k
i), i.e.,

∆F
i (ai, di, v

k
i) = Fi(θ

k
i ,θ−i)− Fi(θ

k−1
i ,θ−i),∀1 ≤ k ≤ K.

∆H
i (ai, di, v

k
i) = Hi(θ

k
i ,θ−i)−Hi(θ

k−1
i ,θ−i),∀1 ≤ k ≤ K.

Combining the definition of utility function with the pay-
ment rule, we can express the utility ui(θ) of aggent i ∈ N
as:

ui(θ) = [vi × fi(t(θ)) + hi(t(θ))]× x(θ)

−
K∑

k=1

[
vki ∆F

i (ai, di, v
k
i) + ∆H

i (ai, di, v
k
i)
]

= vi × fi(t(θ))× x(θ)−
K∑

k=1

vki ∆F
i (ai, di, v

k
i)

= vi × Fi(θ)−
K∑

k=1

vki ∆F
i (ai, di, v

k
i)

=
(
vKi + vi − vKi

)
× Fi

(
θKi , θ−i

)
−

K∑
k=1

vk ×
[
Fi

(
θki , θ−i

)
− Fi(θ

k−1
i , θ−i)

]
=

(
vi − vKi

)
× Fi

(
θKi , θ−i

)
+

K∑
k=1

(
vki − vk−1

i

)
× Fi

(
θk−1
i , θ−i

)
(6)

According to the definition of the valuation sequence, we
have vKi ≤ vi and vk−1

i ≤ vki for all 1 ≤ k ≤ K. Therefore,
the utility ui(θ) of aggent i can not be negative, which satisfy
the property of Individual Rationale.

We now show that the monotone function Fi(θ) in com-
bination with the payment rule pi(θ) guarantee the property
of Incentive Compatibility. We prove this by contradiction.
If the mechanism is not incentive compatible, there is aggent
i, a true type θi = (ai, di, vi), and a non-truthful reported
type θ̂i =

(
âi, d̂i, v̂i

)
with âi ≥ ai, d̂i ≤ di and v̂i 6= vi,

such that the utility ûi

(
θ̂i,θ−i

)
of aggent i if she reports

θ̂i is strictly greater than the utility ui(θi,θ−i) that she can
achieve from being truthful, i.e., ûi

(
θ̂i,θ−i

)
> ui(θi,θ−i).

By Equation (6), we have

(
vi − vK̂i

)
Fi

(
θ̂K̂i ,θ−i

)
+

K̂∑
k=1

(
vki − vk−1

i

)
Fi

(
θ̂k−1
i ,θ−i

)
>
(
vi − vKi

)
Fi

(
θKi ,θ−i

)
+

K∑
k=1

(
vki − vk−1

i

)
Fi

(
θk−1
i ,θ−i

)
(7)

According to the monotonicity of the function Fi(θ) and
the inequalities âi ≥ ai and d̂i ≤ di, we have the following
relation:

RHS of (7) =
(
vi − vK̂i

)
× Fi

((
âi, d̂i, v

K̂
i

)
,θ−i

)
+

K̂∑
k=1

(vki − vk−1
i)× Fi

((
âi, d̂i, v

k−1
i

)
,θ−i

)
≤

(
vi − vK̂i

)
× Fi

((
ai, di, v

K̂
i

)
,θ−i

)
+

K̂∑
k=1

(vki − vk−1
i)× Fi

((
ai, di, v

k−1
i

)
,θ−i

)
(8)

Equations (7) and (8) imply that RHS of (8) is greater than
LHS of (7), i.e.,(

vi − vK̂i
)
× Fi

((
ai, di, v

K̂
i

)
,θ−i

)
+

K̂∑
k=1

(vki − vk−1
i)× Fi

((
ai, di, v

k−1
i

)
,θ−i

)
>

(
vi − vKi

)
× Fi

((
ai, di, v

K
i

)
,θ−i

)
+

K∑
k=1

(
vki − vk−1

i

)
Fi

((
ai, di, v

k−1
i

)
,θ−i

)
(9)

We complete the analysis by distinguishing two cases:
• If v̂i < vi, we then have K̂ ≤ K, and thus vK̂i ≤ vKi .

Since the function Fi(θ) is monotone with respective to vki ,
we can get:

RHS of (9) ≥
(
vi − vKi

)
× Fi

((
ai, di, v

K̂
i

)
,θ−i

)
+

K∑
k=K̂+1

(
vki − vk−1

i

)
× Fi

((
ai, di, v

k−1
i

)
,θ−i

)

+

K̂∑
k=1

(vki − vk−1
i)× Fi

((
ai, di, v

k−1
i

)
,θ−i

)
≥ (vi − vK̂i)× Fi

((
ai, di, v

K̂
i

)
,θ−i

)
+

K̂∑
k=1

(vki − vk−1
i)× Fi

((
ai, di, v

k−1
i

)
,θ−i

)
= LHS of (9)

Therefore, we get a contradiction in this case.
• If v̂i > vi, we then have K̂ ≥ K, and thus vK̂i ≥ vKi . By

the monotonicity of the function Fi(θ), we have

LHS of (9) ≤

vi − vK+1
i +

K̂∑
k=K+2

(vk−1
i − vki)

×Fi

((
ai, di, v

K̂
i

)
,θ−i

)
+

K∑
k=1

(
vki − vk−1

i

)
Fi

((
ai, di, v

k−1
i

)
,θ−i

)
+
(
vi − vKi + vK+1

i − vi
)
× Fi

((
ai, di, v

K
i

)
,θ−i

)
+

K̂∑
k=K+2

(
vki − vk−1

i

)
Fi

((
ai, di, v

k−1
i

)
,θ−i

)
≤

(
vi − vKi

)
× Fi

((
ai, di, v

K
i

)
,θ−i

)
+

K∑
k=1

(
vki − vk−1

i

)
Fi

((
ai, di, v

k−1
i

)
,θ−i

)
= RHS of (9)

Thus, we also get a contradiction in this cases. We com-
pleted the proof of the “if” part.

Conversely, we now consider the “only if” part, and as-
sume that Fi(θ) is the function, for which there is a payment
rule p(θ) such that (x(θ), p(θ)) is strategy-proof. Consider
a aggent i ∈ N and two types θ, θ̂ with θ−i = θ̂−i and
θi � θ̂i. We first consider a scenario where the true types of
the agents is θ. The strategy-proof mechanism ensures that
the utility of the aggent i when bidding truthfully is not less
than that when she misreports her type, i.e.,

[fi(ti(θ))× vi + hi(ti(θ))]× xi(θ)− pi(θ)

≥
[
fi(ti(θ̂))× vi + hi(ti(θ̂))

]
× xi(θ̂)− pi(θ̂). (10)

We then consider another scenario where the true type of
the aggent i is θ̂i and she may cheat by misreporting θi. Sim-
ilarly, we have[

fi(ti(θ̂))× v̂i + hi(ti(θ̂))
]
× xi(θ̂)− pi(θ̂)

≥ [fi(ti(θ))× v̂ + hi(ti(θ))]× xi(θ)− pi(θ) (11)

Combining Equations (10) and (11), we can get

[fi(ti(θ))× vi + hi(ti(θ))]× xi(θ)

−
[
fi(ti(θ̂))× vi + hi(ti(θ̂))

]
× xi(θ̂)

≥ pi(θ)− pi(θ′)
≥ [fi(ti(θ))× v̂i + hi(ti(θ))]× xi(θ)

−
[
fi(ti(θ̂))× v̂i + hi(ti(θ̂))

]
× xi(θ̂)

⇒ fi(ti(θ))xi(θ)× (vi − v̂i) ≥ fi(ti(θ̂))x(θ̂)× (vi − v̂i)
⇒ Fi(θ)× (vi − v̂i) ≥ Fi(θ̂)× (vi − v̂i)

Since θi � θ̂i, we have vi > v̂i, and thus Fi(θ) ≥ Fi(θ̂).
Therefore, we can conclude that Fi(θ) is monotone.

4 Auction Design
In this section, we present the detailed design for the on-
line auction with time varying values, and analyze its eco-
nomic property, computational complexity and competitive
ratio. Our designed mechanism consists of three major com-
ponents: virtual bid generation, item allocation, and payment
calculation.

4.1 Virtual Bid Generation
When a newly arrived agent proposes a bid higher than that
of the current working agents, the auctioneer can choose to
preempt the working jobs to make up the price difference or
reject the request of the new agents to guarantee the fairness
of allocation. It has been shown that the preemption may
degrade the resource utilization, damage auction credibility,
and can potentially discourage agents from participating in
future auction [Deek et al., 2011]. Therefore, the auctioneer
should preempt a working agents only if the newly arrived
agents offer a significantly high bid.

The auctioneer artificially raises the bids of ongoing
agents, denoted by No, to give them priority during item al-
location. Specifically, for an ongoing agent i ∈ No, who
requests mi items for li continuous time slots and has been
allocated the items at time slot ti(θ̂), the auctioneer adjusts
her bid as bi(t) at time slot t:

bi(t) = v̂i(ti(θ̂))× αϕi , (12)

where v̂i(ti(θ̂)) is similar to the valuation function (Equation
(??)) by replacing vi with v̂i. ϕi = (t − ti(θ̂))/li represents
i’s job completeness at time t, and α ≥ 1 is the threshold
that the auctioneer can adjust to control the preemption fre-
quency. α = 1 maps to the classical preemption model. The
auctioneer can give more protection to the ongoing agents by
increasing α. When α → ∞, the auctioneer does not allow
preemption, and the agents can work for requested continu-
ous time slots once they are allocated items.

For the active agents that have not been allocated items,
i.e., agents in Na\No, the auctioneer updates their bids ac-
cording to the valuation function v̂i(t) and their reported
types θ̂. At time slot t ∈ T, the virtual bid for the active
agent i ∈ Na\No is bi(t) = v̂i(t).

The auctioneer can generate the virtual bid bi(t) of the
agent i ∈ N at time slot t ∈ T by distinguishing the three
cases.

bi(t) =

v̂i(ti(θ̂))× αϕi , i ∈ No,

v̂i(t), i ∈ Na\No,

0, otherwise,

4.2 Item Allocation
Theorem 2. The competitive ratio of the item allocation al-
gorithm is

Proof. We prove this theorem by a charging argument. We
charge the value of any winning agent in an optimal solution
OPT to a winning agent in our algorithm. For the winning
agent i who is allocated items at time ti in our algorithm, we

Algorithm 1: Item Allocation Algorithm
Input: A time slot t ∈ T, a set of active agents Na, a set of

ongoing agents No, a vector of reported types θ̂, a
preemption factor α, a set of temporary winners Wt−1

at time slot t− 1.
Output: A temporary winners Wt at time slot t and ultima

winners W.
1 foreach i ∈ N do
2 if i ∈ No then
3 ϕi ← (t− ti(θ̂))/li;
4 bi(t)← v̂i(ti(θ̂))× αϕi ;

5 if i ∈ Na\No then
6 bi(t)← v̂i(t);

7 Γ← {< bi(t),mi >, i ∈ Na};
8 Wt ← KnapSack(M,Γ);
9 foreach i ∈Wt\Wt−1 do

10 ti(θ̂)← t;

11 foreach i ∈Wt−1\Wt do
12 ti(θ̂)← 0;

13 foreach i ∈Wt do
14 if t− ti(θ̂) + 1 ≥ li then
15 W←W ∪ {i};

16 return Wt,W;

calculate the maximum charge to her. We further distinguish
the following cases.

I If agent i is also a winning agent in OPT, then there is
a charge vi(t∗i) to herself. Here t∗i is the time slot that the
agent i obtains the items in OPT solution. We can bound this
charge by vi(t∗i) ≤ vi(ti)× κ.
I If agent i does not pick by the OPT, we then consider

the agents in OPT who is directly/indirectly preempted by
the agent i, and denote this set of agents by Ni. We consider
that the agent j ∈ Ni is preempted by agent j1, who may be
further preempted by another agent. We continue this chain
until we reach the agent i who is not preempted.

In the analysis of competitive ratio, we use vti instead of
bti(agent i’s value at time t). The key idea is to charge the val-
ues of winning agents in the optimal solution OPT to winning
agents in our allocation algorithm.

For agent j who wins at time tj in our allocation algorithm,
we find the maximum value charged to her.
• Firstly, we consider the case that j also wins in the OPT,

then there’s a charge vtoptj to herself, we have the relation

vtOPT
j

v
tj
j

=
vjf(tOPT) + d(tOPT)

vjf(tj) + d(tj)
(13)

vtOPT
j ≤ (vjf(t′) + d(t′))max

(vjf(t′) + d(t′))min
v
tj
j , t

′ ∈ [ai, di) (14)

• Secondly, we consider all the agents in OPT who is in-
terrupted by j directly or indirectly.
Lemma 1. Denote the sum of values of the agents who
are allocated at t with V−i. If i is not allocated in time
slot t, we have: V−i ≥ vti .

Proof. With the property of dynamic programming, we
have this property, otherwise i will be allocated.

Consider agent i who is allocated instances in OPT at
t, but she is not allocated in our algorithm. Then we
charge the value of i to the winners in proportion with

their values:
vt
j

V−i
vti (≤ vtj by lemma 1). The interruption

is divided into two cases:

(i) If i is directly interrupted by j. We have 0 < t −
tj < lj , the value charged to j by i is at most vtj =

f
t−tj
lj v

tj
j , at the slot t, there are at most W

wmin
such

jobs interrupted. Thus the value charged to j is at

most W
wmin

f
t−tj
lj v

tj
j

(ii) If i interrupted by a chain of agents and the final
one is agent j. We have t − tj < 0. Assume agent
i is interrupted by agent i2 after t2 − t slots, and
then agent i2 is interrupted by agent i3 after t3− t2
slots and so on. Then, we have the value charged to

agent j by i is at most f
t−tj
lmax v

tj
j .

To sum up, the total charged to j is

v
tj
j {

(v
aj
j f(t′)+d(t′))max

(v
aj
j f(t′)+d(t′))min

+ W
wmin

(
∑tj

t=−∞ f
t−tj
lmax +

∑tj+lj
t=tj+1 f

t−tj
lj)}

≤ vtjj {
(v

aj

j f(t′) + d(t′))max

(v
aj

j f(t′) + d(t′))min

+
W

wmin

lmax∑
∆=−∞

f
∆

lmax }

= v
tj
j {

(v
aj

j f(t′) + d(t′))max

(v
aj

j f(t′) + d(t′))min

+
W

wmin

f

1− f−
1

lmax

}

Within simple mathematical calculations, we get the opti-
mal preemption factor f = (1 + 1

lmax
)lmax

W server capacity(assuming constant)
wmin minimum instances required by one job
lmax maximum length of one job
θi agent i’s type(= (ai, di, li, vi, wi))
ai agent i’s true arrival time
di agent i’s true departure time
li job length(required slots) of agent i
vti agent i’s value at time t
vi agent i’s initial value
bti agent i’s proposed valuse(bid) at time t
bi agent i’s initial bid
wi instances required by job of agent i
f preemption factor(f > 1)

Table 1: Notations

Before the allocation of instances at each slot, we calculate
the virtual bid of agents by multiplying a preemption factor.
When a new agent proposes a much higher bid in need of

emergency use of the instances but all the instances are occu-
pied by currently running jobs. The auctioneer can choose to
interrupt running jobs without charging the agents for partial
usage of the instances, or the auctioneer can reject the request
of the new agent. Then we adjust the ongoing winners to a
virtue bid higher than their original bid to give them priority
of being allocated(as shown in line 5 of the pseudo code). Af-
ter, we allocate the instances with dynamic programming(line
11) and update the allocation states(lines 14∼.)

4.3 Payment Calculation
Traditionally in online auction model, the pricing methods
used is taking the minimum of the critical prices of one in-
terval. However, that does not fit in our special setting where
agents’ value is time varying. Firstly we calculate the critical
price for a single slot using the property of dynamic program-
ming algorithm. Besides, we add one new time dimension to
the classic payment determination Myerson lemma to derive
the payment.

Critical Price Calculation
Firstly, it’s necessary that we calculate the minimum bid re-
quired for i to win the single slot t: qti . During the Knap-
Sack ([Martello and Toth, 1990]) process of the allocation
algorithm, we use 2-dimensional array F [k][w] to denote the
maximum value the auctioneer can get from the first k agents
with w instances. Suppose i is the last agent of the all the
agents to be considered (as the sequence in the dynamic pro-
gramming algorithm does not matter), we have:

F [n][w] = max{F [n−1][W−wi]+vi, F [n−1][W]} (15)

When the function max takes the former term, agent i wins.
Otherwise, agent i loses. Thus, by the definition of critical
price, we have:

qti = max{F [n− 1][W]− F [n− 1][W − wi], 0} (16)

Then, we can calculate P t
i , the critical price for agent i to

win li contiguous slots (to finish her jot) starting from slot
t(t ∈ [ai, di − li − 1]):

P t
i = max

t′∈[t,t+li−1]

qt
′

i

f
t′−t
li

(17)

Payment Derivation
Lemma 2. (Extended Myerson) In the online auction setting
where agents’ values vary with time:

(a) An allocation rule x is implementable if and only if it is
monotone.

(b) Monotonicity of x implies there is a unique payment rule
for interval of one agent such that the mechanism (x, p)
is DSIC.

Proof. We will show the proof of the unique payment by giv-
ing derivation of the payment using the monotonicity prop-
erty.

The allocation x of our setting is a 0-1 monotone curve. We
cleverly invoke the stringent DSIC constraint to narrow down
the candidate of p to a single one.

Use t(z) to denote the earliest time slot that agent i will
win when her initial bid is z. Consider 0 ≤ y < z, suppose
agent i has private valuation z and submit the false bid y, we
have:

[f(t(z))z + d(t(z))]x(z)− p(z) ≥ [f(t(y))z + d(t(y))]x(y)− p(y)

(18)
The left side of (18) is the utility of bidding z, the right

side of (9) is the utility of bidding y.

Similarly, suppose agent i has private valuation y and sub-
mit the false bid z, we have:

[f(t(y))y + d(t(y))]x(y)− p(y) ≥ [f(t(z))y + d(t(z))]x(z)− p(z)
(19)

The left side of (19) is the utility of bidding y, the right side
of (19) is the utility of bidding z.

Use the symbol ◦ to denote the compound function and
oving p(z) and p(y) to the same side of the inequalities, we
have the restrictions:

[F ◦ t(z)y +D ◦ t(z)]x(z)− [F ◦ t(y)y +D ◦ t(y)]x(y)

≤ p(z)− p(y)

≤ [F ◦ t(z)z +D ◦ t(z)]x(z)− [F ◦ t(y)z +D ◦ t(y)]x(y)

Denote the function F ◦ t ∗ x as function R, D ◦ t ∗ x as
function S, we have:

y[r(z)− r(y)] + S(z)− S(y)
≤ p(z)− p(y)

≤ z[r(z)− r(y)] + S(z)− S(y)
(20)

Take the limit: lim
y→z

(11) , with the restriction of two sides,

we get:

jump in p at z = z∗jump inR at z+jump in S at z (21)

Naturally, we assume p(0) = 0. We can then get the interme-
diate form of the payment for a certain candidate i,

pi(bi, b−i) =

l∑
k=1

zk ∗ jump in Ri atzk + jump in Si at zk

(22)
where Ri = Fi ◦ ti ∗ xi, Si = Di ◦ ti ∗ xi. And z1, z2, ..., zl
are the breakpoints of the function ti(b) in the range [0, bi]
(since Fi and Di are continue.)

The determination of breakpoints of the function ti(b) is
not hard. It relies on the critical prices of i over the available
time period:{P t

i |t ∈ [ai, di)} and the variation function of
i’s bid over time. Intuitively, we increase the initial bid bi
and observe the critical points where the curve of function
of i’s bid over time intersects the set {P t

i |t ∈ [ai, di]}, as
illustrated in the example below:

Figure 1: Intuitive example of finding the breakpoints of ti(b)

Here is an intuitive example,
In the example, Fi(t) is in the exponential form: Fi(t) =

η(t − ai)(0 < η < 1). In fact, it’s not required that bti de-
crease with time. Here we use the example only for sim-
plicity of demonstration. We observe that z1 =

P 6
i −Di(6)
Fi(6) ,

z2 =
P 3

i −Di(3)
Fi(3) and z3 =

P 1
i −Di(1)
Fi(1) are the breakpoints. And

P 5
i does not generate a breakpoint because for each initial bid

b, ti(b) corresponds to the earliest time slot (i.e., time slot 1).
The jumps and breakpoints zk(k ∈ {1, 2, 3}) are marked in
Fig.2.

Figure 2: Function ti(b) with the breakpoints and jumps
marked (example)

As for the common case, we give a generalized algorithm
to determine the breakpoints of function ti(b) and the cor-
responding piece wise constant function. Firstly, we calcu-
late the minimum initial bid for i to win li slots from slot
t(t ∈ [ai, di)). Yet, not all the candidate initial bid are real
breakpoints, in the while loop, we check if the current can-
didate is invalidated by previous validate ones (i.e., finding a
non-decreasing subsequence).

After invoking algorithm 2, we get the function ti(b) which
is illustrated by Fig. 3.

Finally, following equation (22), with the initial bid bi
given, we can get the corresponding payment:

Figure 3: Function ti(b) with the breakpoints marked

pi(bi, b−i) = z1Fi ◦ ti(1) +Di ◦ ti(1)
+
∑k=p

k=2{zk|Fi ◦ ti(zk)− Fi ◦ ti(zk−1) + |Di ◦ ti(zk)−Di ◦ ti(zk−1)|}
(23)

where z1 ≤ z2 ≤ ... ≤ zp ≤ bi ≤ zp+1 ≤ ... ≤ zl

Theorem 3. In the case where agents have decreasing val-
ues, our mechanism can resist agent i from improving her
utility by setting its arrival time a

′

i > ai or departure time
d
′

i < di.

Proof. Use u
′

i and ui be i’s utilities when announcing the
false arrival time and departure time and when announcing
the true type respectively. Let p

′

i and pi be the i’s payment in
each case. If i’s job gets done in both cases, according to the
payment formula (23), we have p

′

i ≥ pi. Then suppose agent
i honestly reports her value and gets allocated at slot t and t′

respectively, we have, ui = vti − pi ≤ vt
′

i − p
′

i = u
′

i.

5 Numerical Results
We implement our design in C++, agents’ arrivals are as-
sumed to be poison process. We show the change of social
welfare, average winning delay, average winning loss with
the number of agents as well as the preemption factor. To
get the result of the off-line case, we set preemption factor to
infinity (i.e., no preemption exists.) We take the average of
1000 runs to get the results.

The evaluation results on social welfare are shown in Fig-
ure 4. With the agent number increases, the social welfare
increases. We observe that when preemption factor is set at 3,
the performance is the best, only within an around 2 compet-
itive ratio with the off-line optimal solution. When the fac-
tor is reduced to 0.5 (i.e., fierce preemption) or increased to
10000 (i.e., nearly no preemption) the social welfare is worse.

Figure 5 presents the evaluation results of revenue. Same
with social welfare, we see that setting preemption factor at 3
makes the performance better. When the factor is reduced to
0.5 (i.e., fierce preemption) or increased to 10000 (i.e., nearly

Figure 4: Comparison on Social Welfare

Figure 5: Comparison on Revenue

no preemption) the revenue is decreased, whose performance
are worse than that of the off-line optimal solution when num-
ber of agents is more than 350. The reason is mainly that
when number of agent increase, the preemption happens more
frequently and fewer initially allocated agents can keep pos-
sessing the resources until its job ends. Consequently, we
arrive at the conclusion that introducing the preemption to
an appropriate extent can effectively increase revenue of the
auctioneer.

Figure 6: Comparison on Average Wining Delay

Figure 6 shows the evaluation results on average winning
delay. Figure 7 shows the evaluation results on average valua-
tion loss, which are almost proportional to the results of win-
ning delay. We can observe that our mechanism with various

Figure 7: Comparison on Average Valuation Loss

preemption factor all achieve lower average winning delay
than off-line optimal solution. In our solution, as preemption
is allowed to happen, the winners can get allocated sooner as
long as their initial bid is high enough. Besides, when pre-
emption exists, the higher the factor (i.e., the more we restrict
preemption), the larger the average winning delay is. It is
compatible with our expectation. As we have set the num-
ber of slots to be finite which can affect the performance of
our design, we find that the results on average winning delay
and average valuation loss do not grow monotonously with
number of agents. Particularly when the number of agents is
around 100, our design achieves the lowest delay.

6 Related Work
In the literature of multiagent system and economics, online
mechanism design is an important topic. There have been ex-
tensive research in this field. [Lavi and Nisan, 2000] initiated
the study of online auction in the domain of computer sci-
ence. [Parkes and Singh, 2003], [Gershkov and Moldovanu,
2010] and [Nisan et al., 2007] developed online variants of
Vickrey-Clarke-Groves (VCG) mechanisms. Their focus is
on Bayesian-Nash incentive compatibility and on a model of
future supply, as well as future availability to tackle with the
problem of lack of knowledge of future arrivals (e.g., [Parkes
and Singh, 2003] used an MDP-type framework for predict-
ing future arrivals). As for the early applications of the online
mechanism, [Friedman and Parkes, 2003] suggested the al-
location of Wi-Fi bandwidth at Starbucks and [Porter, 2004]
proposed the model for scheduling of jobs on a server. How-
ever, none of the mechanisms mentioned above considered
time varying values of agents as well as introducing preemp-
tion to improve the auction efficiency.

Later in 2005, [Hajiaghayi, 2005] studied the problem of
online auction of a single and re-usable item over a finite
time interval in the model-free settings. They derived the
lower bound competitive ratios for these designs. [Xu and Li,
2009] proposed online auction designs with spectrum reuse
and preemption which did not solve the problem of cheating
on arrival and departure time. [Zhou and Zheng, 2009] de-
signed truthful auctions with resource reuse by using periodic
auctions. [Deek et al., 2011] integrated online resource allo-
cation and pricing with flexible preemption and guaranteed
truthfulness in arrival/deadline. However, [Deek et al., 2011]

did not consider time varying and assumed that the demand
can only be a single channel.

Furthermore, [Wu et al., 2014] considered online auctions
with discounting values which assumes single unit demand
and single unit length of agents’ job. However, the assump-
tions are rarely met in reality. Besides, its pricing strat-
egy is complicated and does not apply to the general cases
(e.g., time varying values, agents’ different time varying fac-
tor functions.) [Gerding et al., 2011] proposed an interesting
online auction protocol for electric vehicles charging, where
owners have non-increasing marginal valuations for each sub-
sequent unit of electricity. Strictly speaking, although the
value vector is non-increasing in their settings, one element
of the vector, which maps to value for one item in our setting,
dose not vary with time.

7 Conclusions
We consider the online auctions with multi-units instances
where agents have time varying values. We propose a semi
strategy-proof mechanism. Our design resists bid-cheating in
the general case and resist misreport of arrival and departure
times in the special decreasing value case. In addition, we use
preemption factor to adjust agents’ values to improve auction
efficiency.

There remain some problems to be worked on in the future:

• Multiple non-identical items. In this work, we assume
the instances to be allocated are identical. But assum-
ing non-identical instances seems closer to reality. Still
use online resource allocation in cloud computing as an
example, one may require multiple kinds of resources
(e.g., CPU and RAM) simultaneously.

• Resisting misreports in the general case. Another direc-
tion is to consider the methods to resist agents’ gain in
utility when reporting later arrival or early departure in
the varying values case.

References
[Deek et al., 2011] Lara Deek, Xia Zhou, Kevin Almeroth,

and Haitao Zheng. To preempt or not: Tackling bid and
time-based cheating in online spectrum auctions. In IN-
FOCOM, 2011.

[Friedman and Parkes, 2003] Eric J Friedman and David C
Parkes. Pricing wifi at starbucks: issues in online mech-
anism design. In Proceedings of the 4th ACM conference
on Electronic commerce, 2003.

[Gerding et al., 2011] Enrico H Gerding, Valentin Robu,
Sebastian Stein, David C Parkes, Alex Rogers, and
Nicholas R Jennings. Online mechanism design for elec-
tric vehicle charging. In The 10th International Con-
ference on Autonomous Agents and Multiagent Systems-
Volume 2, 2011.

[Gershkov and Moldovanu, 2010] Alex Gershkov and
Benny Moldovanu. Efficient sequential assignment with
incomplete information. Games and Economic Behavior,
68(1):144 – 154, 2010.

[Hajiaghayi, 2005] Mohammad T Hajiaghayi. Online auc-
tions with re-usable goods. In Proceedings of the 6th ACM
conference on Electronic commerce, 2005.

[Lavi and Nisan, 2000] Ron Lavi and Noam Nisan. Com-
petitive analysis of incentive compatible on-line auctions.
In Proceedings of the 2nd ACM Conference on Electronic
Commerce, 2000.

[Martello and Toth, 1990] Silvano Martello and Paolo Toth.
Knapsack problems: algorithms and computer implemen-
tations. John Wiley & Sons, Inc., 1990.

[Nisan et al., 2007] Noam Nisan, Tim Roughgarden, Eva
Tardos, and Vijay V Vazirani. Algorithmic game theory,
volume 1. Cambridge University Press Cambridge, 2007.

[Parkes and Singh, 2003] David C Parkes and Satinder P
Singh. An mdp-based approach to online mechanism de-
sign. In Advances in Neural Information Processing Sys-
tems, 2003.

[Porter, 2004] Ryan Porter. Mechanism design for online
real-time scheduling. In Proceedings of the 5th ACM con-
ference on Electronic commerce, 2004.

[Shi et al., 2014] Weijie Shi, Linquan Zhang, Chuan Wu,
Zongpeng Li, and Francis Lau. An online auction frame-
work for dynamic resource provisioning in cloud comput-
ing. In The 2014 ACM international conference on Mea-
surement and modeling of computer systems, 2014.

[Wu et al., 2014] Fan Wu, Junming Liu, Zhenzhe Zheng, and
Guihai Chen. A strategy-proof online auction with time
discounting values. In Twenty-Eighth AAAI Conference
on Artificial Intelligence, 2014.

[Xu and Li, 2009] Ping Xu and Xiang-Yang Li. Online mar-
ket driven spectrum scheduling and auction. In ACM
Workshop on Cognitive Radio Networks, 2009.

[Zhou and Zheng, 2009] Xia Zhou and Heather Zheng.
Trust: A general framework for truthful double spectrum
auctions. In INFOCOM, 2009.

