
Making Time-stepped Applications Tick in the Cloud

Tao Zou†, Guozhang Wang†, Marcos Vaz Salles‡∗,
David Bindel†, Alan Demers†, Johannes Gehrke†, Walker White†

†Cornell University ‡University of Copenhagen
Ithaca, NY Copenhagen, Denmark

{taozou, guoz}@cs.cornell.edu, vmarcos@diku.dk,
{bindel, ademers, johannes, wmwhite}@cs.cornell.edu

ABSTRACT
Scientists are currently evaluating the cloud as a new platform.
Many important scientific applications, however, perform poorly
in the cloud. These applications proceed in highly parallel discrete
time-steps or “ticks,” using logical synchronization barriers at tick
boundaries. We observe that network jitter in the cloud can severely
increase the time required for communication in these applications,
significantly increasing overall running time.

In this paper, we propose a general parallel framework to process
time-stepped applications in the cloud. Our framework exposes a
high-level, data-centric programming model which represents ap-
plication state as tables and dependencies between states as queries
over these tables. We design a jitter-tolerant runtime that uses
these data dependencies to absorb latency spikes by (1) carefully
scheduling computation and (2) replicating data and computation.
Our data-driven approach is transparent to the scientist and requires
little additional code. Our experiments show that our methods im-
prove performance up to a factor of three for several typical time-
stepped applications.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management—Systems

General Terms
Algorithms, Languages, Performance

Keywords
Parallel frameworks, database optimizations, cloud computing

1. INTRODUCTION
Many important scientific applications are organized into logical

time steps called ticks. Examples of such time-stepped applications
include behavioral simulations, graph processing, belief propaga-
tion, random walks, and neighborhood propagation [3, 8, 12, 14,
32]. They also include classic iterative methods for solving linear

∗Work performed while author was at Cornell University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOCC’11, October 27–28, 2011, Cascais, Portugal.
Copyright 2011 ACM 978-1-4503-0976-9/11/10 ...$10.00.

 0

 0.5

 1

L
at

en
cy

 [
m

s]

Message Number

(a) Weblab Instances

 0

 70

L
at

en
cy

 [
m

s]

Message Number

(b) EC2 Small Instances

 0

 2.5

 5

L
at

en
cy

 [
m

s]

Message Number

(c) EC2 Cluster Instances

 0

 35

L
at

en
cy

 [
m

s]

Message Number

(d) EC2 Large Instances

Figure 1: Latency in Our Weblab Cluster and in EC2

systems and eigenvalue problems [4]. These applications are typ-
ically highly data parallel within ticks; however, the end of every
tick is a logical barrier. Today these applications are usually im-
plemented in the bulk synchronous model, which advocates global
synchronization as a primitive to implement tick barriers [44].

The bulk synchronous model has allowed scientists to easily de-
sign and execute their parallel applications in modern HPC centers
and large private clusters. However, the use of frequent barriers
makes these codes very sensitive to fluctuations in performance.
As a consequence, most modern HPC centers allocate whole por-
tions of a cluster exclusively for execution of an application. This
model works well for heavy science users, but is not ideal for mid-
range applications that only need to use a few hundred compute
nodes [39]. In particular, these mid-range users have to wait on
execution queues for long periods, sometimes hours or even days,
to get to run their jobs. This significantly lengthens the time-to-
solution for a number of scientific research groups worldwide.

This paper examines what happens when we take these scientific
applications off those private, well-behaved, expensive computing
platforms and run them in the cloud. As the next generation com-
puting platform, the cloud holds both promise and challenges for
large-scale scientific applications [19, 39]. On the one hand, the
cloud offers scientists instant availability of large computational
power at an affordable price. This is achieved via low-overhead vir-
tualization of hardware resources [47, 48, 49]. On the other hand,
the common practice of using commodity interconnects and shared
resources in the cloud alters fundamental assumptions that scien-
tific applications were based on in the past.

One critical assumption which does not hold in the cloud is that
there is a stable, low-latency interconnect among compute nodes.
Recent experimental studies have demonstrated that the cloud suf-
fers from high latency jitter [42, 45]. We have confirmed this obser-
vation by measuring the TCP round-trip times for 16 KB messages
in several environments, as shown in Figure 1. These environments
include the Cornell Weblab, which is a modest dedicated cluster
of machines interconnected by Gigabit Ethernet, and Amazon EC2
cloud instances in the 32-bit “Small”, 64-bit “Large” and 64-bit
“Cluster Compute” categories. Note that the scales of the y-axes
differ significantly. Communication in the Weblab is well-behaved,
with latencies tightly distributed around the mean. The 32-bit EC2
instances have poor performance, with high average latency and
high variance. The 64-bit EC2 instance categories show acceptable
average latency, but suffer frequent latency “spikes” more than an
order of magnitude above the mean. Even the cluster compute in-
stances, advertised for HPC applications, show the same effect.

Time-stepped applications that are programmed in the bulk syn-
chronous model suffer dramatically from this latency jitter. Sup-
pose a message from process Pi to process Pj is delayed by a la-
tency spike during global synchronization. Pj then blocks and can-
not start its tick until it gets unblocked by the arriving message.
If computational load is balanced, Pj will be late sending its own
messages for the next tick. This in turn will create a latency wave
across the cluster, which is hard to compensate for in parallel ap-
plications.

The HPC community has invested significant work in optimiz-
ing communication for time-stepped applications [1, 6, 29]. How-
ever, these optimization techniques were developed using a model
of fixed, unavoidable latency for sending a message across a dedi-
cated network, and not for the unstable, unpredictable latency that
characterizes the cloud. Furthermore, many of these previous tech-
niques can only be applied to applications whose computational
logic can be formulated as a sparse linear algebra problem. [18]
This specialization significantly impairs the productivity of sci-
entists who want to develop new applications without regard for
which optimizations to use for communication. A general pro-
gramming model for time-stepped applications that can abstract the
messy latency characteristics of the cloud is currently missing.
Contributions of this Paper. In this paper we describe a general,
jitter-tolerant parallel framework for time-stepped scientific appli-
cations. By taking a data-centric approach, we shield developers
from having to implement communication logic for their appli-
cations. Our data-driven runtime automatically provides multiple
generic optimizations that compensate for network jitter. In sum-
mary, this work makes the following contributions:

1. We observe that logical barriers in time-stepped applications
usually encode data dependencies between subsets of the applica-
tion state. Our programming model allows developers to abstract
application state as tables, and express the data dependencies as
functions over queries (Section 4).

2. We present an efficient jitter-tolerant runtime, by which time-
stepped applications specified in our programming model are exe-
cuted in parallel. Our implementation uses two primary techniques:
scheduling based on data dependencies and replication of data and
computation (Section 5). A formal description of our model and
correctness proofs of our algorithms appear in Appendix A.

3. In an experimental evaluation, we show that our runtime sig-
nificantly improves the performance of a wide range of scientific
applications in Amazon EC2. We observe gains of up to a factor of
three in throughput for several time-stepped applications coded in
our programming model (Section 6).

We start our presentation by defining time-stepped applications
(Section 2) and summarizing our approach (Section 3).

2. TIME-STEPPED APPLICATIONS
A time-stepped application is a parallel scientific application or-

ganized into logical ticks. Processes in these applications proceed
completely in parallel within a tick and exchange messages only
at tick boundaries. Today, most of these applications are imple-
mented in the bulk synchronous model, which introduces logical
global barriers at the end of a tick [44]. The conceptual simplicity
of this model has led to its widespread adoption by a large number
of scientific applications [3, 4, 8, 12, 14, 32].

Time-stepped application developers typically follow proven de-
sign patterns to improve parallel efficiency. First, developers usu-
ally choose to exploit data parallelism within a tick, since it pro-
vides for very fine-grained parallel computations. Second, develop-
ers strive to architect their applications for high locality of access
so that they can minimize the amount of information exchanged
among processes at logical barriers. We illustrate these design pat-
terns in the following example, which we use throughout this paper.
Running Example: Behavioral Simulations. Behavioral simula-
tions model complex systems of individual, intelligent agents, such
as transportation networks and animal swarms [12, 14]. In these

V

R

simulations, time is discretized into
ticks; within a tick, the agents concur-
rently gather data about the world, rea-
son on this data, and update their states
for the next tick [46]. For instance,
Couzin et al. used this type of simu-
lation to study information transfer in
schools of fish [14]. An illustration of
this simulation is shown on the right.
Within a tick, each fish agent inspects
the current velocities of other visible
fish to determine its new velocity for the next tick. In addition,
informed individuals balance these social interactions with a pre-
ferred direction (e.g., a food source) to determine movement. Two
application parameters determine how far a fish can see or move
within a tick. The former is termed visibility, denoted V, while the
latter is termed reachability, denoted R.

Given visibility and reachability constraints, we can partition the
simulated space and assign each spatial partition to a different pro-
cess (dotted lines in the figure). The processing of a tick is data-
parallel: each process executes the tick logic for each fish agent
in its partition independently, calculating its new state. When all
the fish agents in some partition have been updated, we say this
partition has been stepped to the next tick. Notice, however, that
processing of a fish requires access to the state of all neighbor fish
within distance V as its context. Therefore, processing of a parti-
tion requires not only computing the new state for all fish within
the partition, but also knowledge of which fish move between par-
titions. Such dependencies for a partition in space can be found by
expanding the partition rectangle by both the visibility and reacha-
bility parameters. As these parameters typically represent a small
fraction of the simulated space, it is clear that the fish simulation
exhibits strong locality.

Many other important applications, such as graph processing
platforms [37] and iterative solvers [4], are time-stepped and there-
fore designed to exploit data parallelism and locality. We develop
two additional examples of such applications in Appendixes B.1
and B.2. They correspond to an iterative method, Jacobi itera-
tion [4], and a graph processing application, PageRank [8].

3. OUR APPROACH
As we have mentioned before, due to their use of logical bar-

riers bulk synchronous implementations of time-stepped applica-
tions are extremely vulnerable to latency. There has been signifi-
cant work in the past to compensate for fixed latency in these ap-
plications [1, 6, 29]. However, applying these techniques to a new
time-stepped application requires non-trivial redesign of the appli-
cation’s computational logic as well as its underlying communica-
tion logic. In addition, making these techniques work in the pres-
ence of large latency variance in the cloud remains a challenging
task. We tackle both of these challenges simultaneously by provid-
ing a general parallel framework for scientists which exploits prop-
erties of time-stepped applications to hide all details of handling
latency jitter. Our framework abstracts time-stepped applications
into an intuitive data-driven programming model so that scientists
only need to focus on the computational logic of their applications.
The framework then executes the program in an associated jitter-
tolerant runtime for efficient processing. By carefully modeling
data dependencies and locality of the application in our program-
ming model, our jitter-tolerant runtime is able to schedule useful
computation automatically and efficiently during latency spikes.

More specifically, our programming model abstracts the appli-
cation state as a set of relational tables. Conceptually, each tick of
the computation takes these tables from one version to the next. In
order to capture data parallelism and locality, we let the application
developers specify a partitioning function over these tables, as well
as model the data dependencies necessary for correct computation.

Modeling data dependencies efficiently is not trivial. The naive
approach would be to specify dependencies directly on the data,
creating a large data dependency graph among individual tuples.
Unfortunately, the overhead of tracking dependencies at such a
fine granularity would be very large. Our programming model
takes a different approach: We compactly represent sets of tuples
by encoding them as queries. Data dependencies are then mod-
eled by functions that define relationships between queries. This
approach introduces the complexity of ensuring that dependency
specifications on queries are equivalent to those on the underlying
data. Once we formally prove the correctness of these relationships,
however, we obtain a programming model that can naturally ex-
press locality and dependencies at very low overhead. All the com-
plexity of managing dependency relationships on queries is hidden
inside our runtime implementation.

As an example, consider the fish simulation above. The appli-
cation state is a table containing each fish as a separate tuple. We
model the partition assigned to each process as a query – encoded
by a rectangle in the simulation space. As computation proceeds
over several ticks, we automatically ensure that data items are cor-
rectly updated and respect the partition query. To achieve this,
we can apply a function to the partition query that returns another
query corresponding to the partition’s rectangle enlarged by how
far fish can see. This query thus encodes the read dependencies of
the partition. Similarly, we can apply another function to the lat-
ter query to obtain a rectangle further enlarged by how far fish can
move. This third query encodes both the read and write dependen-
cies of the partition. We describe our programming model in detail
in Section 4. This programming model is not language-specific and
we anticipate implementations in different languages will emerge.

Based on the dependencies abstracted as queries, the jitter-
tolerant runtime controls all aspects of the data communication be-
tween processes on behalf of the application. The runtime ensures
that the right data is available at the right time to unblock compu-
tation and overcome jitter. As we show in Section 5.1, the run-
time takes advantage of the structure of dependency relationships

Table 1: Programming Model
St stands for any possible global state S in execution at time step t.

List<Query> PART(int n)

Partitions the global state so that it can be distributed to n processes.
The partitioning is represented by a list of n queries that select subsets
of the global state which should be given to each process.

State NEW(Query q)

Initializes the local state according to q. Typical implementations of
this function read the local state selected by q from a distributed file
system.

State STEP(State toStep, State context)

Steps the application logic for every tuple in the toStep state by one tick
and returns new values. The STEP function is only allowed to inspect
tuples in the state given as context .

Query RD(Query q)

Calculates the read dependencies of q. It returns a query that captures
all tuples needed in context to correctly step q(St).

Query RX(Query q)

Calculates the read exclusiveness of q. It returns a query that captures
all tuples in q(St) that can be correctly stepped by only using q(St) as
context .

Query WD(Query q)

Calculates the write dependencies of q. It returns a query p such
that correctly stepping p(St) returns a state that contains all tuples in
q(St+1).

Query WX(Query q)

Calculates the write exclusiveness of q. It returns a query p such
that correctly stepping q(St) returns a state that contains all tuples in
p(St+1).

boolean DISJOINT(Query q0, Query q1)

Tests whether the queries q0 and q1 can have a nonempty intersection.
It returns false if it is possible for q0 and q1 to ever select a tuple in
common.

to synchronize efficiently. First, our runtime restricts communica-
tion to only those processes that are dependency neighbors. This
technique reduces the communication cost by replacing global syn-
chronization by local synchronization. However, it neither removes
nor relaxes synchronization points. To deal with variance in mes-
sage latency during synchronization, our runtime further optimizes
communication using two techniques: dependency scheduling and
computational replication. The goal of dependency scheduling
(Section 5.2) is to continue computation on subsets of the applica-
tion state whose dependencies are locally satisfied when a latency
spike occurs. In that case, we can advance computations to future
steps on subsets of the state instead of getting blocked. Computa-
tional replication (Section 5.3) uses redundant data and its respec-
tive computation both to communicate less often and to unblock
even more computation internal to a process. Hence, this technique
can be used to complement dependency scheduling by providing
additional flexibility at synchronization points.

4. PROGRAMMING MODEL
In this section, we describe the programming model offered by

our jitter-tolerant runtime. Table 1 summarizes the functions we
require application developers to instantiate. We explain them in
detail in the following subsections.

4.1 Modeling State and Computation
Global State. A time-stepped program logically has a global state
that is updated as part of some iterative computation. We model
this global state as a set of relational tables. Each tuple in a ta-
ble is uniquely identified, and may contain a number of attributes.
For example, the global state of the fish simulation introduced in
Section 1 can be represented by the table:

Fish(id, x, y, vx, vy).

Here, id is a unique identifier for a fish. The attributes (x,y) and
(vx,vy) represent a fish’s position and velocity, respectively. For
simplicity of presentation, we assume that the global state con-
sists of a single table in first normal form, i.e., cells are single-
valued [36]. Our techniques can be extended to multiple tables and
structured attributes.

We remark that this table abstraction of state is purely logical.
The physical representation of state could include additional data
structures, such as a spatial index, to speed up processing. This sep-
aration allows us to model the state of a wide range of applications
with tables, while not forfeiting the use of optimized representa-
tions in an actual implementation. In our programming model, we
simply abstract state by an opaque State interface.

We denote the initial global state of the application by S0, and
the global state at the end of tick i by Si. S0 is typically gener-
ated dynamically or read from a file system. In the fish simulation,
for example, the initial state of the fish school gets loaded from
a checkpoint file. At each tick, updates to the state depend only
on the state at the end of the previous tick, and not the history of
past states. Thus, conceptually the time-stepped application logic
encodes an update function GSTEP, s.t.:

St+1 = GSTEP(St)

Partitioned Data Parallelism. Many time-stepped programs em-
ploy partitioned data parallelism, as observed in Section 2. Within
a tick, we operate on partitions of the global state in parallel. At the
end of the tick, we exchange data among processes to allow compu-
tation to advance again for the next tick. One has to make sure that
such data parallel executions are equivalent to iterated applications
of GSTEP to the global state.

To abstract data parallel execution in our programming model,
the programmer firstly informs our framework of a partitioning
method by implementing a partitioning function PART (Table 1).
PART takes the number of processes n, optionally reads a global
state, and outputs a list of n selection queries. A selection query Q
(or query, for short) is a monotonic operation for selecting a subset
of tuples from the global state of the application.1 It takes a global
state S and obtains a subset Q(S)⊆ S. The queries output by PART
must form a partition of the global state. That is, at any tick, apply-
ing the queries to the global state S results in n disjoint subsets that
completely cover S. For example, the fish simulation implements
the following PART function:
List<Query> PART(int n) {

File globalState = getGlobalStateFromCkpt();
QuadTree qt = QuadTree(globalState,n);
List<Query> queries = getLeafRectangles(qt);
return queries;

}

As shown above, the fish simulation builds a quadtree structure
containing exactly n leaves over the individual fish, while trying
1Monotonic queries maintain the containment relationship between
input states [36]. So adding tuples to a state cannot make a selection
query over this state return less tuples.

to balance the number of agents per leaf as much as possible [23,
40]. The result is a list of rectangles that partition the space. For
this example, these rectangles are the implementation of our selec-
tion queries, which are distributed to n distinct processes. Periodic
repartitioning may be required for load rebalancing, which can be
implemented as reinvocations of function PART.

Now suppose we break up the global state S into n disjoint
partitions Qi(S), s.t.

⋃n
i=1 Qi(S) = S. Unless the application is

embarrasingly parallel, we cannot guarantee that GSTEP(St) =⋃n
i=1 GSTEP(Qi(St)). This is because the correct computation of

partition Qi(S) may require GSTEP to inspect data from other par-
titions as context.

To address this problem, we introduce two more functions: a
local initialization function NEW(Q) and a local update function
STEP(A,B). The local initialization function NEW(Q) takes a
query Q calculated by the partition function PART. It creates the
local state of a process Pi, denoted Si, by applying Q to the global
state. Details on how Q is calculated are presented in Section 5.

The local update function STEP(A,B) takes as input two states:
a state A to compute on and a context state B. Note that tuples in
both A and B are read-only, while the output state contains updated
tuples in A and any other newly generated tuples from the result of
the computation. This function agrees with the standard update in
that:

STEP(S,S) = GSTEP(S), ∀global states S

In addition, we require STEP to be both partitionable and dis-
tributive for correct execution:

Property 1 (Partitionable). Let πid
(
S) denote the set of unique

identifiers in S. Then for any states Sa,Sb ⊆ S such that Sa∩Sb = /0,

πid
(
STEP(Sa,S)

)
∩πid

(
STEP(Sb,S)

)
= /0 (1)

Property 2 (Distributive). For any states Sa,Sb ⊆ S such that Sa∩
Sb = /0,

STEP(Sa,S)∪STEP(Sb,S) = STEP(Sa∪Sb,S) (2)

Property 1 guarantees that the outputs of computations on parti-
tions still forms a partition of the global state. Property 2 ensures
that independent computations on the subsets of the global state
can be recombined simply. These two properties are the key to par-
allelizing the computation. In practice, many of our time-stepped
applications perform updates on individual tuples while preserving
their key values, which respects the above two properties.

Returning to the fish simulation example, a single tick consists
of each fish inspecting other fish that it can see to decide its own
velocity for the next tick. This logic is coded in the following STEP
function:
State STEP(State toStep, State context) {

State result = getCleanState();
for (Fish f in toStep) {
for (Fish g in context, g visible to f) {

... // compute influence of g in f
}
if (isInformed(f)) {

...// balance with preferred direction
}
result.addFish(f, influence, balance);

}
return result;

}

The function STEP is applied to subsets of the fish relation,
which are composed of tuples representing individual fish. It is
easy to see that this STEP function is both partitionable and dis-
tributive.

RD(Q)
RX(Q)

Q

WX(Q)
WD(Q)

R

V

(a) Behavioral Simulation (b) PageRank

Q

Figure 2: RD , RX , WD and WX Functions

4.2 Modeling Data Dependencies
Everything we have specified so far would be required for any

data parallelization of a time-stepped application, and is not unique
to our programming model. However, we still need to model a key
aspect of time-stepped applications: data dependencies.

For applications that exhibit locality, stepping partition Qi(S) of
a process Pi may not require the entire global state as context. Yet,
the context has to be large enough to contain all data which the
computation over Qi(S) needs to read. As long as all such data is
included in the context state at every tick, STEP will generate the
same result as having the entire global state given as context. In
this case, we say that Qi(S) is correctly stepped.

Some of the context data required by STEP may not be in
the local partition, and thus needs to be gathered and replicated
from other processes. Therefore, the local state Si generated by
NEW(Qi) must at a minimum include this replicated data, in addi-
tion to the corresponding partition data Qi(S).

In a classic data parallel implementation, the developer would
need to hand-code this communication pattern for replication.
However, in our programming model, developers are only asked
to specify simple and intuitive dependency relationships between
queries, which are declared in the functions RD , RX , WD , and WX
(Table 1).

Figure 2(a) illustrates the implementation of the data dependency
functions for the fish simulation. Formal definitions of the proper-
ties these functions must respect can be found in Appendix A. As
mentioned in Section 2, a fish can only see as far as its visibility
range V. In this case, RD(Q) returns a query that contains all fish
visible to some fish in Q(S), for any global state S. In other words,
RD(Q) comprises the read dependencies for computations of fish
contained in Q(S), and thus can be used as the context to step Q(S).
Similarly, RX(Q) returns a query that contains all the fish that can-
not see (and thus do not depend on reads of) fish outside Q(S):

Query RD(Query q) {
Rect qr = (Rect) q;
return new Rect(qr.lowLeftX - V, qr.lowLeftY - V,

qr.upperRightX + V, qr.upperRightY + V);
}

Query RX(Query q) {
Rect qr = (Rect) q;
return new Rect(qr.lowLeftX + V, qr.lowLeftY + V,

qr.upperRightX - V, qr.upperRightY - V);
}

In our experience, these functions are easy to specify; indeed, de-
velopers typically think in these terms when developing parallel
applications.

As fish in our example are partitioned by their spatial locations,
movement of a fish over the course of the simulation can change its
responsible process. Therefore, computations over the local parti-
tion may need to write new data to other partitions within a tick.
Such write dependencies can be captured through functions WD
and WX . For example, suppose that the maximum distance a fish

can move within a tick is given by a reachability parameter R. In
this case, WD(Q) can return a query that extends Q by the reacha-
bility R. In other words, WD(Q) selects the set of tuples such that
correctly stepping this set produces all tuples that satisfy Q in the
next tick. Similarly, WX(Q) returns a query that shrinks Q by the
reachability R. Correctly stepping Q(S) produces all tuples that sat-
isfy WX(Q) in the next tick:
Query WD(Query q) {
Rect qr = (Rect) q;
return new Rect(qr.lowLeftX - R, qr.lowLeftY - R,

qr.upperRightX + R, qr.upperRightY + R);
}

Query WX(Query q) {
Rect qr = (Rect) q;
return new Rect(qr.lowLeftX + R, qr.lowLeftY + R,

qr.upperRightX - R, qr.upperRightY - R);
}

Not all time-stepped applications require the specification of all
four functions above. For example, consider a standard PageRank
computation. We can represent vertices in the graph as database
tuples, and implement PART with a graph partitioning algorithm,
such as METIS [28]. Figure 2(b) illustrates RD and RX in this
problem. RD(Q) includes Q plus any vertex with an edge outgoing
to a vertex contained in Q; RX(Q) includes only those elements of
Q whose incoming edges all come from vertices of Q. However,
since the graph structure is static and vertices only need to read
from their incoming neighbors, WD and WX are simply identity
functions. We include the full specification of PageRank using our
programming model in Appendix B.2.

Finally, our framework may need to operate on selection queries
in order to automatically set up the communication pattern for the
application. So we require programmers to specify one additional
function, DISJOINT, to test for query disjointness. In the case of
the fish simulation, the operation DISJOINT is easy to implement:
It is just rectangle disjointness.

5. JITTER-TOLERANT RUNTIME
We now describe how our jitter-tolerant runtime automatically

implements communication and schedules computation given the
primitives of our programming model. We assume that messages
are reliably delivered (i.e., packets are never lost), and that mes-
sages between any pair of processes are not reordered. However, as
we have discussed previously, messages may be delayed by latency
spikes. For simplicity, whenever it is clear from the context, in this
section we slightly abuse notation and use Qi to denote the subset
Qi(St) of a global state S at tick t.

5.1 Local Synchronization
Traditional bulk synchronous implementations of time-stepped

applications introduce global barriers between ticks: At the end of
each tick, processors need to block while synchronizing their up-
dated data with each other. The cost of these barriers is determined
by the arrival time of the last message in the tick. If we can reduce
the number of processes that need to synchronize at a barrier, we
can reduce their cost. We observe that the groups of processes that
need to synchronize with each other can be determined automati-
cally by leveraging the data dependencies among states encoded in
our programming model. If we can assert that a process will never
read from or write to another process during the computation, no
message exchanges are necessary between them.

The general condition under which two processes Pi and Pj must
synchronize falls naturally from this observation. Suppose that af-
ter applying the partitioning function PART, we associate its i-th

 RX WX(Q)

 (RX WX)3(Q)

 Q - RX WX(Q)

RD(Q)

Q

a) state at tick t
 is ready

b) step partition
 for t+1; send out
 data to neighbors

c) no messages yet;
 step nested state
 for t+2

d) further step nested
 states for t+3, t+4 ...
 when still no messages

e) messages finally
 received; update
 RD(Q) for t+1

f) finish computation
 for t+2; send out
 data to neighbors

g) messages again not
 received; compute
 partially for t+3

t

t

t+1

t+1

t+2

t+1

t+2

t+4

t+3

t+1

t+2

t+4

t+3

t+1

t+2

t+4

t+3

t+1

t+2

t+4

t+3

 (RX WX)2(Q)

 RX WX(Q)-(RX WX)2(Q)

Q

Figure 3: Dependency Scheduling.

Algorithm 1 Local Synchronization at Process Pi

Input: User-defined RD, WD , DISJOINT
Input: Qi and S0

i = NEW(RD(Qi))
Input: Number of timesteps T , Number of processors N
1: for t = 1 to T do
2: St

i = STEP(Qi(St−1
i),St−1

i);
3: for j = 1 to N do
4: if ¬DISJOINT

(
Qi,WD ◦RD(Q j)

)
then

5: SEND
((

WD ◦RD(Q j)
)
(St

i), j
)

6: end if
7: end for
8: for j = 1 to N do
9: if ¬DISJOINT

(
Q j,WD ◦RD(Qi)

)
then

10: S′ = RECEIVE(j)
11: St

i = St
i ∪S′

12: end if
13: end for
14: end for

and j-th output queries Qi and Q j with Pi and Pj, respectively.
Then, to determine if Pi should send messages to Pj, we invoke
the following test:2

¬DISJOINT
(
Qi,WD ◦RD(Q j)

)
The idea is that RD(Q j) is complete upon having all tuples gener-
ated by correctly stepping WD ◦RD(Q j). So we can safely assert
that process Pi will never need to communicate with Pj unless Qi
may ever include tuples in WD ◦ RD(Q j). If the above test suc-
ceeds, we call Pi a neighbor of Pj.

Algorithm 1 shows how to replace global barriers with local syn-
chronization using user-instantiated RD and WD. The data is par-
titioned among processes according to PART, and we initialize the
local state Si of a process Pi to its partition data along with the
corresponding read dependency. The STEP function is applied in
parallel for each tick (Line 2). At tick boundaries, each process
only exchanges messages with other processes that satisfy the con-

2The operator ◦ is the classic function composition operator, ap-
plied from right to left.

dition above (Lines 3 to 13). To ensure correct execution, processes
synchronize their appropriate read and write dependencies.
Correctness and Efficiency. Theorem 1 in Appendix A.2 states
the correctness of Algorithm 1 by demonstrating that it is equiva-
lent to iteratively applying GSTEP to the global state. We expect
Algorithm 1 to suffer performance degradation in the presence of
network jitter. We explore how to address this deficiency in the
next sections.

5.2 Dependency Scheduling
Note that although the communication pattern we derive above

may avoid global barriers, processes with dependencies still need
to synchronize at the end of every tick. As a result, network jitter
in the cloud may still lead to long waits for incoming messages at
these synchronization points. To deal with this problem, we intro-
duce dependency scheduling, which advances partial computations
over subsets of the tuples that do not depend on those incoming
messages. We can find these subsets by making use of functions
WX and RX: if a process is responsible for a partition Q, then the
set returned by WX(Q) cannot be affected by data generated from
other processes within a tick. RX ◦WX(Q) further refines this set to
tuples that only depend on data inside of WX(Q) for their computa-
tion. Therefore, it is safe to advance computation on RX ◦WX(Q)
before receiving messages from any processes.

For concreteness, suppose process P at tick t computes the par-
tition specified by query Q, as illustrated in Figure 3(a). We can
safely advance Q to the next tick t +1 (Figure 3(b)). At the end of
this computation, we can check if messages have been received. If
not, we can apply the above construction recursively, leading to the
series:

RX ◦WX(Q),(RX ◦WX)
2(Q), . . . ,(RX ◦WX)

d(Q)

where parameter d, provided by the application developer, is the
maximum depth allowed for scheduling. This idea is illustrated in
Figures 3(c) and (d). Note that it is possible that for some d′ < d,
(RX ◦WX)

d′(Q) is already an empty set. If this is the case, we can
stop further applying RX ◦WX .

When the messages from neighbors finally arrive, we can use
them to update the tuples in RD(Q) to the next tick t + 1 (Fig-
ure 3(e)). Now, we can finish the remaining computation in Q for
t + 2 (Figure 3(f)). Intuitively, finishing computation for earlier

Algorithm 2 Dependency Scheduling at Process Pi

Input: User-defined WX, RX , DISJOINT
Input: Qi and S0

i = NEW(RD(Qi))
Input: Number of timesteps T , Scheduling depth d

1: Initialize tc = tw = 1, DEPTH[1] = 0, DEPTH[2..T] =−1
2: while tw ≤ T do
3: if tc ≤ T then
4: /* schedule next computation to execute */
5: Q1

i = (RX ◦WX)
DEPTH[tc](Qi)

6: if DEPTH[tc +1] =−1 then /* not initialized */
7: Stc

i = STEP(Q1
i (S

tc−1
i), Stc−1

i)
8: else
9: Q2

i = (RX ◦WX)
DEPTH[tc+1]−1(Qi)

10: Stc
i = Stc

i ∪STEP
(
(Q1

i \Q2
i)(S

tc−1
i), Stc−1

i
)

11: end if
12: /* send data if tc’s computation finished */
13: if DEPTH[tc] = 0 then
14: SEND(Stc

i)
15: end if
16: DEPTH[tc +1] = DEPTH[tc]+1; tc = tc +1
17: end if
18: repeat /* wait if nothing is schedulable */
19: if TRYRECEIVE(tw) then
20: Update Stw

i from messages received.
21: tw = tw +1; tc = tw; DEPTH[tc] = 0
22: end if
23: until −1 < DEPTH[tc]≤ d
24: end while

ticks has higher priority over advancing computation even further
to future ticks. This is because we want to send messages to our
neighbors to unblock their computations as early as possible.

In order to advance the remainder Q− RX ◦WX(Q) to t + 2,
however, we may need to inspect data in RX ◦WX(Q) at t + 1 as
context. The maintenance of these multiple versions is illustrated
in Figure 3 by the multiple horizontal bars.

Suppose at this point the next messages from our neighbors are
again delayed. We can then continue the computation by stepping
RX ◦WX(Q)− (RX ◦WX)

2(Q), advancing the contained tuples to
tick t +3 (Figure 3(g)).

Algorithm 2 shows the detailed description of the distributed de-
pendency scheduling algorithm for each process Pi. As with Algo-
rithm 1, we assume a total number of ticks T for the computation.
The maximum scheduling depth is specified by d. The algorithm
maintains a book-keeping array DEPTH, which holds the depth of
the computation for each tick t, as well as a window of tick num-
bers [tw, tc] (Line 1). tw is the tick still waiting for messages from
neighbors, while tc is the tick to advance next.

At each iteration, Pi schedules computation whenever possible
by calling the STEP function (Lines 3 to 17). To decide what to
schedule next, Pi first obtains the subset at the current depth of tc
(Line 5). If the next tick tc+1 has not been scheduled yet, the whole
subset at tc can be advanced (Lines 6 to 8). Otherwise, Pi needs to
update the difference between this subset and the one currently at
tc + 1 (Lines 9 to 11). In either case, the computation of STEP
requires the state as of time tc−1 as its context.

Whenever the depth of a tick reaches zero, its computation is
complete. This implies Pi can send the corresponding update
messages out to its neighbors and start working on the next tick
(Lines 13 to 16). Finally, Pi waits for messages from neighbors

until some computation can be scheduled (Lines 18 to 23). When
all incoming messages for tick tw have arrived, we update Stw

i and
set tc such that the whole of Qi(S

tw+1
i) becomes ready for compu-

tation. Note that the user-instantiated DISJOINT function is called
implicitly in the TRYRECEIVE and SEND operations. Therefore,
Pi only blocks if nothing can be scheduled (i.e., the computation at
tc has already reached the maximum allowable depth). The latter
condition could easily be replaced by a check of whether the subset
at the depth of tc contains any data.
Correctness and Efficiency. Theorem 2 in Appendix A states
the correctness of Algorithm 2. With efficient query implementa-
tion and proper precomputation of dependency functions (Lines 5
and 9), the overhead of Algorithm 2 itself is negligible, since the
body of the outer loop always schedules one STEP invocation, ex-
cept when the process is blocked by communication.

5.3 Computational Replication
With dependency scheduling, we can overlap part of the future

computation of a process with communication in the presence of
a latency spike. However, since the data that depends on incom-
ing messages cannot be updated, dependency scheduling does not
allow the process to finish all the computations of the current tick
and send out messages to its neighbors for the current tick. Conse-
quently, latency waves still get propagated to other processes. To
tackle this problem, we explore the idea of computational repli-
cation, which pays some extra computation to allow processes to
complete the current tick in the absence of incoming messages.
With computational replication, we redundantly perform the com-
putation of neighbors locally, i.e., we emulate message receipts
from them. This of course assumes that the computation of a tick
can be made deterministic. Gladly, the STEP function already re-
spects Properties 1 and 2. So in all time-stepped applications we
studied, achieving determinism only required us to additionally en-
sure that the state of pseudorandom number generators were in-
cluded in the state of the application.

Recall that at tick t, a process Pi steps Qi and waits for mes-
sages from its neighbors to update RD(Qi). In order to emulate
the receipt of these messages, the process needs to locally store
RD ◦WD ◦RD(Qi). The outermost layer of read dependency allows
us to correctly step WD ◦RD(Qi). This computation produces all
the writes necessary to obtain the state for the next tick of RD(Qi).
We can apply this idea recursively with more replicated data: By
having m layers of replicas (i.e., RD ◦ (WD ◦ RD)

m(Q)), we can
proceed to tick t +m without receiving any messages.

Since layers of replicas allow a process to step multiple ticks
without receiving any messages, we can use them to reduce the fre-
quency of message rounds from every tick to only every k ticks. Of
course, if we have m layers of replicas, processes must exchange
messages at least every k = m+ 1 ticks. When k is exactly m+ 1,
computational replication corresponds to a generalization of the
“ghost cells” technique from the HPC community (see Section 7).
However, we observe that sometimes it may be more profitable to
have k ≤ m in the cloud, since this allows for a second use of em-
ulating message receipts: to unblock computation local to our pro-
cess during a latency spike.

Again, we first illustrate this idea through an example, in which
k = 2 and m = 3. Figure 4(a) shows three layers of replicas, up to
RD ◦ (WD ◦RD)

3(Q) for a process with partition query Q at tick
t. As we only send messages every two ticks, we need to emulate
message receipts for tick t +1. This implies stepping WD ◦RD(Q)
so that RD(Q) reaches t+1. After that, we can step Q to t+2 (Fig-
ures 4(b) and (c)). At this point, we send messages to our neigh-
bors. Suppose now the incoming messages from our neighbors are

 RD (WD RD)3(Q)

Q

 (WD RD)3(Q)-WD RD(Q) WD RD(Q)

b) step partition and
 dependencies for t+1

Q (WD RD)2(Q)-Q

 WD RD(Q)

Q

 (WD RD)3-WD RD(Q)

t

t+1

t+2

t

t+2

t

t+1

t+3

t t

t+1

t+2

t+2

t+3

t+4

t+1

t

t+2

t+3

t+4

t

t+1

t+2

t+1

t+2

t+3

a) state at tick t
 not ready

f) step partition and
 dependencies for t+3

g) messages finally
 arrive, update
 replicas for t+2

c) step partition for
 t+2; send out data
 to neighbors

d) data not receoved;
 use replicas to
 partially update t+1

e) compute partially
 for t+1

h) step partition for
 t+4; send out data
 to neighbors

i) network slows down again;
 do the same as in d)

Figure 4: Computational Replication.

delayed by a latency spike. We can then use the additional layers of
replicas to run useful computation over Q. The first step is to com-
pute over (WD ◦RD)

3(Q)−WD ◦RD(Q) at tick t and then over
(WD ◦RD)

2(Q)−Q at tick t +1 (Figures 4(d) and (e)). Note that
here we compute over two layers of replicas at a time because we
need to ensure that write dependencies are resolved for the inner-
most layer. Now we are again ready to compute over WD ◦RD(Q),
advancing RD(Q) to t +3 (Figure 4(f)).

Suppose at this moment the messages from our neighbors finally
arrive. We can append the data in those messages for tick t + 2
to the corresponding tuples (Figure 4(g)). As we had RD(Q) at
t + 3, we can proceed and step Q to t + 4, sending messages out
again to our neighbors (Figure 4(h)). The above procedure can be
repeated if another latency spike again delays incoming messages
(Figure 4(i)).

Algorithm 3 describes the distributed computational replication
algorithm for each process Pi. The input to this algorithm is the
same as for Algorithm 2, except that we have the two parameters k
and m instead of parameter d. Given these parameters, process Pi
will only communicate with its neighbors every k steps, but keep
m replica layers. Similarly to Algorithm 2, we keep a WIDTH
book-keeping array. This time it indicates the amount of replica-
tion at each tick. Tick number tw represents the tick we are waiting
on data from our neighbors (Line 1). Finally, as in Algorithm 2,
TRYRECEIVE and SEND operate over all appropriate neighbors,
and implicitly make use of DISJOINT.

At each tick in the computation, Pi first processes the data in Qi
and sends messages to its neighbors if the current tick is a multiple
of k (Lines 3 to 6). Then Pi tries to receive incoming messages. If
the messages from its neighbors have arrived, Pi can set the width
of tw to the full replication width m, as all replicas are updated with
the data in the messages. After that, Pi advances tw by k, since
the next message will only come k steps later. If the messages are
not available, Pi needs to emulate their receipts by first finding the
innermost replica layer that can be advanced (Lines 11 to 15). The
difference in width between this replica layer and the subsequent
layer must be at least two, as otherwise processing the replica layer
will not unblock the subsequent layer. When Pi finds such a replica
layer, it can process the tuples in this layer and increase its width
(Lines 16 to 20). After enough replica layers are processed and the
width of tick t drops to zero, Pi can then advance Qi to the next tick
without blocking on communication.

For ease of exposition, Algorithm 3 presents pure replication
without combining it with dependency scheduling; however, these

Algorithm 3 Computational Replication at Process Pi

Input: User-defined RD, WD , DISJOINT, k, m
Input: Qi and S0

i = NEW(RD ◦ (WD ◦RD)
m(Qi))

Input: Number of timesteps T

1: Init tw = 1, WIDTH[1..T] =−1, WIDTH[0] = m
2: for t = 1 to T do
3: St

i = STEP(Qi(St−1
i),St−1

i)
4: if t mod k = 0 then
5: SEND(St

i)
6: end if
7: while WIDTH[t] =−1 do
8: if TRYRECEIVE(tw) then
9: Update Stw

i from messages received.
10: WIDTH[tw] = m; tw = tw + k
11: else /* try to calculate incoming updates */
12: p = t−1
13: while WIDTH[p]≤ WIDTH[p+1]+1 and

p≥ t−m do
14: p = p−1
15: end while
16: if WIDTH[p]> WIDTH[p+1]+1 then
17: Q1

i = (WD ◦RD)
WIDTH[p+1]+2

18: Q2
i = (WD ◦RD)

WIDTH[p+1]+1

19: Sp+1
i = Sp+1

i ∪ STEP
(
(Q1

i \Q2
i)(S

p
i),S

p
i
)

20: WIDTH[p+1] = WIDTH[p+1]+1
21: end if
22: end if
23: end while
24: end for

two techniques can work together and we show their combined ef-
fect in our experiments (Section 6).
Correctness and Efficiency. Theorem 3 in Section A states the
correctness of Algorithm 3. Similarly to Algorithm 2, the over-
head of Algorithm 3 can be reduced by efficient query implementa-
tion and proper precomputation of dependency functions (Lines 17
to 19). In addition, the redundant computations performed by the
algorithm are designed to be executed only during the time that the
process would be idle waiting on messages. Thus, as we expect the
value of m to be a small constant, we anticipate that the remaining
overhead of this algorithm be negligible.

6. EXPERIMENTS
In this section, we present experimental results for three differ-

ent time-stepped applications using our jitter tolerant runtime. The
goals of our experiments are two-fold: (i) We want to validate the
effectiveness of the various optimization techniques introduced in
Section 5 in a real cloud environment; (ii) We want to evaluate how
the optimizations introduced by our runtime can improve the paral-
lel scalability of these applications.

6.1 Setup
Implementation. We have built a prototype of our jitter-tolerant
runtime in C++. The runtime exposes the programming model de-
scribed in Section 4 as its API. All the communication is done using
MPI. In order to focus on the effects of network communication,
all our application code is single-threaded and we ran one runtime
process per virtual machine.
Application Workloads. We have implemented three realistic
time-stepped applications: a fish school behavioral simulation [14],
a linear solver using the Jacobi method [4], and a message-passing
algorithm that computes PageRank [8]. The fish simulation has
already been explained throughout the paper. Regarding parallel
processing, we use two-dimensional grid partitioning to distribute
the fish agents across processes. The implementation of this simu-
lation follows closely the example pseudocode shown in Section 4.

The Jacobi solver is a common building block used to accelerate
Krylov subspace methods such as conjugate gradients and to derive
smoothers for multigrid methods. It follows a communication pat-
tern among cells of the matrix with high spatial locality: At each
step, each cell needs to communicate its values to its spatial neigh-
bors. In our experiments, we implemented a 2D head diffusion
solver, in which each process is allocated a fixed-size 1,000 x 1,000
block of the matrix. Pseudocode for our implementation of this
method can be found in Appendix B.1.

For the PageRank algorithm, we used the U.S. Patent Citation
Network graph with 3,774,768 vertices and 16,518,948 edges in
our experiments [31]. In addition, we used the popular METIS
graph partitioning toolkit in PART to compute a per-vertex parti-
tioning of the input graph [28]. Pseudocode for PageRank is given
in Appendix B.2.

Our techniques target compensating for network jitter, and not
delays caused by systematic load imbalance. The reader is referred
to Hendrickson and Devine for a description of techniques for the
latter problem [23]. Nevertheless, our techniques may still be help-
ful when latency spikes exceed the delays caused by imbalanced
load. To fairly measure the contribution of our techniques to per-
formance, we have tuned the applications above so that load would
be as well balanced as possible among the executing processes. We
could achieve nearly perfect load balance for both the fish simula-
tion and the Jacobi solver. For PageRank, however, we were lim-
ited to the quality of the partitioning generated by METIS. In ad-
dition, as the fish simulation and Jacobi solver applications follow
a spatial communication pattern, by analyzing data dependencies
we can bound the number of neighbors for each process by a con-
stant. However, the same is not true of PageRank: the small-world
property of the graph structure of our dataset results in a nearly
all-to-all communication pattern. As a consequence, we expect the
effectiveness of our optimizations on this application to be reduced.

We tuned state sizes by partitioning the state up until we started
to observe diminishing returns on parallel efficiency. All of the
applications above operate over a modest-sized state smaller than
a few tens of megabytes per process. Even though our algorithms
may need to keep multiple versions of the updated parts of the state,
these additional copies fit comfortably in main memory.

In all the experiments, our metric is the overall tick throughput,
in agent (fish simulation) or cell (Jacobi solver) or edge (PageRank)
ticks per second.
Hardware Setup. We ran experiments in the Amazon Elastic
Compute Cloud (Amazon EC2). In order to conduct large scale
experiments within our limited budget, we chose to use large in-
stances (m1.large) in all experiments. Each large instance has two
2.26GHz Xeon cores with 6MB cache and 7.5GB main memory.
We also forced all instances to reside in the same availability zone.
Given the similar distribution of message latencies between these
instances and cluster instances (Figure 1), we believe our results
will be qualitatively similar to runs in these other instances as well.
Unless otherwise stated, all our experiments are run with 50 large
instances.

We have packaged our experimental setup as a public Amazon
Linux AMI; documentation and source code are available at [13].

6.2 Methodology
Clearly, our measurements are affected by the network condi-

tions at Amazon EC2. Given that this is a cloud environment, we
cannot guarantee identical network conditions across multiple ex-
periments. As a result, absolute measurements are not repeatable.
So we must devise a scheme to obtain repeatable relative rankings
of the techniques we evaluate.

We exercised care in a number of aspects of the experiment
setup. First, as we mentioned previously, we only allocated in-
stances within the same availability zone. In addition, we made
sure to use the same set of instances for all of our measurements of
all methods. The rationale is that we wish to get a network setup
that is as invariant as possible across measurements.

Unfortunately, this is not enough. Even with the same set of in-
stances in the same availability zone, we have observed that the
Amazon EC2 network is not only unstable with a high rate of ab-
normal message delays, but also exhibits high median latency vari-
ation over time. In order to conduct meaningful comparisons be-
tween different techniques, we must account for this temporal vari-
ation in network performance. As a result, the following proce-
dure is carried out to obtain the performance measurements. First,
we execute all techniques in rounds of fixed order. A performance
measurement consists of at least 20 consecutive executions of these
rounds. We report standard deviation with error bars. This method-
ology seeks to ensure that each round sees roughly comparable dis-
tributions of message latencies. We had to tune manually the max-
imum running time of each round so that it was smaller than the
time it took for the network to exhibit large changes in message
delay distributions. Nevertheless, we were still able to ensure the
execution of each technique in each round to be of at least 500 ticks.

Figure 5 illustrates this temporal variation effect. We compare
the different techniques from Section 5 on the Jacobi solver ap-
plication. As explained above, we alternate the execution of these
techniques in each round. The x-axis plots 20 executions of such
rounds, while the y-axis shows the raw elapsed time for each tech-
nique at each round. We can observe that the results of different
techniques exhibit the same temporal trends due to variance in net-
work performance; at the same time, the measurements still clearly
demonstrate which techniques are superior.

While relative rankings among techniques are made compara-
ble by the above methodology, we stress that the absolute values of
results shown in the figures in this section are not directly compara-
ble with each other. This is the case even if they are from the same
application and use the same technique with the same parameters,
given that we cannot control variations in network load over longer
time scales.

 0

 5

 10

 15

 20

 25

 30

 2 4 6 8 10 12 14 16 18 20

E
la

p
se

d
 T

im
e

[s
ec

]

Execution Rounds

Local
Scheduling
Replication

Figure 5: Variance Over Time: Jacobi

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1 2 3 4 5 6T
h
ro

u
g
h
p
u
t

[m
il

li
o
n
 a

g
en

t
ti

ck
s/

se
c]

Scheduling Depth

Scheduling

Figure 6: Scheduling: Fish Sim

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10

T
h
ro

u
g
h
p
u
t

[m
il

li
o
n
 e

d
g
e

ti
ck

s/
se

c]

Scheduling Depth

Scheduling

Figure 7: Scheduling: PageRank

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7T
h
ro

u
g
h
p
u
t

[m
il

li
o
n
 a

g
en

t
ti

ck
s/

se
c]

Replication, m

Replication, k=1

Figure 8: Replication, k = 1: Fish Sim

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7T
h
ro

u
g
h
p
u
t

[m
il

li
o
n
 a

g
en

t
ti

ck
s/

se
c]

Replication, m

Replication, k=2

Figure 9: Replication, k = 2: Fish Sim

 0

 1

 2

 3

 4

 5

 6

 4 5 6 7 8 9 10T
h
ro

u
g
h
p
u
t

[m
il

li
o
n
 a

g
en

t
ti

ck
s/

se
c]

Replication, m

Replication, k=5

Figure 10: Replication, k = 5: Fish Sim

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 Local Sch Rep Sch+Rep

T
h
ro

u
g
h
p
u
t

[b
il

li
o
n
 c

el
l

ti
ck

s/
se

c]

Methods

Figure 11: Effect of Combination: Jacobi

 0

 1

 2

 3

 4

 5

 6

 Local Sch Rep Sch+RepT
h
ro

u
g
h
p
u
t

[m
il

li
o
n
 a

g
en

t
ti

ck
s/

se
c]

Methods

Figure 12: Effect of Combination: Fish Sim

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100T
h
ro

u
g
h
p
u
t

[m
il

li
o
n
 a

g
en

t
ti

ck
s/

se
c]

Nodes

Sch + Rep
Local

Figure 13: Scalability: Fish Sim

6.3 Results
Effect of Individual Optimizations. Figure 6 shows the perfor-
mance of the fish simulation with dependency scheduling. When
the depth of scheduling is allowed to reach only a single tick for-
ward in time, tick throughput already increases by roughly 30%
when compared to local synchronization (i.e., Algorithm 1; we are
not comparing with the naive bulk synchronous implementation)
since the first layer of scheduling enables computation to overlap
with communication. Allowing even larger depth of scheduling
does not significantly improve throughput. That is because after
the messages are received from our neighbors, only a small amount
of computation is left to let us send messages for the next tick.
However, as we synchronize every tick, the benefit of computing
the second layer earlier, rather than over the communication time
of the next tick, is minimal. As shown in Figure 7, we observe sim-
ilar behavior for PageRank. The results for the Jacobi solver are
omitted due to lack of space: They are also similar to the results of
fish simulation.

Given the above effect, we need to communicate less often than
every tick in order to realize the potential benefits of scheduling.
This can be achieved by computational replication, which we first
evaluate independently. Figures 8 to 10 display the results for the
fish simulation. Each figure shows a different setting for the com-
munication avoidance parameter k. Given the value of k, we vary
the number of layers of replication m. In Figure 8, throughput
reaches its peak at m = 2, dropping significantly after that point.
The reason is that as we communicate every tick, the message sizes
are small and communication cost is dominated by latency. Thus,

it is beneficial to send more than one layer of replicas together to
better compensate for jitter. However, as we increase the degree of
replication, the overhead in message sizes overshadows the benefits
in tolerance to jitter.

Figures 9 and 10 exhibit similar patterns. However, in Figure 10,
throughput increases from m = 8 to m = 9. In this situation, we in-
crease the size of replication information by only one eighth; how-
ever, now we are able to redundantly compute enough to send mes-
sages for the next communication round. This unblocks other pro-
cesses earlier, increasing performance. We have also tested many
other parameter settings for both the fish simulation and the Jacobi
solver. The best setting we could devise for the former was of k = 2
and m = 3; for the latter, k = 3 and m = 5.

For all of our experiments, we also measured separately the
breakdown of execution time into time spent in calls to the STEP
function, communication wait time, and time spent in all other parts
of the runtime. We observed that the latter time always corre-
sponded to at most 0.02% of execution time. This confirms our
expectations with respect to the efficiency of Algorithms 2 and 3
(Sections 5.2 and 5.3).

Finally, for the PageRank application, the small-world structure
of the graph we use implies a nearly all-to-all communication pat-
tern. In addition, even a one-hop dependency of a graph partition
can lead to a significant fraction of the whole graph. As replication
is obviously counterproductive in this situation, we do not show
experimental results with replication for this application.
Effect of Combined Optimizations. Figures 11 and 12 show the
effect of combinations of multiple optimizations. As we have seen

before, increasing the scheduling depth does not hurt throughput,
so in order to take maximum advantage of scheduling we set its
depth to 10. For replication, we use the best setting from the previ-
ous experiment.

While replication brings the largest benefit as an individual tech-
nique to both applications, replication combined with scheduling
shows even better performance. The improvement in throughput
using this combined technique is over a factor of 3 for the Jacobi
solver and around a factor of 2.5 for the fish simulation. This comes
from the fact that scheduling can absorb part of a latency spike
without increasing the size of messages exchanged among pro-
cesses. Therefore, it can help replication achieve higher throughput
without introducing any extra communication overhead.
Impact on Parallel Scalability. We measure the parallel scaleup
performance of our runtime by varying the number of instances
from 4 to 100 while keeping the average workload of each instance
constant. Figure 13 shows scalability results for the fish simula-
tion; the Jacobi solver shows similar trends. One can see that our
best combination of techniques can further improve the near-linear
scalability compared with local synchronization.

7. RELATED WORK
Previous literature has studied programming abstractions for sci-

entific applications as well as techniques to deal with latency in ex-
ecution environments. But this work has neither taken a general,
data-centric view of programming for these applications nor dealt
with the specific challenges posed by cloud environments.

There has been significant work on parallel frameworks for writ-
ing discrete event simulations. These systems are based on task
parallelism, and handle conflicts by either conservative or opti-
mistic protocols. Conservative protocols limit the amount of par-
allelism, as potentially conflicting events are serialized [10, 20].
Optimistic protocols, on the other hand, use rollbacks to resolve
conflicts [24]. Time-stepped applications typically eschew these
approaches, because the high frequency of local interactions causes
numerous conflicts and rollbacks, limiting scalability.

Since the mid-1990s, the Message Passing Interface (MPI) Stan-
dard has dominated distributed-memory high-performance com-
puting due to its portability, performance, and simplicity [21]. Even
in its early days MPI was criticized as inelegant and verbose, and
in domains where parallel applications evolve rapidly the relatively
low level of MPI programming is perceived as a significant draw-
back [22, 35]. Thus, there have been efforts to move away from
MPI. The DARPA High-Productivity Computing Systems (HPCS)
initiative [15] has funded several systems intended to provide at-
tractive alternatives to MPI, mostly based on new parallel lan-
guages. In some domains, it has been possible to shield application
developers from MPI with high-level application frameworks de-
signed by experts. For example, a recent flurry of work has focused
on graph processing without MPI [11, 26, 34, 37]. Unfortunately,
this work does not generalize to the wide class of bulk synchronous
applications. MPI remains the dominant programming paradigm
for this class of applications.

MPI’s low-level programming abstraction creates several diffi-
culties for developers wishing to port bulk synchronous applica-
tions to the cloud. In particular, dealing with jitter requires a sig-
nificant rewrite of the communication layer of most of these ap-
plications. Unfortunately, there is not yet consensus on the best
techniques to use.

The scientific computing literature includes many established
techniques for dealing with uniform communication latency. For
example, asynchronous communication primitives facilitate com-
munication hiding, and many bulk synchronous applications use

these primitives to overlap computation and communication. These
optimizations work best when communication latency is uniform
and predictable, and it can be difficult in practice to characterize
their effectiveness [41].

Grid-based MPI systems such as MPICH-G2 give application
developers mechanisms to adapt their applications for environ-
ments in which communication latencies are nonuniform due to
network heterogeneity [27]. Unfortunately, these systems do not
address dynamic latency variance within a single point-to-point
communication channel, which is common in the cloud.

The most scalable parallel algorithms do not just hide commu-
nication overhead; they also avoid communication at the expense
of performing some redundant computation. This idea has been
used for years in large-scale PDE solvers, where each process is
responsible for a part of a mesh surrounded by a layer of “ghost
cells” used to receive data from neighboring processes. By using
multiple layers of ghost cells, processes can effectively communi-
cate not at every tick, but once every several ticks. These ideas
have been extended to the more general setting of sparse linear al-
gebra [18]. While communicating less often certainly helps, this
technique alone cannot deal with latency spikes. Even if multi-
ple layers of ghost cells are used, when a message is scheduled to
be delivered the receiving process must block waiting for it. Intu-
itively, in order to tolerate a latency spike, whenever possible, the
receiving process should run some useful work that it can perform
until the delayed message arrives.

Other techniques from the HPC community target bulk syn-
chronous applications, such as balancing the computation and com-
munication load among processes [38], forming subgroups of pro-
cesses for global synchronization [6], and replacing the global syn-
chronization barriers with local synchronization by dynamically
exploiting locality during each time step [1, 29]. In contrast to
our approach, all of these methods block at synchronization points
if messages are not available. In order to deal with jitter, new tech-
niques need the flexibility to either take incoming messages at syn-
chronization points or proceed with useful work in case these mes-
sages are not available. Our scheduling and replication techniques
achieve this goal, generalizing and extending the special case of
ghost cells described above to enable both reduced communication
and jitter-tolerance.

Specific algorithms have been developed to accelerate conver-
gence of iterative methods, effectively reducing the total commu-
nication requirements. Examples include methods for graph algo-
rithms, such as fast convergence of PageRank [25, 30], as well as
for computation of large-scale linear systems and eigenvalue prob-
lems, such as Krylov subspace methods [4, 18]. While many of
these techniques change the communication pattern of applications
to accelerate execution, they do not generalize across different ap-
plications domains.

Data parallel programming languages provide automatic paral-
lelism over regular data structures such as sets and arrays [5, 7,
43, 16]. However, these approaches only support restricted data
structures, making it both unnatural and inefficient to express cer-
tain time-stepped applications, such as behavior simulations. In
addition, there is little support in these programming models for
declaring dependencies among subsets of data.

Emerging programming models for the cloud, such as MapRe-
duce [17] or DryadLINQ [50], have limited support for iterative
applications; a number of recent proposals target exactly this is-
sue [9, 33, 51]. Most of these optimizations add support to resident
or cached state to a MapReduce programming model. The basic as-
sumption is that the dominant factor in computation time is stream-
ing large amounts of data at every iteration. In contrast, this paper

looks at scientific applications with fast iterations where compu-
tation time typically exceeds data access time. In these scenarios,
network jitter is a fundamental optimization aspect.

In previous work, we have shown how database techniques can
bring both ease of programming and scalability to behavioral sim-
ulations [46], but we did not address how to tolerate network jitter.
Related is also Bloom, a declarative, database-style programming
environment for the development of distributed applications in the
cloud [2]; our work is not as ambitious as it only targets BSP sci-
entific applications and focuses on network jitter. A confluence of
BLOOM and CALM and our techniques is an interesting direction
for future work.

8. CONCLUSIONS
We have shown how time-stepped applications can deal with

large variance in message delivery times, a key characteristic of
today’s cloud environments. Our novel data-driven programming
model abstracts the state of these applications as tables and ex-
presses data dependencies among sets of tuples as queries. Based
on our programming model, our runtime achieves jitter-tolerance
transparently to the programmer while improving throughput of
several typical applications by up to a factor of three. As future
work, we plan to investigate how to apply our framework to legacy
code automatically or with little human input. Another interesting
direction is quantifying the energy impact of our redundant compu-
tation techniques and analyzing the resulting trade-off with time-to-
solution. Finally, we will investigate jitter-tolerance techniques for
a much wider class of applications, e.g., transactional systems and
replicated state machines.

9. REFERENCES
[1] R. D. Alpert and J. F. Philbin. cBSP: Zero-cost

synchronization in a modified BSP model. Technical report,
NEC Research Institute, 1997.

[2] P. Alvaro, N. Conway, J. M. Hellerstein, and W. R. Marczak.
Consistency Analysis in Bloom: a CALM and Collected
Approach. In CIDR, 2011.

[3] U. ang, C. Tsourakakis, A. P. Appel, C. Faloutsos, and
J. Leskovec. HADI: Mining radii of large graphs. TKDD,
2010.

[4] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato,
J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der
Vorst. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, 2nd Edition. SIAM,
Philadelphia, PA, 1994.

[5] G. Blelloch. Programming parallel algorithms. Commun.
ACM, 39:85–97, 1996.

[6] O. Bonorden, B. Juurlink, I. von Otte, and I. Rieping. The
paderborn university BSP (PUB) library. Parallel
Computing, 29(2):187–207, 2003.

[7] T. Brandes. Evaluation of high-performance fortran on some
real applications. In Proc. HPCN, 1994.

[8] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Computer Networks,
30(1-7):107–117, 1998.

[9] Y. Bu, B. Howe, M. Balazinska, and M. Ernst. HaLoop:
Efficient iterative data processing on large clusters. PVLDB,
3(1-2):285–296, 2010.

[10] K. M. Chandy and J. Misra. Asynchronous distributed
simulation via a sequence of parallel computations.
Commun. ACM, 24:198–206, 1981.

[11] R. Chen, X. Weng, B. He, and M. Yang. Large graph
processing in the cloud. In SIGMOD, 2010.

[12] C. Choudhury, T. Toledo, and M. Ben-Akiva. NGSIM
freeway lane selection model. Technical report, Federal
Highway Administration, 2004. FHWA-HOP-06-103.

[13] Cornell Database Group Website.
http://www.cs.cornell.edu/bigreddata/games.

[14] I. Couzin, J. Krause, N. Franks, and S. Levin. Effective
leadership and decision-making in animal groups on the
move. Nature, 433(7025):513–516, 2005.

[15] DARPA high productivity computing systems project.
http://www.highproductivity.org/.

[16] R. Das, Y. shin Hwang, M. Uysal, J. Saltz, and A. Sussman.
Applying the CHAOS/PARTI library to irregular problems in
computational chemistry and computational aerodynamics.
In Proceedings of the 1993 Scalable Parallel Libraries
Conference, pages 45–56, 1993.

[17] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI, 2004.

[18] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. A.
Yelick. Avoiding communication in sparse matrix
computations. In IPDPS, pages 1–12. IEEE, 2008.

[19] C. Evangelinos and C. N. Hill. Cloud computing for parallel
scientific hpc applications. In CCA, 2008.

[20] M. J. Feeley and H. M. Levy. Distributed shared memory
with versioned objects. In OOPSLA, 1992.

[21] W. Gropp. Learning from the success of mpi. In HiPC, 2001.
[22] P. B. Hansen. An evaluation of the message-passing

interface. SIGPLAN Not., 33:65–72, March 1998.
[23] B. Hendrickson and K. Devine. Dynamic load balancing in

computational mechanics. Computer Methods in Applied
Mechanics and Engineering, 184(2-4):485–500, 2000.

[24] D. R. Jefferson, B. Beckman, F. Wieland, L. Blume, M. D.
Loreto, P. Hontalas, P. Laroche, K. Sturdevant, J. Tupman,
L. V. Warren, J. J. Wedel, H. Younger, and S. Bellenot.
Distributed simulation and the time warp operating system.
In SOSP, 1987.

[25] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H.
Golub. Extrapolation methods for accelerating the
computation of pagerank. In WWW, 2003.

[26] U. Kang, C. E. Tsourakakis, and C. Faloutsos. PEGASUS: A
peta-scale graph mining system. In ICDM, 2009.

[27] N. T. Karonis, B. R. Toonen, and I. T. Foster. MPICH-G2: A
grid-enabled implementation of the message passing
interface. J. Parallel Distrib. Comput., 63(5):551–563, 2003.

[28] G. Karypis and V. Kumar. Multilevel k-way partitioning
scheme for irregular graphs. J. Parallel Distrib. Comput.,
48(1):96–129, 1998.

[29] J.-S. Kim, S. Ha, and C. S. Jhon. Efficient barrier
synchronization mechanism for the BSP model on
message-passing architectures. In IPPS/SPDP, 1998.

[30] C. P. Lee, G. H. Golub, and S. A. Zenios. A two-stage
algorithm for computing pagerank and multistage
generalizations. Internet Mathematics, 4(4):299–327, 2007.

[31] J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graphs over
time: densification laws, shrinking diameters and possible
explanations. In KDD, pages 177–187, 2005.

[32] F. Lin and W. W. Cohen. Semi-supervised classification of
network data using very few labels. In ASONAM, 2010.

[33] D. Logothetis, C. Olston, B. Reed, K. C. Webb, and
K. Yocum. Stateful bulk processing for incremental
analytics. In SoCC, pages 51–62, 2010.

[34] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. M. Hellerstein. GraphLab: A new parallel framework for
machine learning. In UAI, 2010.

[35] E. L. Lusk and K. A. Yelick. Languages for
high-productivity computing: the DARPA HPCS language
project. Parallel Processing Letters, 17(1):89–102, 2007.

[36] D. Maier. The Theory of Relational Databases. Computer
Science Press, 1983.

[37] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A system for
large-scale graph processing. In SIGMOD, 2010.

[38] L. S. Nyland, J. Prins, R. H. Yun, J. Hermans, H.-C. Kum,
and L. Wang. Modeling dynamic load balancing in molecular

dynamics to achieve scalable parallel execution. In
IRREGULAR, pages 356–365, 1998.

[39] L. Ramakrishnan, K. R. Jackson, S. Canon, S. Cholia, and
J. Shalf. Defining future platform requirements for e-Science
clouds. In SoCC, pages 101–106, 2010.

[40] H. Samet. The quadtree and related hierarchical data
structures. ACM Comp. Surv., 16(2):187–260, 1984.

[41] J. C. Sancho, K. J. Barker, D. J. Kerbyson, and K. Davis.
Quantifying the potential benefit of overlapping
communication and computation in large-scale scientific
applications. In SC, 2006.

[42] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime
measurements in the cloud: Observing, analyzing, and
reducing variance. PVLDB, 3(1):460–471, 2010.

[43] J. T. Schwartz, R. B. Dewar, E. Schonberg, and E. Dubinsky.
Programming with sets; an introduction to SETL.
Springer-Verlag New York, Inc., 1986.

[44] L. G. Valiant. A bridging model for parallel computation.
Commun. ACM, 33(8):103–111, 1990.

[45] G. Wang and T. S. E. Ng. The impact of virtualization on
network performance of Amazon EC2 data center. In
INFOCOM, pages 1163–1171, 2010.

[46] G. Wang, M. A. V. Salles, B. Sowell, X. Wang, T. Cao, A. J.
Demers, J. Gehrke, and W. M. White. Behavioral simulations
in mapreduce. PVLDB, 3(1):952–963, 2010.

[47] L. Youseff, K. Seymour, H. You, J. Dongarra, and R. Wolski.
The impact of paravirtualized memory hierarchy on linear
algebra computational kernels and software. In HPDC, pages
141–152, 2008.

[48] L. Youseff, R. Wolski, B. Gorda, and C. Krintz. Evaluating
the performance impact of Xen on MPI and process
execution for HPC systems. In VTDC, 2006.

[49] L. Youseff, R. Wolski, B. Gorda, and C. Krintz.
Paravirtualization for HPC systems. In ISPA Workshops,
pages 474–486, 2006.

[50] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K.
Gunda, and J. Currey. DryadLINQ: A system for
general-purpose distributed data-parallel computing using a
high-level language. In OSDI, 2008.

[51] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and
I. Stoica. Spark: Cluster computing withworking sets. In
HotCloud, 2010.

APPENDIX
A. FORMAL MODEL OF COMPUTATION

In this section, we provide a formal presentation of the time-
stepped model introduced in Section 4.

A.1 Data Dependencies
We refer the reader to Section 4 for the definitions of global state

and time-stepped application logic.
Section 4 also introduced function STEP. We now formalize the

constraints we need to place on the relationship between the two in-
put parameters of STEP. Properties 1 and 2 require that the stepping
state be a subset of the context state. In order to express data par-
allelism and adjust the layers of computation, we want a stronger
relationship.

Definition 1 (Read Data Dependency). For a given STEP and query
Q, we say Q≺R Q′ if and only if, for any state S, Q(S)⊆Q′(S) and

STEP
(

Q(S),S′
)
= STEP

(
Q(S),S

)
for all Q′(S)⊆ S′ ⊆ S (3)

The intuition of Definition 1 is that using Q′(S) as context is
sufficient to give us the correct results for Q(S), and adding more
tuples does not change this result. The functions RD and RX
in Section 4 are declared according to this definition, such that
∀Q,RX(Q)≺R Q and Q≺R RD(Q).

In the algorithms presented in this paper, we often break our de-
pendency sets up into several layers. The following proposition is
useful for combining these layers back together.

Proposition 1. For any queries Qa ≺R Q′a and Qb ≺R Q′b, we have
Qa∧Qb ≺R Q′a∧Q′b.

Proof Sketch. This result follows immediately from Property 2 and
Definition 1. �

Another challenge is the representation of write dependencies.
In the fish simulation example, the partitions are geometric regions,
and a fish may swim from one region to another. Fortunately, time-
stepped computation ensures that we need only look at the current
state, and not the history of migrations. So we only need to identify
the write dependencies at each time step, and use that to guide our
interprocess communication. This is the motivation for the follow-
ing definition.

Definition 2 (Write Data Dependency). For a given STEP and
query Q, we say Q ≺W Q′ if and only if, for any state S, Q(S) ⊆
Q′(S) and

Q
(

GSTEP(S)
)
= Q

(
STEP(S′,S)

)
for all Q′(S)⊆ S′ ⊆ S (4)

Intuitively, if Q ≺W Q′, we are guaranteed that no tuple outside
the state specified by Q′ will create tuples into the local state Q(St)
during any time step t. Therefore, by computing STEP(Q′(St),St),
we can obtain the complete Q(St+1) which already contains all pos-
sibly written data. In fact, the functions WD and WX in Section 4
are declared according to this definition, such that ∀Q,WX(Q)≺W
Q and Q≺W WD(Q).

A.2 Correctness of Algorithms
We now illustrate how we use this formal model to establish the

correctness of the algorithms presented in this paper.

Theorem 1 (Correctness of Algorithm 1). Let St
i be the value for

process Pi at line 13. Then
⋃

i Qi(St
i) = St .

Proof. We know from Property 2 and Definition 1 that

St+1 =
n⋃

i=1
STEP(Qi(St),RD(Qi)(St)) (5)

As each query Qi is monotonic, by Property 1 we only need to
prove Qi(St)⊆ St

i and RD(Qi)(St)⊆ St
i . As Q is properly contained

in RD(Q), Definition 2 ensures that Q ≺W WD(RD(Q)). Hence
DISJOINT guarantees that we communicate the right information
to ensure RD(Qi)(St)⊆ St

i by line 13. �

Theorem 2 (Correctness of Algorithm 2). Let Stw
i be the value for

process Pi at line 20. Then
⋃

i Qi(S
tw
i) = Stw .

Proof Sketch. Because of the nested loop in lines 18 to 23, we
need to show that the algorithm halts. In particular, we must
guarantee that TRYRECEIVE(tw) at line 19 eventually succeeds
for all tw. This argument proceeds by induction; assuming that
TRYRECEIVE(t) has succeeded for all processes for t < tw, then
DEPTH[tw] = 0 for all these processes and we execute line 14.

The rest of the proof is similar to the one for Algorithm 1, noting
that RX and WX work as the inverses of RD and WD , respectively.
The only major difference is handling the difference operations in
line 10. This follows from Proposition 1. �

Theorem 3 (Correctness of Algorithm 3). Let Stw
i be the value for

process Pi at line 9. Then
⋃

i Qi(S
tw
i) = Stw .

Proof Sketch. The proof uses many of the techniques from the cor-
rectness of Algorithms 1 and 2. Again, we can show that the algo-
rithm halts by proving that TRYRECEIVE(tw) at line 8 will eventu-
ally be successful if tw mod k = 0 using induction. Assuming that
TRYRECEIVE(t) has succeeded for all processes for t < tw such
that t mod k = 0, then all m layers of replicated are updated to
tw− k. Since m ≥ k−1, Q is able to proceed to tw without receiv-
ing any messages in between. So line 5 is guaranteed to execute.

The rest of the proof is also similar to the one for Algorithm 1.
In particular, we again make use of Proposition 1 to combine the
replicated layers. �

B. APPLICATION PSEUDOCODE

B.1 Jacobi Pseudocode
As mentioned previously in Section 6.1, we consider the pro-

totypical problem of solving a steady-state heat diffusion problem
using a regular 2D mesh. To solve this problem by Jacobi iteration,
each grid point needs to communicate its heat values to its four
spatial neighbors at each step.

It is easy to abstract this style of computation in our program-
ming model. Function PART creates a block partitioning of the
original matrix:

List<Query> PART(int n) {
File globalState = getGlobalStateFromCkpt();
List<BlockBoundary> bbs =

blockPartitionMatrix(globalState,n);
List<BlockQuery> queries = getBlockQuery(bbs);
return queries;

}

Each block query only needs to represent the ranges of indexes
that define the block. Applying proper dependencies of such block
query to the NEW function yields a submatrix for the corresponding
block, which is stored locally to a process.

The computation of a STEP is straightforward and is therefore
omitted. We iterate over the cells of the matrix block given as input
and execute the standard heat diffusion. Again, the runtime can
only generate correct calls to STEP if it can calculate an appropriate
context. So the developer must specify dependency functions. As
the structure of the matrix does not change during computation,
WD and WX are just identity. Functions RD and RX return queries
that obtain the cells in the neighborhood of the query given as input.

Query RD(Query q) {
MatrixRange m = (MatrixRange) q;
return new MatrixRange(m.lowLeftX() - 1, m.lowLeftY() - 1,

m.upperRightX() + 1, m.upperRightY() + 1);
}

Query RX(Query q) {
MatrixRange m = (MatrixRange) q;
return new MatrixRange(m.lowLeftX() + 1, m.lowLeftY() + 1,

m.upperRightX() - 1, m.upperRightY() - 1);
}

These queries either enlarge or shrink the matrix range by one in
each direction.

B.2 PageRank Pseudocode
As observed previously in Google’s Pregel framework, many

graph computations are easily expressible as time-stepped appli-
cations [37]. In the following, we show how to express PageRank
in our programming model.

We first observe that the graph structure itself does not change
during the computation of PageRank. So we can compute a parti-
tioning of the graph at the start, e.g., reusing a well-known graph
partitioning toolkit such as METIS [28], and use this partition-
ing throughout computation. The corresponding PART function is
shown as follows:

List<Query> PART(int n) {
File globalState = readGlobalStateFromCkpt();
PartitionMap pm = callMETIS(globalState,n);
List<PartitionQuery> queries = getPartitionQueries(pm);
for (PartitionQuery pq in queries) {

// precompute labels
pq.labelPartition(globalState);

}
return queries;

}

When we call METIS, we also label each vertex in the state with
a special attribute, its partition number. A partition query returns
all vertices with a given partition number. PART not only invokes
METIS, but also performs some precomputation on the vertices for
performance. In particular, we label the boundary vertices of a par-
tition with value 0. Every other vertex inside the partition gets label
i if it only has incoming edges from vertices labeled j ≥ i−1, and
every vertex outside the partition gets label i if it has outgoing edges
to vertices labeled j = i+1.

This precomputation allows us to determine dependency rela-
tionships more efficiently at runtime by encoding queries on labels
and on partition numbers.

The STEP function is the familiar PageRank computation, with
context containing all neighbors of vertices in the input set:

State STEP(State toStep, State context) {
State result = getGraph();
for (Vertex v in toStep) {

Vertex v’ = result.getVertex(v);
v’.rank = 0.0;
for (Vertex u in context, u directed to v) {
// compute contribution of u to v
v’.rank += u.rank / u.outDegree

}}
return result;

}

Our runtime needs to ensure only correct applications of function
STEP. For this, the developer only needs to provide specifications
of the data dependency functions. As in the Jacobi example, the
graph structure remains unchanged during computation, and thus
functions WD and WX are again identity. Queries obtain vertex
sets inside and across partitions according to the partition number
and the labels inside partitions. Given that these labels are assigned
in the precomputation done by function PART, we can express func-
tions RD and RX as queries on these labels:

Query RD(Query q) {
// get incoming neighbors in same partition
Query rdQuery = new LabelQuery(q.label() - 1);
return rdQuery;

}

Query RX(Query q) {
Query rxQuery = new LabelQuery(q.label() + 1);
return rxQuery;

}

Function RD expands the current vertex set by obtaining all ver-
tices with labels smaller by one. As with the Jacobi example, these
queries expand or contract the corresponding vertex sets by one
hop. Function RX operates only on partition local data, selecting
vertices with label greater by one.

	Introduction
	Time-Stepped Applications
	Our Approach
	Programming Model
	Modeling State and Computation
	Modeling Data Dependencies

	Jitter-Tolerant Runtime
	Local Synchronization
	Dependency Scheduling
	Computational Replication

	Experiments
	Setup
	Methodology
	Results

	Related Work
	Conclusions
	References
	Formal Model of Computation
	Data Dependencies
	Correctness of Algorithms

	Application Pseudocode
	Jacobi Pseudocode
	PageRank Pseudocode

