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ABSTRACT
The Generalized Second Price (GSP) auction is the primary
auction used for selling sponsored search advertisements. In
this paper we consider the revenue of this auction at equi-
librium. Most previous work on the revenue of GSP focuses
on envy free equilibria of the full information version of this
game. Envy-free equilibria are known to obtain at least the
revenue of the VCG auction. Here we consider revenue in
equilibria that are not envy-free, as well as in equilibria for
the Bayesian, partial information version of this game.

We show that, at any Nash equilibrium of the full-information
game, the GSP auction obtains at least half of the revenue of
the VCG mechanism excluding the payment of a single par-
ticipant. This bound is tight, and we give examples demon-
strating that GSP cannot approximate the full revenue of
the VCG mechanism either in the full information game,
or in the Bayesian partial information game (even if agent
values are independently drawn from identical uniform dis-
tributions).

We then consider the revenue properties of the GSP auction
with reserve prices. We prove that if agent values are drawn
from a distribution satisfying the monotone hazard rate as-
sumption, then the GSP auction paired with an appropriate
reserve price generates a constant fraction (approximately
6.06) of the optimal revenue. We also show that the GSP
revenue without reserve prices approximates the VCG rev-
enue in the Bayesian game when the click-through rates are
well separated.

Finally, we consider the tradeoff of maximizing revenue and
social welfare. We introduce a natural convexity assumption
on the click-through rates, and show that it implies that the
revenue-maximizing equilibrium of GSP in the full informa-
tion model will necessarily be envy-free. In particular, it is
possible to maximize revenue and social welfare simultane-
ously. On the other hand, without this convexity assump-
tion, we demonstrate that revenue may be maximized at
a non-envy-free equilibrium that generates a socially ineffi-
cient allocation.
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1. INTRODUCTION
The sale of sponsored search advertising space is a primary
source of revenue for Internet companies, and responsible
for billions of dollars in annual advertising revenue [7]. The
Generalized Second Price (GSP) auction is the premier method
by which sponsored search advertising space is sold; it is cur-
rently employed by Google, Bing, and Yahoo. However, use
of the GSP auction is not universal: the classical VCGmech-
anism was recently adopted by Facebook for its AdAuction
system [12]. In fact, Google also considered switching its
advertising platform to a VCG auction some years ago, but
eventually decided against it [19]. This apparent tension
begs the question of how these mechanisms compare. There
are many factors in comparing possible mechanisms: The
welfare of three distinct user groups (the experience of the
searchers, the welfare of advertisers, and the revenue of the
auction) are all important considerations, as well as the sim-
plicity of the auction design. In this paper, we take the point
of view of the seller and compare the revenue properties of
the GSP and VCG auctions.

Let us first briefly describe a simple model of the market, in-
troduced by Edelman et al [7] and Varian [20]. In sponsored
search, a user makes a query for certain keywords in a search
engine and is presented with a list of relevant advertisements
in addition to organic search results. We assume a“pay-per-
click” pricing model, in which the advertiser pays a fee to
the search provider whenever a user clicks on an advertise-
ment. There are multiple positions (or “slots”) in which an
ad may appear, and the probability that a user clicks an ad
depends on its slot. This is modeled as a click-through rate
(CTR) associated with each slot, that being the probability
of getting a click for an advertisement in that position. The
search engine must therefore determine which ads to place
where, and determine a price per click for each slot. This is
done via an auction in which advertisers make bids, which
are viewed as the advertiser’s maximum willingness to pay
per click. We note that this simplified model as a one-shot



game does not account for advertiser budgets, so models the
case when budgets are large. Also, for simplicity of presen-
tation, we will assume that all ads have the same quality
(i.e. click-through rate does not depend on the advertiser
selected for a slot), though our results extend to the version
of the model with separable click-though rates.

The VCG and GSP mechanisms differ in the way in which
the aforementioned auction is resolved. In both auctions, ad-
vertisers are assigned slots in order of their bids, with higher
bidders receiving slots with higher CTRs. The two auctions
differ in their payment schemes. In VCG, each agent pays
an amount equal to his externality on the other agents: the
decrease in the total welfare of all other agents caused by
the presence of this advertiser. By contrast, in GSP each
advertiser simply pays a price per click equal to the next
highest bid. The VCG auction has the strong property of
being truthful in dominant strategies. The GSP auction
is not truthful, and is therefore prone to strategic bidding
behavior. Indeed, strategic manipulation of bids is well-
documented in historical GSP bidding data [6].

Since the VCG mechanism is truthful, the revenue of VCG is
simply the revenue generated when all bidders declare their
values truthfully. If bidders declare their values truthfully in
a GSP auction, GSP generates strictly more revenue than
VCG. However, rational agents may not declare their val-
ues truthfully when participating in a GSP auction. Thus,
when studying the revenue of GSP, we consider the revenue
generated at a Nash equilibrium; that is, a profile of bidding
strategies such that no advertiser can improve his utility by
unilaterally deviating. Our goal, then, is a comparison be-
tween the revenue of the VCG auction and the revenue of
GSP at equilibrium. Note that since there will not be a
unique Nash equilibrium of GSP in general, there may be
many possible revenue amounts generated by GSP.

This basic model of the GSP auction was introduced by
Edelman et al [7] and Varian [20]. Both papers consider the
full information case, and study a more restrictive notion
of equilibrium than Nash, which they call envy-free or sym-
metric equilibrium respectively. They show that all envy-free
equilibria are efficient and generate at least as much revenue
as the VCG auction. Both [7] and [20] present informal ar-
guments to support the equilibrium selection for this class
of equilibria, but there is no strong theoretical model that
explains this selection [4, 9]. Further, the notion of envy-free
equilibria applies only in the full information game. In fact
[11] shows that an efficient equilibrium may not exist in the
Bayesian game (even when the valuations are drawn from
identical uniform distributions). However, for the broader
class of all Nash equilibria, the revenue properties of GSP
are not understood. The primary focus of this paper is to
study the revenue of the GSP auction, in relation to VCG,
over the set of all Nash equilibria (including inefficient equi-
libria). We ask: how is the revenue of GSP affected if one
cannot assume that agents necessarily converge to an envy-
free equilibrium?

In Sections 3 and 5 we consider the full information game.
For many keywords the search auction is repeated many
times each day. In general, the repeated nature of this auc-
tion allows for complex strategic interactions. However, if

agents learn each others’ bidding preferences over time, and
converge to a stable bidding pattern, then this outcome is
well modeled by a full-information Nash equilibrium of the
one-shot game.

In Section 4 we consider the Bayesian version of this game.
For many keywords, the ability of a player to exactly pre-
dict his opponents types is impaired. Due to complicating
factors such as the budgets, quality scores (which depend
on many characteristics of each query, such as origin, time,
search history of the user), and the underlying ad allocation
algorithm, each auction is different (even those triggered by
the same search term). To capture this measure of uncer-
tainty, one might consider equilibria in a Bayesian partial
information model, to determine whether these sources of
uncertainty affect auction revenue.

A common tool for increasing revenue in settings of partial
information is to apply reserve prices, where bids are re-
jected unless they meet some minimum bid r. Indeed, when
bidders’ values are identically distributed from a distribu-
tion satisfying the regularity condition1, the revenue-optimal
truthful auction for our sponsored search market is the VCG
auction with an appropriate reserve price [17]. Edelman and
Schwarz [8] show that in GSP auctions reserve prices have
a surprisingly large effect on revenue.

Results. We begin by considering lower bounds on the rev-
enue generated by GSP. One might wish to bound the rev-
enue of GSP with respect to the revenue of VCG, but we
demonstrate that the revenue of GSP at equilibrium may be
arbitrarily less than that of VCG. However, we can bound
the revenue of GSP with respect to a related benchmark:
we prove that at any Nash equilibrium, the revenue gener-
ated by GSP is at least half of the VCG revenue, excluding
the single largest payment of a bidder. Thus, as long as the
VCG revenue is not concentrated on the payment of a single
participant, the worst-case GSP revenue approximates the
VCG revenue to within a constant factor. Furthermore, this
result also holds when an arbitrary reserve price is set upon
the sale of a slot. We also provide an example illustrating
that the factor of 2 in our analysis is tight.

One might hope that the gap between GSP and VCG rev-
enue is an artifact of agents having very different values, or
an artifact of the full-information setting. To the contrary,
we demonstrate that this gap is prevalent in a broad setting:
even in a partial information setting where agents’ values
are drawn independently from identical uniform distribu-
tions, the gap between the VCG revenue and GSP revenue
at Bayesian-Nash equilibrium can be arbitrarily large.

However, we show that if we allow the auctioneer to include
reserve prices the GSP auction always obtains a constant
fraction of the VCG revenue. Recall that if agent values
are drawn identically from a distribution that satisfied the
monotone hazard rate assumption, then it is well-known,
that the revenue-optimal truthful mechanism is the VCG
auction with Myerson’s reserve price [17]. We prove that,

1Many common distributions are regular, including all uni-
form, normal, and exponential distributions.



assuming monotone hazard rates, the GSP auction paired
with this same Myerson reserve price obtains a constant frac-
tion of the optimal revenue, where our constant is c ≈ 6.06.
We emphasize that this is the first such bound on the rev-
enue obtained by GSP with reserve prices. Our analysis
makes use of known bounds for the social welfare generated
by GSP at Bayes-Nash equilibrium [5, 16], so any improve-
ment in those bounds would translate into a corresponding
improvement in our revenue bound.

Further, we also show that without using reserve prices, if
the slot CTRs satisfy a certain well-separatedness condition
- namely that the CTRs of adjacent slots differ by at least a
certain constant factor - then we prove that GSP does obtain
a constant fraction of the VCG revenue even in settings of
partial information, extending a result of Lahaie [13] who
considered welfare under this assumption on the CTRs. This
result holds without assuming that agents avoid dominated
strategies, as long as there are at least three participants in
the auction.

We then return to the full-information game and analyze the
tradeoffs of the maximum revenue attainable by the GSP
mechanism under different equilibrium notions. We demon-
strate that there can exist inefficient, non-envy-free equilib-
ria that obtain greater revenue than any envy-free equilib-
rium. However, we prove that if CTRs are convex, meaning
that the marginal increase in CTR is monotone in slot posi-
tion, then the optimal revenue always occurs at an envy-free
equilibrium. This implies that when click-through rates are
convex, the GSP auction optimizes revenue at an equilib-
rium that simultaneously maximizes the social welfare. We
feel that the convexity assumption is quite natural; note that
this assumption is satisfied in the case when CTRs degrade
by a constant factor from one slot to the next.

Related Work. There has been considerable amount of work
on the economic and algorithmic issues behind sponsored
search auctions – see an early survey of Lahaie et al [14] for
an overview. The GSP model we adopt is due to Edelman
et al [7], Varian [20] and Aggarwal et al [2]. Edelman et al
and Varian consider a more restrictive notion of equilibrium
than Nash. Edelman et al calls it envy-free equilibrium and
Varian calls it symmetric equilibrium. Both authors show
that this class of equilibria produce always optimal social
welfare and revenue at least as good as the revenue of VCG.

Varian [21] shows how to compute the revenue optimal envy
free Nash equilibrium, however in his model, he allows agents
to overbid (which is dominated strategy, and we consider it
unnatural). We consider the question of maximum revenue
equilibria without the assumption of envy-free outcome. We
show that in general inefficient equilibria can generate more
revenue than efficient ones. However, under a natural con-
vexity assumption on click-through rates, we show that the
maximum revenue equilibrium is envy free, and hence effi-
cient, and show how to compute it efficiently.

Edelman and Schwarz [9] model the repeated auctions for
a keyword as a repeated game, and show using Myerson’s
optimal auction [17] that if valuations are drawn from an
iid distribution, than the Nash equilibria that arise as a sta-

ble limit of rational play in this repeated game, cannot have
revenue more than the optimal auction: VCG with an appro-
priately chosen reserve price. This leaves open the question
whether GSP may generate revenue much less than the VCG
auction, which is the main question we consider. However,
unlike Edelman and Schwarz [9] we do not model a repeated
game explicitly, as rational play in a repeated game is very
complex. Rather, we consider all stable outcomes of the auc-
tion, not only those that arise as limits of rational repeated
play, which makes our results more general.

Gomes and Sweeney [11] study GSP as a Bayesian game
– analyzing the symmetric efficient equilibria of this auc-
tion. They analyze the influence of click-through-rates in the
revenue and observe the counter-intuitive phenomenon by
which revenue decreases when click-through-rates increase.
They also discuss the influence of reserve prices.

Paes Leme and Tardos [18] showed that the social welfare of
GSP in equilibrium is within a constant factor of the optimal
social welfare – which is composed by the engine revenue
and the players total surplus. Lucier and Paes Leme [16]
and Caragiannis et al [5] recently improved the bounds. In
the present work we tackle a natural question arising from
their work: even though GSP guarantees reasonably high
welfare, how does this welfare guarantee break down into its
revenue and total surplus components?

There has been considerable work focused on studying rev-
enue properties of GSP either by analyzing real auction data
or by running simulations. Athey and Nekipelov [3] study
the effect of quality-factors uncertainty in the revenue. La-
haie [13], Lahaie and Pennock [15] and Feng et al [10] study
the effect of different ranking functions. Borgers et al [4]
study revenue for alternative auction formats. Edelman and
Schwarz [8] study the effect of reserve prices.

Our results compare the revenue of different mechanisms at
equilibrium. It is worth noting that the well-known revenue
equivalence theorem, which provides conditions under which
alternative mechanisms generate the same revenue at equi-
librium, does not apply in our settings. Revenue equivalence
requires that agents have values drawn from identical distri-
butions and the mechanisms generate the same outcome.
As a result, this equivalence does not apply in the full in-
formation setting, and cannot be used to compare inefficient
equilibria of GSP to the VCG revenue.

2. PRELIMINARIES
An AdAuctions instance is composed of n players and n
slots. In the full information model, ach player has a value
vi for each click he gets, and each slot j has click-through-
rate αj . That means that if player i is allocated in slot
j, he gets αj clicks in expectation. We assume we number
players such that v1 ≥ v2 ≥ . . . ≥ vn and α1 ≥ . . . ≥ αn. Let
α = (α1, . . . , αn) be the CTR vector and v = (v1, . . . , vn) be
the type vector. Our results also extend to the model when
players also have a known quality factor γi, and if player
i is allocated in slot j, he gets γiαj clicks in expectation,
however, for the rest of the paper, we assume that γi = 1
for clarity of exposition.

A mechanism for the AdAuctions problem has the following



form: Since valuations vi are private information, it begins
by eliciting some bid bi for the players, which works as his
“declared valuation”. We write b = (b1, . . . , bn) for the bid
vector. Using the b and α, the mechanism chooses an alloca-
tion π : [n] → [n] which means that player π(j) is allocated
to slot j, and a price vector p = (p1, . . . , pn), where pi is the
price that player i pays for click. Player i then, experiences
utility ui(b) = ασ(i)(vi − pi), where σ(i) = π−i(i).

The social welfare generated by the mechanism is given by
SW (v, π) =

∑

i
αivπ(i) and the revenue is given by R(b) =

∑

i
ασ(i)pi. We focus on two mechanisms: GSP and VCG:

in both mechanisms, the players are ordered by their bids,
i.e, π(j) is the player with the jth largest bid, but they
differ in the payments charged. GSP mimics the single-item
second price auction by charging each player the bid of the
next highest bidder, i.e. pi = bπ(σ(i)+1) if σ(i) < n and
zero otherwise. VCG charges each player the externality it
imposes on the other players, which is

pV CG
i =

1

ασ(i)

n
∑

j=σ(i)+1

(αj−1 − αj)bπ(j).

If the bidders truthfully declare their valuation in both VCG
and GSP, then GSP generates strictly more revenue, as the
revenue associated with player i in VCG is

pV CG
i ασ(i) =

n
∑

j=σ(i)+1

(αj−1 − αj)bπ(j) ≤ ασ(i)bσ(i)+1,

and this upper bound is the GSP price paid by player i.
VCG has the remarkable property that regardless of what
the other players are doing, it is a weakly dominant strat-
egy for player i to report his true valuation. The resulting
outcome of VCG is therefore social-welfare optimal and the
revenue is

RV CG(v) =
∑

i

∑

j>i

(αj−1 −αj)vj =
n
∑

i=2

(i− 1)(αi−1 −αi)vi.

The GSP auction, however, is not truthful. Thus, for GSP,
we are interested in the set of bid profiles that constitute a
Nash equilibrium, i.e. such that

ui(bi,b−i) ≥ ui(b
′
i,b−i),∀b

′
i ∈ [0, vi].

We will assume that players do not overbid (i.e. that bi ≤
vi) since bidding more than one’s true value is a weakly
dominated strategy [18].

We say that an equilibrium is efficient if it maximizes social
welfare, which occurs when π(i) = i for all i.

We will also consider this comparison in the presence of a re-
serve price. Let VCGr be the VCG mechanism with reserve
price r, where we discard all players with bids smaller then r
and run the VCG mechanism on the remaining players, who
then pay price per click max{pi, r}. In the analogous vari-
ant of the GSP mechanism, which we call GSP with reserve
price r (GSPr), we also discard all players with bids smaller
then r, the remaining players are allocated using GSP, and
the last player to be allocated pays price r per click.

2.1 Equilibrium hierarchy for GSP

(1− α)v

(1− α)

v

(1− α)v (1− α) v

b1

b2

Figure 1: Equilibria hierarchy for GSP for α =
[1, 1/2], v = [1, 2/3]: the strong blue dot represents
the VCG outcome, the pattern region the envy-free
equilibria, the blue region all the efficient equilibria
and the red region the inefficient equilibria

Edelman, Ostrovsky and Schwarz [7] and Varian [20] showed
that the full information game always has a Pure Nash equi-
librium, and moreover, there is a pure Nash equilibrium
which has same outcome and payments as VCG. At this
equilibrium, players bid

bVi =
1

αi−1

n
∑

j=i

(αj−1 − αj)vj .

The authors also define a class of equilibria called envy-free
or symmetric equilibria. This is the class of bid profiles
b such that

ασ(i)(vi − bσ(i)+1) ≥ αj(vi − bj+1).

It is easy to see that all envy-free equilibria are Nash equi-
libria, though not all Nash equilibria are envy-free. The bid
profiles that are envy-free are always efficient and the rev-
enue of an envy-free equilibrium is always greater than or
equal to the VCG revenue. That is, if b is an envy-free
equilibrium, R(b) ≥ RV CG(v).

Although all envy-free equilibria are efficient, there are ef-
ficient equilibria that are not envy-free, as one can see for
example in Figure 1, as well as inefficient equilibria. We
therefore have the following hierarchy:
{

VCG
outcome

}

⊆

{

envy-free
equilibria

}

⊆

{

efficient
Nash eq

}

⊆

{

all
Nash

}

2.2 Bayesian setting
In a Bayesian setting, each player knows her own valuation
but only knows a distribution on the other players’ valua-
tions. In this model the values of the players are random
variables, with type vector v drawn from a known distribu-
tion F . After learning his own value vi, a player chooses
a bid bi(vi) to play in the AdAuctions game. The strate-
gies are therefore bidding functions bi : R+ → R+, and
we will continue to assume that players do not overbid, i.e.
bi(v) ≤ v. A set of bidding functions is a Bayes-Nash
equilibrium if, for all i, vi, and b′i,

E[ui(bi(vi),b−i(v−i))|vi] ≥ E[ui(b
′
i(vi),b−i(v−i))|vi].



A useful tool for studying revenue in the Bayesian setting is
Myerson’s Lemma, which can be rephrased in the AdAuc-
tions setting as follows. Given a distribution F over agent
values, the virtual valuation function is defined by φ(x) =

x− 1−F (x)
f(x)

.

Lemma 1 (Myerson [17]) At any Bayes-Nash equilibrium
of an AdAuction mechanism, we have that, for all i,

E[ασ(i)pi] = E[ασ(i)φ(vi)]

where pi is the payment per click of player i and ασ(i) is the
number of clicks received by agent i, and expectation is with
respect to v ∼ F.

We say that a distribution is regular if φ(x) is a mono-
tone non-decreasing function. For regular distributions, the
revenue-optimal mechanism for AdAuctions corresponds to
running VCG with Myerson’s reserve price r, which is the
largest value such that φ(r) = 0. We will refer to this as
Myerson’s mechanism, V CGr.

Running GSP (or VCG) with reserve price r means not
allocating any user with value vi < r and running GSP (or
VCG) with the remaining agents. For the allocated agents,
the mechanism charges per click the maximum between the
GSP (VCG) price and r.

A special class of regular distributions is the monotone
hazard rate distributions (MHR), which are the distribu-
tions for which f(x)/(1− F (x)) is non-decreasing. We note
that all MHR distributions are regular.

3. REVENUE IN FULL INFORMATION GSP
The goal of this section is to compare the revenue proper-
ties of GSP and VCG. Unfortunately, there are no universal
constants c1, c2 > 0 such that for every AdAuctions instance
α,v and for all equilibria b of GSP it holds that

c1 · R
V CG(v) ≤ R(b) ≤ c2 · R

V CG(v).

In fact, GSP can generate arbitrarily more revenue than
VCG and vice-versa. For example, consider two players with
α = {1, 0}, v = {2, 1}. Then VCG generates revenue 1, but
GSP has the Nash equilibrium b = [2, 0] that generates no
revenue.

As a counter-example for the second inequality, consider the
following instance: α = {1, 1 − ǫ}, v = {ǫ−1, 1}. Notice
that the revenue produced by VCG is ǫ, while GSP has the
equilibrium b = [1, 1] generating revenue 1.

We will prove that the GSP revenue cannot be much less
than a revenue benchmark based upon the VCG auction.
Intuitively, the difficulty behind our bad examples above
is in extracting revenue from the player with the largest
private value. Motivated by this, we consider the following
benchmark:

B(v) =
n
∑

i=2

pV CG
i ασ(i)

=
n
∑

i=2

∑

j>i

(αj−1 − αj)vj =
n
∑

i=2

(i− 2)(αi−1 − αi)vi

which is the VCG revenue from players 2, 3, . . . , n. We show
that the GSP revenue is always at least half of this bench-
mark at any equilibrium. Thus, unless VCG gets most of its
revenue from the first player, GSP revenue will be within a
constant factor of the VCG revenue.

Theorem 2 Given an AdAuctions instance α,v, and a Nash
equilibrium b of GSP, we have R(b) ≥ 1

2
B(v), and this

bound is tight.

We prove Theorem 2 in two steps. First we define the con-
cept of up-Nash equilibrium for GSP, then we show that any
inefficient Nash equilibria can be written as an efficient up-
Nash equilibrium. In the second step, we prove the desired
revenue bound for all efficient up-Nash equilibria.

Definition 3 Given a bid profile b, we say it is up-Nash

for player i if he can’t increase his utility by taking some slot
above, i.e.

ασ(i)(vi − bπ(σ(i)+1)) ≥ αj(vi − bπ(j)),∀j < σ(i).

Analogously, we say that b is down-Nash for player i if he
can’t increase his utility by taking some slot below, i.e.

ασ(i)(vi − bπ(σ(i)+1)) ≥ αj(vi − bπ(j+1)),∀j > σ(i).

A bid profile is up-Nash (down-Nash) if it is up-Nash (down-
Nash) for all players i. Clearly a bid profile b is a Nash
equilibrium iff it is both up-Nash and down-Nash.

Lemma 4 If a bid profile b is a Nash equilibrium, then the
bid profile b′ where b′i = bπ(i) is up-Nash.

Proof. We will prove the lemma by modifying bid profile
b in a sequence of steps. Fix some k ≤ n, and suppose that
b is a bid profile (with corresponding allocation π) such that

• players j = 1, . . . , k satisfy the Nash conditions (i.e.
both up-Nash and down-Nash) in b,

• players j = k + 1, . . . , n are such that σ(j) = j and
they satisfy the up-Nash conditions in b, and

• σ(k) < k.

We then define b′ by swapping the bids of players k and
π(k), that is setting b′i = bi for i 6= k, π(k), b′k = bπ(k), and
b′π(k) = bk. We claim that b′ is up-Nash for players k, . . . , n
and Nash for the remaining players. This then implies the
desired result, since we can apply this operation for k = n,
followed by k = n − 1, . . . , 2, resulting in the required bid
profile.

Since our transformation does not alter the bids associated
with given slots, we just need to check three things: the up
and down-Nash inequalities for player π(k), and the up-Nash
inequality for player k.

Under bid profile b′, player π(k) gets slot σ(k). This player
doesn’t want to change his bid to win any slot j > σ(k) since



in the bid profile b player k with lower value didn’t want to
get these slots. We therefore have

ασ(k)(vk − bπ(σ(k)+1)) ≥ αj(vk − bπ(j+1))

and since vπ(k) ≥ vk, we conclude

ασ(k)(vπ(k) − bπ(σ(k)+1)) ≥ αj(vπ(k) − bπ(j+1)). (1)

To see that player π(k) would not prefer to take any slot
j < σ(k), notice that π(k) didn’t want to move to a higher
slot in b, so

αk(vπ(k) − bπ(k+1)) ≥ αj(vπ(k) − bπ(j)).

This, combined with equation (1) for j = k (stating that
π(k) prefers slot σ(k) to k) gives us the up-Nash inequality
for player π(k).

Next consider player k in bid profile b′, where we gets slot
k. We wish to prove the up-Nash inequality for k. Notice
that, in b, π(k) had slot k and didn’t want to switch to a
higher slot, so we know

αk(vπ(k) − bπ(k+1)) ≥ αj(vπ(k) − bπ(j)).

Now, since vπ(k) ≥ vk, we have

αk(vk − bπ(k+1)) ≥ αj(vk − bπ(j))

which is the desired inequality.

Proof of Theorem 2 : Given any Nash equilibrium b,
consider the bid profile b′ of Lemma 4, which is an up-Nash
equilibrium in which each player k occupies slot k. By the
up-Nash inequalities, for each k we have

αk(vk − b′k+1) ≥ αk−1(vk − b′k−1).

We can rewrite this as

αk−1b
′
k−1 ≥ (αk−1 − αk)vk + αkb

′
k+1.

Then, since αk ≥ αk+1,

αk−1b
′
k−1 ≥

∑

j∈k+2N

(αj−1 − αj)vj

where k+2N = {k, k+2, k+4, . . .}. Now we can bound the
revenue of b:

R(b) = R(b′) =
∑

k

αkb
′
k+1 ≥

∑

k

αk+1b
′
k+1 ≥

≥
∑

k

∑

j∈k+2+2N

(αj−1 − αj)vj ≥

≥
n
∑

k=2

k − 2

2
(αk−1 − αk)vk =

1

2
B(v).

To show that the bound in Theorem 2 is tight, consider the
following example with n slots and n players, parametrized
by δ > 0:

α = [1, 1, 1, 1, . . . , 1, 1− δ, 0],

v = [1, 1, 1, 1, . . . , 1, 1, δ],

b = [δ, δ, δ, δ, . . . , δ, δ, 0].

In this case R(b) = (n − 2)δ + δ(1 − δ) and RV CG(v) =

(2δ − δ2)(n− 3) + δ(1− δ). Therefore limn→∞
R(b)
B(v)

= 2− δ

and it tends to 2 as δ → 0.

Notice that those bounds also carry for the case where there
is a reserve price r. We compare the revenue Rr(b) with re-
serve price r, against a slightly modified benchmark: Br(v)
which is the revenue VCGr extracts from players 2, . . . , n.

Corollary 5 Let b be a Nash equilibrium of the GSPr game,
then Rr(b) ≥

1
2
Br(v).

Proof. We can assume wlog that vi, bi ≥ r (otherwise
those players don’t participate in any of the auctions). We
can define an upper-Nash bid profile b′ as in Lemma 4. Now,
notice that all players in b′ are paying at least r per click.
We can divide the players in two groups: players 1 . . . k are
paying more than r in VCGr and players k + 1 . . . n are
paying exactly r. It is trivial that for the players k + 1 . . . n
we extract at least the same revenue under VCGr then under
GSPr. For the rest of the players we need to do the exact
same analysis as in the proof of Theorem 2.

4. REVENUE IN THE BAYESIAN SETTING
We showed in the full information setting that there are
AdAuctions instances α,v such that VCG generates pos-
itive revenue and there are GSP equilibria generating no
revenue. We show in this section that this can be seen as an
artifact of the full-information setting: if one assumes that
valuations come iid from a well-behaved distribution and we
set the proper reserve price in GSP, then we are guaranteed
to extract a constant fraction of the revenue.

The following example shows that setting the optimal re-
serve price is indeed necessary:

Example. We provide an example in the Bayesian set-
ting where VCG generates positive revenue and GSP has a
Bayes-Nash equilibrium that generates zero revenue. Con-
sider three players with iid valuations drawn uniformly from
[1, 2] and three slots with α = [1, 0.5, 0.5]. Let v(i) be the
ith largest valuation (which is naturally a random variable
defined by v). We have

E[RV CG(v)] = E[0.5v(2)] =
3

4
.

Now, consider the following equilibrium of GSP: bi(vi) = 0
for i = 2, 3 and b1(v1) = v1. Clearly player 1 is in equi-
librium. To see that players i = 2, 3 are in equilibrium,
suppose player i has valuation vi > 0. Then his expected
utility when bidding any value in [0, 1] is 0.5vi, whereas if
he changed his bid to some b > 1 his utility would be

E[ui(b
′, b−i)|vi] = 0.5vi + 0.5viP(v1 ≤ b′)−

∫ b′

0

v1dP(v1) =

= 0.5vi + 0.5vi(b
′ − 1)−

(b′)2 − 1

2
≤

≤ 0.5vi.

Thus agent i cannot increase his expected utility by placing
a non-zero bid.



4.1 GSP with Myerson Reserve Price
We now show that if valuations are drawn from a MHR
distribution and GSP is paired with the Myerson reserve
price, the resulting mechanism extracts a constant fraction
of the optimal revenue.

Theorem 6 If valuations vi are drawn iid from a MHR dis-
tribution F and r is the Myerson reserve price for F , then
GSP with reserve price r is guaranteed to extract a constant
fraction c of the optimal revenue.

We will obtain a constant c ≈ 6.06. The main ingredient for
proving this theorem is Myerson’s Lemma, used together
with the fact that, for MHR distributions, φ(x) ≥ x− r for
any x ≥ r. To see this, note that

x− φ(x) =
1− F (x)

f(x)
≤

1− F (r)

f(r)
= r

by the definition of Myerson’s reserve price.

Proof. Let Rr be the revenue of GSPr, and let ν(i)
be the slot obtained by player i in the optimal mechanism.
Then we can write

E[Rr] = E[
∑

i

ασ(i)φ(vi)1{vi ≥ r}] ≥

≥ E[
∑

i

ασ(i)vi1{vi ≥ r}]− E[
∑

i

ασ(i)r1{vi ≥ r}].

Since GSPr extracts a revenue of at least r per click from ev-
ery bidder with vi > r, we have E[Rr] ≥ E[

∑

i ασ(i)r1{vi ≥
r}]. Adding these two inequalities, we get that 2E[Rr ] is at
least the social welfare.

Suppose that, for distribution F , the social welfare gener-
ated by GSPr is at least a β fraction of the optimal social
welfare. In this case, we know that

E[
∑

i

ασ(i)vi1{vi ≥ r}] ≥ βE[
∑

i

αν(i)vi1{vi ≥ r}]

which is β-fraction of the social welfare generated by the My-
erson mechanism. Summing all those statements, we con-
clude that the revenue of GSPr is at least a 2β fraction
of Myerson’s social welfare (and therefore also of Myerson’s
revenue). From [5, 16] we know that β ≤ 3.037 (it is not hard
to modify their proof to allow reserve prices). This gives us
a factor of approximately 6.06 of the optimal revenue.

Notice that the proof above implies that when setting the
Myerson reserve price, at least half of the social welfare is
composed of revenue for the auctioneer.

4.2 Well-separated click-through-rates
Another way to bound the revenue of GSP without imposing
reserve prices is to assume that the slot click-through-rates
are well separated, in the sense of [13]. We say that click-
through-rates are δ-well separated if αi+1 ≤ δαi for all i.

Lemma 7 If click-through-rates are δ-well separated, then
bidding bi(vi) < (1− δ)vi is dominated by bidding (1− δ)vi.

Proof. Suppose player i bids bi < (1 − δ)vi. If he in-
creases his bid to b′i = (1 − δ)vi then with some proba-
bility he still gets the same slot (event S) and with some
probability he gets a better slot (event B). Then clearly
E[ui(bi, b−i)|vi] ≤ E[ui(b

′
i, b−i)|vi] since the expectation con-

ditioned to S is the same and conditioned to B it can only
increase by changing the bid to b′i. To see that, let απ(i)

be the slot player i gets under bi and απ′(i) the slot he gets

under b′i. Conditioned on B we know that απ′(i) ≥ δ−1απ(i),
and this generates value for bidder i of at least απ′(i)(vi−b′i),
while the value with bid bi was at most απ(i)vi, which im-
plies the claim:

E[ui(bi, b−i)|vi, B] ≤ E[απ(i)vi|vi, B] ≤ E[δαπ′(i)vi|vi, B] =

= E[απ′(i)(vi − (1− δ)vi)|vi, B] ≤

≤ E[ui(b
′
i, b−i)|vi, B].

Recall that under truthful bidding, the revenue of GSP is
at least the revenue of VCG. If one eliminates the strategies
bi(vi) < (1 − δ)vi from the players strategy set, then it is
easy to see that any Bayesian-Nash equilibrium b has high
revenue.

Corollary 8 If click-through-rates are δ-well separated, and
all players play undominated strategies, then

Ev[R(b(v))] ≥ (1− δ)Ev[R
V CG(v)].

Further, for any reserve price r, we also get

Ev[Rr(b)] ≥ (1− δ)Ev[R
V CG
r (v)].

Next we consider whether this bound on GSP revenue, with
respect to the expected GSP revenue when all players report
truthfully, continues to hold if agents do not eliminate dom-
inated strategies. That is, we consider settings of limited ra-
tionality in which players may not be able to find dominated
strategies. If we allow players to use dominated strategies,
then we might have equilibria with very bad revenue com-
pared to the expected revenue when agents bid truthfully,
as one can see in the following example:

Example. Consider two players with iid valuations vi ∼
Uniform([0, 1]) and two slots with α = [1, 1− ǫ]. Then VCG
generates revenue E[RV CG(v)] = E[ǫmin{v1, v2}] = O(ǫ),
and if agents report truthfully the GSP auction generates
revenue E[min{v1, v2}] = O(1). However, consider the fol-
lowing equilibrium:

b1(v1) =

{

ǫ(1− δ), v1 ≥ ǫ(1− δ)

ǫv1, v1 < ǫ(1− δ)

b2(v2) =











ǫ, v2 ≥ 1− δ

ǫ2(1− δ), ǫ(1− δ) ≤ v2 < 1− δ

ǫv2, v2 < ǫ(1− δ)

It is not hard to check that this is an equilibrium. In fact,
for two player GSP in the Bayesian setting, playing (α1 −
α2)vi/α1 is a best reply - and any bid that gives the player
the same outcome is also a best reply. So, in the above
example, one can simply check that the bids generate the



same utility as bidding bi(vi) = ǫvi. This example generates
revenue ER(b) = O(ǫ(ǫ + δ)), so taking δ = O(ǫ) in the
above example give us O(ǫ2) revenue.

However, this is a feature of having only 2 players, as shown
in the following theorem, which is a version of Corollary 8
that doesn’t depend on eliminating dominated strategies.

Theorem 9 With n players with iid valuations vi and δ-
well separated click-through-rates, then for all Bayes-Nash
equilibria b in which agents do not overbid,

E[R(b)] ≥
n− 2

n
(1− δ)E[RV CG(v)].

Proof. We will prove the stronger result that the ex-
pected GSP revenue at equilibrium is within a factor of
n−2
n

(1− δ) of the expected GSP revenue when agents report
truthfully. We first claim that, for a profile b in Bayesian-
Nash equilibrium and any two players i and j, we have that

Pv∼F [bi(v) < (1− δ)v − ǫ, bj(v) < (1− δ)v − ǫ] = 0.

To see this, suppose the contrary. Then there is ǫ′ ≪ ǫ such
that if we take F ′ = F |[v0−ǫ′,v0+ǫ′] then

Pv∼F ′ [bi(v) < (1− δ)v − ǫ, bj(v) < (1− δ)v − ǫ] > 0.

For ǫ′ small enough v0 = v0 − ǫ and some ǫ′′ < ǫ, we have

Pv∼F ′ [bi(v) < (1− δ)v0 − ǫ′′, bj(v) < (1− δ)v0 − ǫ′′] > 0.

Now pick vi, vj in this interval such that Pv∼F ′ [bi(v
i) ≤

bi(v) < (1 − δ)v0] > 0 and the same for j. By lemma 7,

playing (1 − δ)vi is a best response, then for player j for
example, it can’t be the case that any of the other players
play between bj(v

j) and (1− δ)vj with positive probability.
Therefore

Pv∼F ′ [bj(v) ∈ [bi(v
i), (1− α)vi)] = 0

Pv∼F ′ [bi(v) ∈ [bj(v
j), (1− α)vj)] = 0

but notice this is a contradiction. This completes the proof
of the claim.

Now, we can think of the procedure of sampling v iid from
F in the following way: sample v′′i ∼ F iid, let v′i be the
sorted valuations, and then apply a random permutation
τ ∈ Sn to the values so that vi = v′τ(i). Notice that v is

iid and now, notice that with ≥ 1 − 2
n

probability, v′i and
v′i+1 will generate (1 − δ)v′i and (1− δ)v′i+1 bids producing
(1− δ)αiv

′
i+1 revenue, therefore

E[R(v)] ≥ E

[

∑

i

(

1−
2

n

)

(1− δ)αiv
′
i+1

]

≥
n− 2

n
(1− δ)E

[

RV (v)
]

.

5. REVENUE IN THE GSP HIERARCHY
Up to this point we have been mainly concerned with com-
paring the VCG revenue (which is matched at one partic-
ular equilibrium of GSP) with the worst-case revenue over

all possible equilibria of GSP. We have shown that there are
equilibria of GSP that generate arbitrarily more and arbi-
trarily less revenue than VCG. We now come back to the
full information setting to compare the revenue extraction
properties of the different classes of GSP equilibria. Can
one equilibrium class generate more or less revenue than an-
other?

This question of comparing the revenue of VCG and envy-
free equilibria of GSP was addressed by [7], who show that
the revenue in any envy-free equilibrium is at least that of
the VCG outcome (i.e. the VCG outcome is the envy-free
equilibria generating smallest possible revenue). Moreover,
as we’ve shown, an envy-free equilibrium can generate ar-
bitrarily more revenue than the VCG outcome. Varian [21]
shows how to compute the revenue optimal envy free Nash
equilibrium, if we assume that agents will overbid. Allow-
ing overbidding can result in very high revenue (eg.., the
maximum valuation in a single item auction). Here we de-
termine the maximum revenue that can be obtained if we
do not assume that agents bid at envy-free equilibria, and
without requiring that agents apply the dominated strategy
of overbidding.

5.1 Envy-free and efficient equilibrium
As shown in the example of Figure 1, there are efficient equi-
libria that generate arbitrarily less revenue then any envy-
free equilibrium. For the other direction, we show that all
revenue-optimal equilibria are envy-free.

Theorem 10 For any AdAuctions instance such that αi >
αi+1∀i, all revenue-optimal efficient equilibria are envy-free.
Moreover, we can write the revenue optimal efficient equi-
librium explicitly as function of α,v.

Proof. Given an efficient equilibrium b, if it is not envy-
free, we show that we can improve revenue by slightly in-
creasing one of the bids. If the equilibrium is not envy-free,
there is at least one player that envies the player above, i.e.

αi(vi − bi+1) < αi−1(vi − bi).

As pointed out in [7], if in an efficient equilibrium no player
envies the above slot (i.e. no player i wants to take the above
slot i− 1 by the price per click player i is paying) then the
equilibrium is envy-free.

Let i be the player with the smallest index that envies slot
i− 1. Consider the bid profile b′ such that b′j = bj for j 6= i
and b′i = bi + ǫ. We will verify that the Nash inequalities
for player i− 1 still hold when ǫ > 0 is sufficiently small. In
other words, we will show that no Nash inequality for player
i− 1 holds with equality in b.

For slots j > i− 1, notice that

αj(vi − bj+1) ≤ αi(vi − bi+1) < αi−1(vi − bi)

where the first is a standard Nash inequality and the second
is the hypothesis that player i envies the above slot. Now,
since vi−1 > vi in an efficient equilibrium, we have

αj(vi−1 − bj+1) < αi−1(vi−1 − bi).

For slots j < i − 1, we use the fact that player i is the
first envious player. Also, without loss of generality, we can



assume player 1 bids v1. Therefore we need to verify the
Nash inequalities only for j = 2, 3, . . . , k − 1. We have

αi−1(vi − bi) ≥ αj(vi − bj+1) > αj(vi − bj)

where the first inequality comes from the fact that player
i − 1 doesn’t envy any player j above him and the second
inequality comes from the fact that bj > bj+1, since other-
wise the player in slot j would envy the player in slot j − 1.

In fact, we can give a more explicit proof of Theorem 10 by
showing the bid profile that generates largest revenue and
verifying it is an envy-free equilibrium. Given (α,v), we will
define a bid profile b in a bottom up fashion:

bn = min

{

vn,
αn−1 − αn

αn−1
vn−1

}

,

bi = min

{

vi,
αi−1 − αi

αi−1
vi−1 +

αi

αi−1
bi+1

}

∀i < n.

We need to show the following things about this bid profile
b: (i) it is in Nash equilibrium, (ii) it is envy free, and
(iii) no other efficient Nash equilibrium generates higher
revenue. Begin by noticing that if b is Nash, then player
i − 1 doesn’t want to take slot i, for all i, and therefore
αi−1(vi−1 − bi) ≥ αi(vi−1 − bi+1) and this is satisfied by
definition by the bid vector presented. Notice also that this
series of inequalities implies an upper bound on the maxi-
mum revenue in an efficient equilibrium and this bound is
achieved exactly by the bid profile defined above.

Furthermore, for all j ≤ i − 1 we have αi−1(vj − bi) ≥
αi(vj − bi+1) therefore by composing this expression with
different values of i and j, it is straightforward to show that
no player can profit by decreasing his bid. We prove that
no player can profit by overbidding as a simple corollary of
envy-freeness. For that, we need to prove that

αi(vi − bi+1) ≥ αi−1(vi − bi).

If bi = vi than this is trivial. If not, then substitute the
expression for bi and notice it reduces to vi−1 ≥ vi. Now,
this proved local envy-freeness, what implies that no player
wants the slot above him by the price he player above him
is paying. This in particular implies that no player wants to
increase his bid to take a slot above.

5.2 Cost of efficiency
Here, we analyze the relation between revenue and efficiency
in GSP auctions. One might ask if it is possible to have
optimal efficiency and optimal revenue in the same equi-
librium. In other words, among all GSP equilibria, is the
revenue-maximizing equilibrium necessarily efficient? We
give a negative answer to this question, showing that for
some AdAuction instances, we can increase revenue by se-
lecting an inefficient equilibrium. However, we give a natural
sufficient condition so that the revenue-optimal equilibrium
is efficient.

We define the cost of efficiency for a given click-through-rate
as the ratio:

CoE(α) = max
v

maxb∈Nash(α,v) R(b)

maxb∈EffNash(α,v) R(b)

Figure 2: Cost of efficiency for α = [1, α2, α3]: in the
plot, blue means 1.0 and red means 1.1.

where Nash is the set of all bid profiles in Nash equilibrium
and EffNash is the set of all efficient Nash equilibrium. In
Figure 2 we calculate this value empirically for each α =
[1, α2, α3], where each αi is an integer multiple of 0.01 in
[0, 1]. In all cases we found that 1 ≤ CoE(α) < 1.1. The
color of (α1, α2) in the graph corresponds to CoE(1, α2, α3),
where blue represents 1 and red represents 1.1. By solving a
constrained non-linear optimization problem, one can show
that the worst CoE for 3 slots is 1.09383.

Example. One example where an inefficient equilib-
rium generates strictly more revenue then all efficient ones
is α = [1, 2

3
, 1
6
] and v = [1, 7

8
, 6
8
]: the best efficient revenue is

given by 1
3
+ 7

8
≈ 1.20833 (which can be calculated using the

formula in the last section), but for the (inefficient) alloca-
tion π = [2, 1, 3] there is an equilibrium generating revenue
1.21528.

Note that Figure 2 seems to imply that CoE(α) = 1 when-
ever α1 − α2 ≥ α2 − α3. This motivates us to look at
AdAuctions instances with convex click-through-rates, i.e.,
αi − αi+1 ≥ αi+1 − αi+2. Notice that this is a natural as-
sumption, since most models for CTR follow convexity, such
as exponential CTR as in [13] and Markovian user models as
in [1]. We prove that convexity of click-through rates does
indeed imply that CoE = 1.

Theorem 11 If click-through-rates α are convex (i.e. αi −
αi+1 ≥ αi+1 −αi+2, ∀i), then there is a revenue maximizing
equilibrium that is also efficient.

Proof. Let b be the revenue maximizing efficient Nash
equilibrium, which can be calculated according to the for-
mula in the last section. Now, fix an allocation π and let



b′ be an equilibrium under allocation π. We say that b is
saturated for slot i if bi = vi. First we prove the theorem
under the simplifying assumption that no slot is saturated
in the maximum revenue equilibrium. We then prove the
general case, which is more technical.

Under the no-saturation assumption, we have

R(b) =
∑

i

αibi+1 =
∑

i

∑

j≥i

(αj − αj+1)vj . (2)

Notice that we can view this expression as a dot product
of two vectors where one has elements of the form vi and
other has elements in the form αj − αj+1. Notice also that
due to the convexity assumption, this is a dot product of two
sorted vectors. Now, for b′, we will bound revenue as follows.
Define m(π, i, j) = max{π(i), π(i + 1), π(i + 2), . . . , π(j)}.
Let p be such that the k = i, i + 1, . . . , i + p are all the
indices such that m(π, i, k) = π(i). Now, notice that the
player in slot i doesn’t want to take slot i+ p+ 1, so

αi(vπ(i) − b′π(i+1)) ≥ αi+p+1(vπ(i) − b′π(i+p+2)).

This implies

αib
′
π(i+1) ≤ αi+p+1b

′
π(i+p+2) + (αi − αi+p+1)vπ(i) =

= αi+p+1b
′
π(i+p+2) +

i+p
∑

j=i

(αj − αj+1)vm(π,i,j).

We can now apply recursion to conclude that

R(b′) =
∑

i

αib
′
π(i+1) ≤

∑

i

∑

j≥i

(αj − αj+1)vm(π,i,j). (3)

Now, notice that equation (3) can also be written as a dot
product between two vectors of type vi and αj −αj+1. If we
sort the vectors, we see that the (αj − αj+1)-vector is the
same and the sorted vector of vj for equation (3) is domi-
nated by that of equation (2), in the sense that it is pointwise
smaller. To see that, simply count how many times we have
one of v1, . . . , vi appear in both vectors for each index i. For
equation (2) they appear

∑i

j=1 j times. For equation (3),
they appear at most

i
∑

j=1

1 +max{p;m(π(j, j + p)) ≤ i} ≤

i
∑

j=1

j

times. Since the (αj − αj+1)-vectors are the same in both
equations, the vi vector in the first equation dominates the
order and in the first equation both vectors are sorted in the
same order, so it must be the case that R(b) ≥ R(b′).

Case with saturations: We now remove our simplifying
assumption and prove the general result. Let b be the op-
timal efficient equilibrium and let S ⊆ [n + 1] be the set of
saturated bids, including n + 1 (where we consider a ”fake”
player n + 1 with bn+1 = vn+1 = 0), i.e., i ∈ S iff bi = vi.
Let S(i) = min{j ∈ S; j > i}.

Given an allocation π, we wish to define an upper bound,
Rπ, on the revenue of a bid profile that induces allocation

π at equilibrium. To this end, we define

Bπ(j) =



















αS(j)−1vS(j) +
∑S(j)−2

i=σ(j) (αi − αi+1)vm(π,σ(j),i)

if σ(j) ≤ S(j) − 1

αS(j)−1vS(j) − vj(αS(j)−1 − ασ(j))

if σ(j) ≥ S(j) − 1

We then define

Rπ =
∑

j

Bπ(j).

We claim that this is, indeed, an upper bound on revenue.
Moreover, this bound is tight for revenue at efficient equi-
libria (i.e. when π is the identity id).

Claim 12 If bid profile b induces allocation π at equilib-
rium, then R(b) ≤ Rπ.

Claim 13 There exists an efficient equilibrium with revenue
Rid.

Using these two claims we want to argue that id is the per-
mutation that maximizes Rπ and therefore we can show that
for all inefficient bid profile b′ we have

R(b′) ≤ Rπ ≤ Rid = R(b).

To show this, consider some permutation π. Let j = max{k; π(k) 6=
k} and define a permutation π′ such that π′(k) = k for k ≥ j
and π′(k) = π(k) for k < σ(j) and π′(k) = π(k + 1) for
σ(j) ≤ k < j. Essentially this is picking the last player that
is not allocated to his correct slot and bring him there. Now,
if we prove that Rπ′ ≥ Rπ, then we are done, since we can
repeat this procedure many times and get to id.

Claim 14 Rπ′ ≥ Rπ.

This completes the proof, subject to our claims.

Proof of Claim 12 : We will show that for all b′ inducing
allocation π, we have ασ(j)b

′
σ(j)+1 ≤ Bπ(j). For σ(j) =

S(j) − 1, we use the fact that b′σ(j)+1 = b′S(j) ≤ vS(j). For
σ(j) < S(j)− 1 the result follows in the same way as in the
unsaturated case. For σ(j) > S(j)− 1, we use the fact that
player j doesn’t want to take slot j and therefore

ασ(j)(vj−b′σ(j)+1) ≥ αS(j)−1(vj−b′S(j)−1) ≥ αS(j)−1(vj−vS(j))

since

b′S(j) ≤ min{vπ(1), . . . , vπ(S(j)−1)} ≤ vS(j)

and σ(j) > S(j)− 1 so one of the players with value ≤ vS(j)

must be among the first S(j)−1 slots. Reordering the Nash
inequalities above gives us the desired result.

Proof of Claim 13 : This claim follows from the formula
defining the optimal-revenue efficient equilibrium in the pre-
vious section.

Proof of Claim 14 : Note first that Bπ(k) = Bπ′(k) for
all k > j. Moreover, for any k with σ(k) < σ(j), we will



have σ′(k) = σ(k). In this case, either S(k) < σ(k) in which
case Bπ′(k) = Bπ(k), or else

Bπ′(k) = αS(k)−1vS(k) +

S(k)−2
∑

i=σ(k)

(αi − αi+1)vm(π,σ(k),i)

≥ αS(k)−1vS(k) +

S(k)−2
∑

i=σ′(k)

(αi − αi+1)vm(π′,σ′(k),i)

= Bπ′(k).

It remains to consider k is such that σ(j) ≤ σ(k) ≤ j; that
is, those players k such that σ(k) 6= σ′(k). For each such
player, we will consider the difference between Bπ(k) and
Bπ′(k). First note that, for player j, we have

Bπ(j) −Bπ′(j)

=



αS(j)−1vS(j) +

S(j)−2
∑

i=σ(j)

(αi − αi+1)vm(π,σ(j),i)





−



αS(j)−1vS(j) +

S(j)−2
∑

i=σ′(j)

(αi − αi+1)vm(π′,σ′(j),i)





=

j−1
∑

i=σ(j)

(αi − αi+1)vj

For k 6= j, we claim that Bπ′(k) − Bπ(k) ≥ vj(ασ(k)−1 −
ασ(k)). We proceed by two cases. First, if S(k) ≤ σ(k), we
have

Bπ′(k)−Bπ(k) =
(

αS(k)−1vS(k) − vk(αS(k)−1 − ασ′(k))
)

−
(

αS(k)−1vS(k) − vk(αS(k)−1 − ασ(k))
)

= vk(ασ(k)−1 − ασ(k))

≥ vj(ασ(k)−1 − ασ(k))

Second, if S(k)− 1 > σ(k), then we have

Bπ′(k)−Bπ(k)

=



αS(k)−1vS(k) +

S(k)−2
∑

i=σ′(k)

(αi − αi+1)vm(π′,σ′(k),i)





−



αS(k)−1vS(k) +

S(k)−2
∑

i=σ(k)

(αi − αi+1)vm(π,σ(k),i)





= (αS(k)−2 − αS(k)−1)vm(π′,σ′(k),S(k)−2)

+

S(k)−3
∑

i=σ′(k)

vm(π′,σ′(k),i)[(αi − αi+1)− (αi+1 − αi+2)]

≥ vj(αS(k)−2 − αS(k)−1)

+

S(k)−3
∑

i=σ′(k)

vj [(αi − αi+1)− (αi+1 − αi+2)]

= vj(ασ(k)−1 − ασ(k))

Notice that we strongly use the fact that click-through-rates
are convex in the last inequality to ensure that (αi−αi+1)−
(αi+1 − αi+2) ≥ 0.

Therefore, taking the sum over all k with σ(j) ≤ σ(k) ≤ j,
we have

∑

k:σ(j)<σ(k)≤j

(Bπ′(k)−Bπ(k)) ≥

j−1
∑

i=σ(j)

vj(αi − αi+1)

= Bπ(j)−Bπ′(j)

so that
∑

k:σ(j)≤σ(k)≤j

(Bπ′(k)−Bπ(k)) ≥ 0.

Combining this with the fact that Bπ′(k) ≥ Bπ(k) for all k
with σ(k) < σ(j) or σ(k) > j, we conclude

Rπ′ =
∑

k

Bπ′(k) ≥
∑

k

Bπ(k) = Rπ

as desired.
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