
Fast & Safe IOMemory Protection
Benny Rubin

Cornell University
Saksham Agarwal

UIUC

Qizhe Cai
Cornell University

Rachit Agarwal
Cornell University

Abstract
IOMemory protectionmechanisms prevent malicious and/or
buggy IO devices from executing errant transfers into mem-
ory. Modern servers achieve this using an IOMMU—IO de-
vices operate on virtual addresses, and IOMMU translates
virtual addresses to physical addresses (potentially speeding
up translations using a cache called IOTLB) before executing
memory transfers. Despite their importance, design of mem-
ory protection mechanisms that can provide strong safety
properties while achieving high performance has remained
elusive. Indeed, recent studies from production datacenters
demonstrate that ine�ciencies within state-of-the-art mem-
ory protection mechanisms result in signi�cant throughput
degradation, orders-of-magnitude tail latency in�ation, and
violation of isolation guarantees.

Wepresent Fast&Safe (F&S), a simplemodi�cation to exist-
ingmemory protectionmechanisms that enables them to pro-
vide the strongest safety property, and yet, near-completely
eliminates their overheads. The key insight in F&S design is
that, rather than solely focusing on minimizing IOTLBmiss
rates, we should focus on reducing the cost of each IOTLB
miss.Wedemonstrate that this changeofperspectiveenablesa
simple F&S design that requires nomodi�cations in host hard-
ware andminimal modi�cations within the operating system.

CCS Concepts: • Security and privacy!Operating sys-
temssecurity; •Softwareand its engineering!Memory
management.

Keywords: Memory protection, IOMMU

ACMReference Format:
Benny Rubin, Saksham Agarwal, Qizhe Cai, and Rachit Agarwal.
2024. Fast & Safe IOMemory Protection. InACM SIGOPS 30th Sym-
posium on Operating Systems Principles (SOSP ’24), November 4–6,
2024, Austin, TX, USA.ACM, New York, NY, USA, 15 pages.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP ’24, November 4–6, 2024, Austin, TX, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

1 Introduction
IOMemory protectionmechanisms prevent malicious and/or
buggy IO devices like network interface cards (NICs) from
executing errant transfers into memory. Modern servers
achieve IO memory protection using an Input-Output
Memory Management Unit (IOMMU) [28, 43]. An IOMMU
operates very similar to memory management units within
processors; we describe the IOMMU-enabled datapath from
the NIC to the application in §2.1, but brie�y: with IOMMU
enabled, the operating system assigns NICs so-called IO
virtual addresses (IOVAs), that are used by the NIC to initiate
direct memory access (DMA) to the host memory; for every
DMA initiated by the NIC, the IOMMU uses a host memory
resident IO page table to translate NIC-visible IOVAs to the
host physical address that is used for the �nal data transfer.
These address translations are sped up using a special IOTLB
cache that caches frequently used address translation entries.
Upon an IOTLB hit, the address translation incurs near-zero
cost; however, upon an IOTLB miss, an IO page table walk
is initiated to perform the address translation.

Memory protection using IOMMU can have signi�cant im-
pact onapplication-layerperformance.Consider a serverwith
100Gbps NICs and 128Gbps PCIe. To provide the strongest
safety property (referred to as the strict mode inmodern oper-
ating systems), each IOVAmust be unmapped, and the corre-
sponding IOTLBentry invalidated immediatelyafter theDMA
(§2.1); thus, one must incur at least one IOTLB miss every
(huge)page worth of data transfer and perform 4 sequential
memoryaccesses permiss for IOpage table access in theworst
case. Even with 100ns memory access latency, this will incur
⇠4⇥100ns of IOMMU overhead. Thus, intuitively, with mod-
ern PCIe devices that allow bu�ering up to⇠100 cachelines at
the processor-side end of the PCIe device [2, 37, 44], enabling
IOMMU in the strongest safety mode essentially pushes
PCIe to its limits—using Little’s Law [14], the maximum
sustainable rate would be 100 ⇥ 64bytes/400ns = 128Gbps.
In practice, the situation is much worse: memory access
latencies can be much higher [2, 12, 13, 30, 44], PCIe has its
own overheads [37], IOTLB can incur multiple misses during
the huge(page) worth of data transmission [1, 7], etc. Indeed,
recent studies from large-scale production clusters [1] have
shown that ine�ciencies within state-of-the-art memory
protection mechanisms can result in signi�cant throughput
degradation, orders-of-magnitude tail latency in�ation, and
violation of isolation guarantees.

95

https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3694715.3695943&domain=pdf&date_stamp=2024-11-15

Sadly, the above analysis is so fundamental that it has
left the community with a bleak outlook about memory
protection—without rearchitecting memory management in
operating systems and/or without signi�cant improvements
in server hardware (e.g., lower memory access latencies), it
appears impossible to provide the strongest safety property
while maintaining high performance. Unfortunately, technol-
ogy trends suggest that server hardware improvements along
these directions are unlikely [1]; thus, most recent works
on high-performance memory protection target a weaker
safety property [9, 16, 39], re-architect memory management
within the operating system [33, 34], and/or redesign
IOMMU hardware [7, 18, 29, 31]. Unfortunately, such weaker
safety properties and clean-slate modi�cations themselves
introduce new security vulnerabilities [4, 27, 32, 33, 35]. This
state-of-a�air leaves organizations with two equally expen-
sive and painful options: (1) high-performance but unsafe
systems; or, (2) safe systemsbutwith suboptimal performance.
Motivated by building an in-depth understanding of the

above impasse, we set out to explore ine�ciencies in modern
memory protection mechanisms (§2). While reproducing
the overheads of memory protection mechanisms were
straightforward, our preliminary experiments during this
exploration led to some ba�ing results: we found that, in
many cases, the total number of memory accesses for IO
page table walks were less than 4⇥ the number of IOTLB
misses! Diving deeper into this inexplicable and seemingly
impossible phenomenon, we discovered an aspect of IOMMU
hardware that has been ignored in all previous studies: IO
page table caches [24] (in hindsight, this should have been
obvious, given that processor MMUs have had such caches
for a long time now [10]). Speci�cally, IOMMU has hardware
caches that storemost frequently accessed entries from level1,
level2, and level3 of the IO page table. Upon an IOTLBmiss,
IOMMU �rst checks the cache for the corresponding IO page
table level1 page—if a hit, the corresponding level2 page can
be identi�ed without an IO page table walk (thus, avoiding
one memory access), and IOMMU now checks the cache for
the corresponding IO page table level2 page, and so on (to
be precise, these checks happen in parallel). Indeed, in the
worst-case scenario, IOMMU still needs to perform 4memory
accesses per IOTLBmiss; however, in the best-case scenario,
the IO page table caches enable address translation using
just 1memory access per IOTLBmiss (for the corresponding
level4 entry)! This paper is the outcome of this deep dive into
understanding the overheads of memory protection.
We present F&S, a simple modi�cation to existing mem-

ory protectionmechanisms that provides the strongest safety
property, and yet, near-completely eliminates the overheads
of IOmemoryprotection.Thekey insight inF&Sdesign is that,
while IOTLBmisses are unavoidable with the strongest safety
property, it is still possible to reduce the cost of address transla-
tion upon an IOTLBmiss using IO page table cacheswithin the
IOMMU hardware. Indeed, we demonstrate that, by carefully

allocating IOVAs (to maximize IO page table cache hit rate)
and by carefully managing IO page table cache invalidations
(to ensure safety), F&S is able to provide the strongest safety
property with minimal overheads of memory protection. For
instance, we �nd that F&S results in 0 level1 misses, 0 level2
misses, and at most 0.054 level3misses per pageworth of data
across all evaluated workloads (except for an extreme case
we discuss in §4.4); F&S, thus, near-completely eliminates the
overheads of IOmemory protection across all evaluatedwork-
loads. F&S provides such powerful results without any mod-
i�cations in host hardware and without any modi�cations in
operating systemsmemorymanagement; it needs merely 630
lines of code changeswithin the IOMMUand network drivers.
F&S implementation, along with the documentation to

reproduce our results, is available at h�ps://github.com/host-
architecture/Fast-and-Safe-IO-Memory-Protection/.

2 Ine�ciencies inMemory Protection
We start with background on the NIC-to-memory datapath
when using memory protection (§2.1). We then evaluate
state-of-the-art memory protection mechanisms with the
goal of understanding the root causes underlying their
ine�ciencies (§2.2). Our key �ndings are:

• State-of-the-art memory protectionmechanisms can result
in as much as 65% degradation in throughput and multiple
orders of magnitude in�ation in tail latency. Increasing
number of �ows/connections, access link bandwidths,
data transfer sizes, number of cores, and/or memory
contention result in increasing overheads for existing
memory protection mechanisms. Similar observations
have been made in several recent studies, including those
from large-scale production clusters [1, 7, 16, 39].

• The core reason for application-level performance degra-
dation is the in�ation in per-DMA latency due to address
translation required formemoryprotection [1]. Speci�cally,
to achieve the strict safety property, existing memory pro-
tectionmechanisms necessitate at least one IOTLBmiss per
(huge)page worth of data; we �nd that the actual number
of IOTLBmisses can be much larger in practice—even for
basic workloads as in our setup, we observe from 1.30 to
2.20 IOTLBmisses per pageworthof data. Since each IOTLB
miss requires 4memory accesses in theworst case,memory
protection can incur hundreds of nanoseconds or even
microseconds of in�ation in per-DMA latency. Given that
only a small number of �xed-size DMA transactions can
be in �ight at any given point of time [37, 44], the increase
in per-DMA latency reduces the e�ective PCIe utiliza-
tion [1, 44]. Consequently, NIC bu�ers build up resulting
in eventual packet drops and throughput degradation.

• We �nd that modern memory protection hardware has
IO page table caches that store most frequently accessed
entries from each level of the IO page table. Our evaluation
suggests that, for some workloads, these caches can reduce

96

the number of memory accesses required per IOTLBmiss
from 4 to ⇠1.76. However, modern memory protection
mechanisms are not designed to exploit these caches—even
with moderate number of �ows, link bandwidths, data
transfer sizes, number of cores, etc., we observe large num-
ber of misses in IO page table caches. These IO page table
cache misses bring the overheads of memory protection
mechanisms closer to their worst-case overheads; indeed,
application-level performance degradation near-perfectly
matches the high miss rates on these IO page table caches.
We �nd that these IO page table cache misses are rooted
in poor locality of IO virtual addresses and (unnecessary)
IO page table cache invalidations.

2.1 NIC-to-memory DMA datapath
Figure 1 illustrates the NIC-to-memory datapath when
memory protection is enabled. We focus primarily on the
receive-side (Rx) datapath where packets are DMA’d from
the NIC to the host memory since the receive-side datapath is
usually the performance bottleneck [1, 2, 44]. The sender-side
(Tx) datapath is nearly identical, with the datapath steps
simply performed in the reverse order; there are some minor
di�erences between the Rx and the Tx datapaths, such as
size of socket bu�ers associated with the ring descriptors
which we discuss in §3. We describe the datapaths for CX-5
Mellanox NICs with Intel CPUs; the high-level datapath for
other NICs and CPUs is similar [40].
The key steps in the Rx datapath are as follows:

1 The NIC driver sets up a per-core ring bu�er of Rx
descriptors, each of which contains virtual memory
addresses to be used to DMA data. Modern NICs support
each descriptor to have addresses worth one or more
pages (e.g., default 64-page descriptors in Mellanox CX-5
NICs), allowing multiple packets to be DMA’d using
the same descriptor. To prepare a single descriptor, for
each page, the NIC driver allocates a physical frame
and passes it to the IOMMU driver. The IOMMU driver
then allocates a page-sized IO Virtual Address (IOVA)
from the IOVA allocator (we discuss the IOVA allocator
below); an IOVA itself is simply a range of addresses and
the IOVA allocator keeps track of free address ranges.
The IOMMU driver then maps the IOVA to the physical
page in the IO page table, and returns the IOVA to the
NIC driver. The NIC driver inserts these IOVAs into the
descriptor. The driver will periodically replenish these
descriptors when the number of remaining descriptors
in a ring bu�er falls below a threshold.

2 Upon receiving a packet, the NIC �rst enqueues the
packet into its input bu�er. The NIC then uses the IOVAs
in the Rx ring bu�er descriptor (associatedwith the corre-
spondingapplication core) toDMAthepacket. EachDMA
request may be executed as multiple PCIe transactions
based on the request and the transaction size.

NI C

NI C Buf f erRi ng Buf f er s

PCI e

L1
L2

L3

L4
I nval i dat i on

Queue

CPUs

I OTLB

L1 L2 L3

I O Page Tabl e

1
I OMMU

4

3

2

I OVA
Al l ocat or

DRAM

Figure 1. Illustration of NIC-to-memoryDMAdatapath
at the receiver when memory protection is enabled.
Discussion in §2.1.

3 Upon arriving at the root complex—the other end of the
PCIe interconnect, also known as the Integrated IO Con-
troller in the Intel architecture—each transaction’s IOVA
must be translated to a physical address. The IOMMU
performs these translations as follows: �rst, it looks
up the IOVA in the IOTLB, which caches recently used
IOVA-to-physical address mappings. Upon an IOTLB
hit, the address is immediately translated. Otherwise, the
IOMMU performs an IO page table walk. The IO page
table has four levels (referred to from now on as PT-L1,
PT-L2, PT-L3 and PT-L4) and each page has 512 page table
entries, with a size of 64 bits each; PT-L1 entries map
from the 9 MS bits of the IOVA to a PT-L2 page, PT-L2
entries map from the next 9 bits of the IOVA to a PT-L3
page, etc. The PT-L4 entries contain direct mappings
to physical addresses. Modern IOMMU hardware also
has caches for the IO page table that can speed up
translation [24]. Speci�cally, there is a cache for each of
the �rst three levels of the IO page table, which we refer
to as PTcache-L1, PTcache-L2, PTcache-L3; each entry in
the cache points from an IOVA to the address of the cor-
responding PT-L2/L3/L4 page in the IO page table. Thus,
in the worst-case (an IOTLBmiss followed by a miss in
all PTcache-L1/L2/L3), address translation would require
exactly fourmemory accesses (one for each level of the IO
page table) as is assumed in most prior works on IOMMU
performance enhancements [6, 7, 31, 39]; however, in the
best case, address translation requires one (unavoidable)
memory read from a PT-L4 page, which contains the
requisite physical address. Since translations occur at the
granularity of PCIe transactions, it may take multiple ad-
dress translations to complete theDMAof a single packet.

97

4 Once theNIC has performedDMAs for all available pages
in a descriptor—to ensure that the NIC can no longer ac-
cess the bu�ers of the DMAed packets—the IOMMU dri-
ver unmaps the IOVA-to-physical page mapping for each
page in the descriptor, invalidates the entries for the un-
mapped IOVA in all IOMMU caches (IOTLB and PTcache-
L1/L2/L3), and �nally frees the unmapped IOVAs back to
the IOVA allocator. Modern operating systems typically
provide two safety modes [7]: strict and deferred. In the
strictmode, IOVAinvalidationhappens immediately after
the IOVAisunmapped (hence,memoryprotection is guar-
anteed at a per-descriptor granularity). In the deferred
mode, invalidations are deferred until a �xed threshold
number of IOVAs have been unmapped leaving stale en-
tries in the IOTLB that can be used by the device.

5 Upon completion of DMA requests, the network driver
constructs packets from the descriptor bu�ers and passes
the packets to the transport layer. While processing
received packets, the transport layer may generate and
transmit acknowledgement (ACK) packets. Similar to
the Rx datapath, to transmit an ACK packet, an IOVA
is allocated and then mapped to the physical address
of the ACK packet in the IO page table. After the ACK
is transmitted, the IOVA is unmapped from the IO page
table, and its IOTLB and page table cache entries are
invalidated. This step is not shown in Figure 1, since it
follows the Tx datapath.

IOVA Allocator. The IOVA allocator provides two op-
erations: allocation and freeing of IOVAs. It also ensures
that IOVAs are only re-allocated once they are freed. To
accomplish this, allocated IOVA ranges are managed with
a globally locked red-black tree, where each node in the
tree contains a high and a low IOVA address [39]. In the
worst case, operations on the red-black tree can incur linear
time searches, leading to high CPU overheads [39]. To avoid
such overheads, modern IOVA allocators keep all operations
constant time using a stack-based cache of IOVAs. To avoid
synchronization overheads of multiple cores accessing the
IOVA allocator, the OS maintains a per-core IOVA cache,
allowing IOVAs to be recycled on a per-core basis.

2.2 UnderstandingMemory Protection Ine�ciencies
In this subsection, we build an in-depth understanding of the
impact and root causes of ine�ciencies in modern memory
protection mechanisms.

Measurement setup.Weuse two servers directly connected
via a switch to ensure that bottlenecks are at the host. Our 4-
socket Intel Cascadelake servers use Xeon Gold 6234 3.3GHz
processorswith 8 cores per socket, DDR4DIMMswith 2mem-
ory channels (with maximum theoretical memory bandwidth
of 46.9GBps), a 100Gbps Mellanox CX-5 NIC and 128 Gbps
PCIe 3.0. Both servers use Ubuntu 20.04 and Linux kernel v6.0.

We use the widely-deployed and open-sourced DCTCP [5]
transport protocol with 4K bytes MTU size, 256MTU-sized
packets worth of ring bu�er size and all hardware o�oads
(e.g., TSO,GRO, aRFS, andDynamically-Tuned InterruptMod-
eration (DIM) [11]) enabled tomaximize network throughput
withminimum latency. For better explicability of our observa-
tions, we disable Direct Cache Access (Intel’s Data Direct IO,
or DDIO [23]). Unless mentioned otherwise, we use �ve cores
and one �ow per core since this is the minimum required to
saturate the 100Gbps link;we also study the impact of varying
number of �ows, ring bu�er size, MTU size, number of cores,
and enabling/disabling DDIO on IOMMU performance. We
use Iperf [15] to generate tra�c, with one �ow per core. We
use PCM counters [25] to measure the number of misses
experienced in IOMMU caches per page worth of packet data.

[Figures 2a, 2b, 3a & 3b] Modern memory protec-
tion mechanisms result in signi�cant reduction in
application-level throughput and increase in data drop
rates at the host. Figure 2a and Figure 3a show the impact
of memory protection on application-level throughput for
increasing number of �ows and increasing ring bu�er sizes,
respectively, with all other parameters �xed to default. With
the IOMMU disabled, the application saturates 100Gbps link
bandwidth; a slight degradation in throughput with larger
number of �ows is due to CPU bottlenecks since larger num-
ber of �ows reduce opportunities for batched processing of
data packets within the network stack [11]. Enabling IOMMU
results in 20�65% lower throughput. For the IOMMU enabled
cases, CPUwas far from utilized. Figures 2b and 3b show that
memory protection overheads can result in a large fraction
of packets—as much as 4%—being dropped at the host.
Figure 9 in §4 shows that enabling memory protection

can also result in orders-of-magnitude in�ation in tail
latency for latency-sensitive applications, when colocated
with throughput-bound applications (e.g., in multi-tenant
deployments). The reason for such a latency in�ation is the
same as studied in [2]: latency in�ation at P99 is dominated by
queueing delay at theNICbu�er, and latency in�ation at P99.9
is dominated by retransmission timeouts after packet drops.

Understanding the root causeof ine�ciency inmemory
protectionmechanisms: latencyin�ationduetoaddress
translation.The root cause of application-layer performance
degradation when enabling memory protection is increase in
address translation latency due to two compounding factors:
IOTLB misses requiring page table walks, and the poor IO
PTcache performance (i.e., PTcache-L1/L2/L3 miss rates)
leading to higher latency per page table walk. Intuitively, this
increase in latency results in bu�ers at the processor-side
end of the PCIe device starting to �ll up. Once bu�ers �ll
up to their limit (modern PCIe devices allow bu�ering up to
⇠100 cachelines [2, 37, 44]), PCIe can no longer keep enough
requests in �ight resulting in PCIe link underutilization. This

98

 �� �� 	�
�"����������#

�

��

	�

��

��

���

��
��

"�
��

"!
���

��
 � ��������� ��������

� �� 	� ��
�!�����������"�

�

�

	

�

�

�

��

��
��

�
�

��
��

� ��������� ��������

 �� �� 	�
�("��%�#���!#)&

�

�

�

�

��
��

�
��

�&
&�
&�

$�
%��

��
�

����� ��&

����

���

����

���

�

�
&�$

�%
��
��
��

��
�*
��
��
��
 �
'

 �� �� 	�
� �����������!�

����

���

��
�

���

����

��
��
��
��
�
��
��
�

��
���

��
�

� � �

��� ��� ��� ��� 	��
����������#����������
�
���!!�!

�

���

���

���

�
�!

"��
�"

��
�!

�

��

�!
!�

��
�

��
�

��
�

��
��

"��
�

������$! 	����$!

Figure 2. Modernmemory protectionmechanisms have high overheads due to large number of IOTLBmisses and
IO page table cache misses, resulting in 20�65% application-layer throughput degradation.With IOMMU enabled
and increasing number of �ows, we observe: (a) higher throughput degradation; (b) larger packet drop rates; (c) larger number
of IOTLBmisses; (d) higher PTcache misses; and (e) poorer locality in PTcache-L3. See §2.2.

ultimately results in NIC bu�ers building up, eventual packet
drops at the NIC, and throughput degradation.

A simple model1 provides more insights on the above. Let
? be the size of packet (4KB in our default setup), ;0 be the
average latency for DMA’ing a packet in absence of memory
protection," be the average number of memory reads due to
IOTLB and PTcache misses per packet, and ;< be the average
IOMMU-to-memory read latency per packet. In this model,
both ;0 and ;< incorporate any form of parallelism (e.g., DMA
engine issuing multiple parallel requests, IOMMU page
table walkers issuing multiple parallel IOMMU-to-memory
reads, etc.) while computing the average values. Then,
the maximum achievable PCIe throughput is given by
) =?/(;0+" ·;<). If the end-to-end application throughput
is bottlenecked by the PCIe throughput, this model gives us
an estimate of the end-to-end application throughput.
For any given experiment, we can calculate the number

of memory reads per packet using the IOTLB and PTcache-
L1/L2/L3 misses. Speci�cally, as discussed in §2.1, a miss
at any level of the PTcache leads to one additional memory
read; thus, the average number of memory reads for address
translation for a packet worth of data is given by<IOTLB +
<1 +<2 +<3, where<IOTLB is the average number of IOTLB
misses (for a packet worth of data) and <8 is the average
number of misses at level 8 that also led to misses in all levels
> 8 (again, for a packet worth of data). Figures 2c, 2d, 3c
and 3d show<IOTLB and<8 for the respective experiments.
For instance, for the 5 and the 40 �ow cases in Figure 2,
we observe 0.05 and 0.63 PTcache-L1 misses, 0.05 and 0.63
PTcache-L2 misses, 0.36 and 0.90 PTcache-L3 misses, and 1.3
and 2.20 IOTLB misses per 4KB worth of data, respectively.

1This model is similar to that in [1], with the main di�erence that< in our
model depends on both IOTLB and PTcache-L1/L2/L3 miss rates.

Overall, for the 5 and the 40 �ow case, these misses result
in 1.76 and 4.36memory reads per 4KBworth of data.
Even with modern servers, it is hard to measure ;0 and

;< that depend on the parallelism with DMA and IOMMU
hardware. To that end, as an approximation, we use the
two datapoints from our 5 �ow and 10 �ow experiments
to estimate these values. Fitting the aforementioned simple
model along with measured throughput and memory reads
for individual experiments, we get ;0=65=B and ;< =197=B .

Given the number of IOTLB, PTcache-L1/L2/L3misses, and
the packet size, the above simple model allows us to estimate
the application-layer throughput within 10% of the measured
throughput across most of the experiments in this paper.

[Figures 2c & 3c] Reasons for IOTLB misses: safety
properties andRx/Tx interference. Figure 2c and Figure 3c
show the number of IOTLBmisses with increasing number of
�ows and with increasing ring bu�er sizes, respectively. We
make two observations. First, the number of IOTLB misses
is always greater than 1—this is fundamantal—as discussed
in §2.1, existing memory protection mechanisms require
unmapping IOVA-to-physical page mappings immediately
upon every DMA request completion. Thus, an IOTLBmiss
per (huge)page worth of data is unavoidable: since IOVAs are
unmapped and corresponding IOTLB entries are immediately
invalidated after use, IOTLB entries cannot be re-used by
another subsequent DMA request, even if it re-uses an IOVA.
Thus, the �rst PCIe transaction (belonging to a DMA request
to a single page) will always experience an IOTLBmiss.
The second observation is that, in many cases, IOTLB

misses can be larger than 1. This is because PCIe transactions
after the �rst transaction may also observe an IOTLB miss
depending on various factors including IOTLB size and inter-
ferencedue to simultaneousPCIe transactions (for concurrent

99

�
�
�� ���	 ��	�
�����"�������#�

�

��

	�

��

��

���

��
��

"�
��

"!
���

��
 � ��������� ��������

� �	
 	�
�
���
������!�������"�

���

��

���

��

���

	��

�
�

��
�

��
��

�
�

��
��

� ��������� ��������

�
�
�� ���	 ��	�
��!���&���#���'�

�

�

�

�

��
��

�
��

�$
$�
$�

"�
#��

��
�

����� ��$

����

���

����

���

�
�
$�"

�#
��
��
��

��
�'
��
��
��
 �
%

�
�
�� ���	 ��	
������ �������!�

����

���

��
�

���

����

��
��
��
��
�
��
��
�

��
���

��
�

�� �� ��

��� ��� ��� ��� 	��
���!�����"&����� �����������$$�$

�

���

���

���

���

	��

�
�$
%��

�%
��
�$
��
��
�$
$�
��

��
 #
��
�
�!
��
%��

�

�����#�����&���#�$�'� �	
�#�����&���#�$�'�

Figure 3. Large number of PTcache-L3 misses result in as much as 15% higher application-layer throughput
degradation due tomemory protectionmechanisms.With IOMMU enabled and increasing ring bu�er size, we observe:
(a) higher throughput degradation; (b) slightly increasing packet drop rates; (c) relatively constant IOTLB misses; (d) higher
PTcache-L3 misses; and (e) poorer locality in PTcache-L3. See §2.2.

DMAs, for accessing descriptors, Tx packets, acknowledge-
ment packets in transport protocols) that also require address
translation and contend for the same IOTLB [1]. As a concrete
example, Figure 2c shows increase in IOTLBmiss rateswith in-
creasing number of �ows. This phenomenon ismainly caused
due to increase in thenumberofACKsgeneratedperRxpacket
with increasingnumberof�ows, resulting in evengreater con-
tention for IOTLB. The increase in number of ACKs sent with
increasing�owcount is primarily due to underlying transport
behavior. It is a well-known phenomenon that AIMD-based
congestion control protocols like DCTCP used in our setup
lead to larger drop rates with increasing number of �ows [2,
3, 36] (we also observe similar trend in Figure 2b). Such an in-
�ated drop ratemay also lead to larger number of out-of-order
packets at the transport layer andhencean increase innumber
of ACKs sent [11]; Figure 2c provides experimental evidence
for the increase inTxpacketswith increase innumberof�ows.

[Figures 2d & 3d] Reasons for PTcache-L1/L2 misses:
cache invalidations.Figure 2d andFigure 3d show that there
are non-zeromisses in PTcache-L1/L2, and in some cases (e.g.,
with number of �ows = 40) there can be a PTcache-L1/L2miss
for everyotherpacket arriving to theNIC!Thismaybesurpris-
ing at �rst glance because, in both of these experiments, only
a single entry is accessed for IO page table levels PT-L1 and
PT-L2. The reasoning is as follows: IOVAs are 48bits long, and
thus they span an address space of size 248; since each PT-L1
andPT-L2page contains 512=29 entries, eachPTcache-L1 and
PTcache-L2 entry covers 239 and 230 bytes of address space, re-
spectively. On the other hand, the active IOVA address space
size is given by 2⇥CPU cores⇥MTU bytes⇥ring bu�er size,
where MTU size is rounded down to the nearest power of

two2. For our evaluated scenarios, this turns out to be at most
227 (using 2048 ring bu�er size, 4KBMTU size and 5 cores).
Existing IOVA allocators ensure that the set of active IOVAs
across all descriptors are allocated compactly from the top
of the address space [39]; thus, the 227 bytes of the IOVA
address space require only a single PTcache-L1/L2 entry and
we would never expect PTcache-L1/L2 misses.

Digging deeper, we found that these PTcache-L1/L2 misses
stem from invalidations of previously DMAed IOVAs that
share the same PTcache-L1/L2 entry. This is because, as
discussed in §2.1, modern memory protection mechanism in
Linux invalidates both IOTLB entries and IO PTcaches upon
an IOVA unmap. These invalidations can lead to IO PTcache
misses despite good access locality of the IOVAs, especially
in levels PT-L1 and PT-L2 of the page table.
The impact of these invalidations becomes more pro-

nounced in presence of Rx/Tx interference. For example,
Figure 2d shows that the PTcache-L1/L2 misses signi�cantly
increase with increase in number of �ows. This is because
concurrent Tx DMAs for sending ACK packets lead to
PTcache-L1/L2 misses by invalidating page table caches
used by IOVAs for Rx DMAs (we focus on ACKs since they
are the only Tx packets in our evaluation setup). Since Rx
and Tx packets share the same IOVA address space (IOVA
address space is per device in non-virtualized scenarios like
our evaluation setup), their respective address translations
use the same page table cache entries. As a result, Tx packets
interfere with Rx packets: a page table cache invalidation
for a Tx IOVA can cause PTcache-L1/L2 miss for an Rx IOVA.
This correlation between increase in Tx packets and increase
in PTcache-L1/L2 misses can be seen in Figure 2c (increase

2Intuitively, this is because our NIC is allocated enough pages to handle
twice as manyMTU size packets as speci�ed by the ring bu�er size (we are
unaware of the reasons for the extra factor of 2).

100

in ACK packets) and Figure 2d (increase in PTcache-L1/L2
misses); from Figure 3c and Figure 3d, we get another
con�rmation for this—with the same rate of ACKs, we
observe the same rate of PTcache-L1/L2 misses.

[Figures 2d, 2e, 3d & 3e] Reasons for PTcache-L3misses:
cache invalidations and poor locality. Figure 2d and Fig-
ure 3d show that PTcache-L3 observes much larger number
of misses per page worth of data compared to PTcache-L1/L2.
This is because of two reasons. First, for exactly the same
reasons as PTcache-L1/L2 misses discussed above, PTcache
invalidations also contribute to PTcache-L3 misses.
The second reason is that, unlike PT-L1 and PT-L2 where

only a single page table entry is required to span the entire
IOVAworking set, the number of entries required for PT-L3
is over 64 for our setup. The larger working set size combined
with poor locality between allocated IOVAs leads to an
increased number of PTcache-L3misses, as entries are evicted
before they can be reused.

To understand the above, recall from §2.1 that descriptors
are �lled with IOVAs by calls to the IOVA allocator. The IOVA
allocation pattern directly corresponds to the IOMMU access
pattern when packets are DMA’d using IOVAs within a de-
scriptor ring bu�er. Unfortunately, as studied in depth in [32],
existing IOVA allocators fail to provide good locality due to a
hard trade-o�betweenCPUe�ciencyandgood locality inher-
entwithin their design. Speci�cally, the per-core caches allow
IOVA allocators to achieve high CPU e�ciency by avoiding
expensive operations on red-black trees (as discussed in §2.1)
but can lead to poor locality: allocation and free calls by di�er-
ent cores (each of which uses its own ring bu�er) or even by
the samecore but for theRxand theTxdatapaths (that alsouse
their respective ring bu�ers) can result in degradation of lo-
cality within the caches over time. On the other hand, always
executing allocation and free calls from the red-black tree can
lead to improved locality, but requires high CPU overheads.

Figure 2e andFigure 3eprovide evidence that existing IOVA
allocators fail to provide good locality. The X axis represents
the index for each subsequent IOVA allocation; and the Y
axis represents the number of unique PTcache-L3 page table
entries used before that same PTcache-L3 entry is used by an
allocated IOVAagain. The red line thresholds represent poten-
tial PTcache-L3 cache sizes of 64 and 1283. A value above the
thresholdmeans it ismore likely that an IOVAwill experience
an L3 miss when translated by the IOMMU. Figure 2e shows
that the locality of PTcache-L3 entries degrades with increas-
ing number of �ows due to increased interference between Rx
andTxdatapaths (as in the IOTLB case, increasing the number
of�ows results in larger interference betweenRx andTx pack-
ets). The worsening locality observed in Figure 3e is due to
increase in IOVAworking set size. In this experiment, larger
ring bu�er sizes do not result in increase in the number of

3The IO page table cache sizes are not public; these numbers represent a
likely range of cache sizes based on our measurements.

OS

IOVA
allocator

alloc (4KB)
4KB

Rx
Descriptor

(P1,P2,...,Pn)

I Map()

length = 12 bits
(4KB)

Pi

IO Page Table

[I P]4KB
i

(a) Linux IOVA allocation and IO page tablemapping.

OS

IOVA
allocator

alloc (256KB)

256KB

I

Map()P1

I + 4096 I + 2* 4096

Map()P2
length = 12 bits

(4KB)

length = 12 bits
(4KB)

Rx Descriptor
(P1,P2,...,Pn)

Map()P3

length = 12 bits
(4KB)

IO Page Table

[I P]4KB

[I]P2+ 4096 4KB

[]I P3+ 2* 4096 4KB

1

(b) F&S IOVA allocation and IO page tablemapping.

Figure 4. F&S enables contiguous IOVA allocation
without requiring changes to IOMMUhardware, IOVA
allocator and IOMMUdriver.Discussion in §3.

ACKs andmuch fewer invalidations contribute to PTcache-L3
misses; instead, the IOVAworking set size (and correspond-
ing PTcache-L3 working set size) increases by 8⇥with an 8⇥
increase in ring bu�er size, resulting in poor IOVA locality.

3 Fast & SafeMemory Protection
We now present Fast & Safe, a simple modi�cation to existing
memory protection mechanisms that near-completely
eliminates thememory protection overheads while providing
the strict safety guarantees as in modern operating systems.
The strict safety memory protection model in Linux

necessitates at least one IOTLB miss per page-worth DMA:
each IOVAmust be unmapped, and the corresponding IOTLB
and IO page table cache entries must be invalidated upon
every DMA completion. Thus, F&S focuses on reducing the
cost of each IOTLBmiss.
F&S design minimizes the cost of each IOTLBmiss using

three key ideas applied to both the Rx and the Tx datapath:
(1) contiguous IOVA allocations to improve IOVA locality
and reduce PTcache-L3 misses; (2) preserving PTcache dur-
ing invalidations to retain bene�ts of IOVA locality; and (3)
exploiting contiguity in IOVAs to perform invalidations in a
CPU-e�cient manner.

Contiguous IOVA allocations for improved locality.
Figure 4a shows the default IOVA allocation mechanism in
Linux for Rx datapath (we discuss some minor di�erences
in Tx datapath later in this section): for each page, the OS
allocates a 4KB IOVA via a call to the IOVA allocator. The
page is then mapped to the IOVA in the IO page table; the
map function requires specifying the starting address of the

101

L3 Page L4 Pages

(A) (B) (C)
I 1

L3 Page L4 Pages

(A) (B) (C)

Unmap(, 5MB) I

I 1

Unmap(, 256KB) I 1

I 2

...

I n

L3 Page L4 Pages

(A) (B) (C)
I 1

L4 Pages

Unmap(, 256KB) I 1

...

Unmap(, 256KB) I n

L3 Page

(A) (B) (C)

Figure 5. Linux IO page reclamation. For simpli�cation, pages (2MB) are shown with 8 entries; yellow highlight represents
a mapped region and orange highlight represents a valid PT-L3 entry. (a) Initial page table state: 5MB of physical pages are
mapped to IOVA with starting address I1; (b) Large unmap of I1 in a single call results in pages (A) and (B) being reclaimed
(red zone)—the PT-L3 entries that pointed to them are now invalid; (c) An unmap call of 256KB does not lead to page reclamation,
since the unmap call does not cover the entire range of a page; (d) Many consecutive 256KB unmap calls also do not lead to
page reclamation even when the entire 5MB address range is unmapped since no single call covers the entire range of a page.

IOVA, the starting address of the page, and a 4KB length. As
discussed in §2.2, existing IOVA allocators do not guarantee
good locality resulting in a large number of PTcache misses.

The key insight in F&S is that unlike the context of conven-
tional Linux memory management (where the applications
themselves dictate the access pattern for virtual addresses),
the IOVA access pattern for networking applications is
known a priori: IOVAswithin a single descriptor are accessed
in a sequential manner. F&S exploits this insight to achieve
improved locality by allocating a large, contiguous, IOVA
and mapping it to consecutive pages within a descriptor (e.g.,
descriptors used by recent Mellanox drivers consist of 64
pages per descriptor). Speci�cally, as shown in Figure 4b, F&S
allocates a contiguous descriptor-sized chunk (256KB for 64
pages in Rx descriptor) of the IOVA while maintaining the
mapping granularity—each physical page in the descriptor
is still mapped to a page-sized segment of the IOVA range.
F&S’s technique of allocating a large IOVA but mapping

individual physical pages has two bene�ts: (1) it does not re-
quire changes to the underlying hardware; and (2) it ensures
good locality within a descriptor. Such improved IOVA local-
ity allows F&S to reduce the number of PTcache-L3 entries
per descriptor: existing mechanisms may have as many as
64 PTcache-L3 entries per descriptor worth of data (i.e. each
IOVA has a unique PTcache-L3 entry), leading to potentially
64 PTcache-L3 misses per descriptor (or one miss per page).
On the other hand F&S ensures that there are no more than
2 unique PTcache-L3 entries per descriptor4, leading to po-
tentially 2/64=0.031 PTcache-L3 misses per page (of course,
there may be more misses in the presence of PTcache-L3 con-
tention, such as from Tx datapath).

4one for the beginning of the IOVA range, mapped to the �rst page in the
descriptor (I in Figure 4b), and another one if the IOVA range spans multiple
PT-L4 pages. For example, if I is the last mapping in a PT-L4 page, then
I+4096 will be on another page and will have a di�erent PTcache-L3 entry.

There is an implementation di�erence between the Tx and
the Rx datapaths in terms of the way the descriptors are set
up by the NIC driver. Unlike the Rx datapath where there is a
constant 64 pages per descriptor, there is no �xed number of
pages per Tx descriptor (we �nd that in practice it is often less
than the 64 pages used for Rx descriptors). This discrepancy
exists because for Tx packets, the physical pages pointed to
by descriptors are furnished by the Linux networking stack
(depending upon the rate of generation of Tx packets from
the applications, and/or ACKs from the transport). This is
unlike the Rx datapath where pages are allocated beforehand
by the NIC driver. Each Tx packet, independent of its size,
must be mapped to a separate 4KB IOVA, since a page is the
smallest supported mapping granularity in the IOMMU.
We generalize F&S’s technique to the Tx datapath as

follows: in order to allocate a 256KB IOVA (same granularity
as Rx datapath), the 4KB chunks of IOVA space are mapped
contiguously to pages across descriptors, in the same order
that they will be accessed by the NIC; this is identical to the
illustration in Figure 4b, except rather than coming from
a single descriptor, each page, P, can possibly come from
multiple adjacent descriptors. Once the entirety of a given
256KB IOVA has been mapped, a new IOVA is allocated.
Realizing F&S’s technique of contiguous IOVA allocation

requires minimal modi�cations within the operating system.
We utilize pre-existing structures in the ring bu�er to keep
track of metadata (e.g. when a new IOVAmust be allocated).

Preserving IO PTcaches during invalidations to retain
bene�ts of IOVA locality. Modern memory protection
mechanism inLinuxopts to invalidate both IOTLBentries and
IO PTcaches upon an IOVAunmap.While IOTLB invalidation
is necessary to ensure correctness/safety guarantees, IO
PTcache invalidation is necessary only if an IO page table
page is reclaimed during an IOVA unmap operation. For
example, if a PT-L4 page is reclaimed, then the PTcache-L3

102

entry pointing to that page would become stale and require
an invalidation. Despite the above, Linux takes a safe (but
potentially sub-optimal) approach of always invalidating the
PTcache-L1/L2/L3 whenever an IOVA is unmapped.
F&Smakes the observation that IO page table page recla-

mation is extremely rare in the context of networking appli-
cations. To understand why, consider the current reclama-
tion strategy employed by Linux: an IO page table page is
reclaimed only if there is a single operation unmapping the
entire address range that it covers [39]5. Concretely, in order
to reclaim a PT-L4 page (thus invalidating the PTcache-L3
entry that points to it) the entire 2MB IOVA range on that
pagemust be unmapped in a single operation (as shown in 5b).
To invalidate a PTcache-L2 entry and reclaim a PT-L3 page,
the entire 1GB range of IOVAs pointed to by that PTcache-L2
entry must be unmapped in a single operation.

F&Sexploits theaboveobservation toavoidmemoryprotec-
tion ine�ciencies due to unnecessary PTcache invalidations.
Speci�cally, the strict safety guarantees in modern memory
protection mechanisms require performing unmap opera-
tions at the granularity of an individual descriptor (at most 64
pages)—far from large enough to cause reclamation of an IO
page table page; hence, IOMMU page table cache entries will
become stale extremely rarely (as shown in 5d) and it is safe to
preservePTcaches in the commoncase.Thus, uponeach IOVA
unmap operation, F&S only invalidates the corresponding
IOTLB entry while preserving the PTcache-L1/L2/L3 entries.
To keep F&S general and prevent stale IOMMU page table
cache entries from being accessed in the case of page table
page reclamation, F&S ensures that page table caches are in-
validated whenever an unmap operation leads to page table
page reclamation.
This simple change allows the page table caches to re-use

the cached entries, even after IOVA invalidations. This
enables F&S to e�ectively take advantage of improved IOVA
locality: successive IOVA accesses are much more likely to
share the same PTcache-L1/L2/L3 entries under good locality.
Realizing F&S design idea of selectively preserving IO

PTcaches requires no modi�cations within the memory pro-
tection datapath. IOMMU hardware provides an invalidation
queue as the interface to the IOMMU driver to request IOVA
invalidations; the invalidation queue interface speci�es an
option to only invalidate the IOTLB entry while preserving
the IO page table cache entries. F&S uses this interface to
set the option to prevent the invalidation of associated page
table caches when invalidating IOTLB entries.

Exploiting contiguity in IOVAs to perform invalida-
tions in a CPU-e�cient manner. In addition to a higher

5This reduces synchronization costs associated with reclaiming page table
pages. In particular, as studied in [39], safely reclaiming a page table page
requires mechanisms to check that the page has no entries and to remove
its reference from the parent page, all while ensuring that no newmappings
are created. Such mechanisms usually incur high CPU overheads.

OS

I 1

Unmap()
Invalidate()

I 2

Unmap()
Invalidate()

Unmap()
Invalidate()

Invalidation
Queue

length = 12 bits
(4KB)

length = 12 bits
(4KB)

length = 12 bits
(4KB)

(4KB)

I 3

4KB 4KB 4KB

I 1
(4KB)
I 2

(4KB)
I 3

I 1 I 2 I 3

descriptor

Free_descriptor()

(a) Linux invalidations.

OS

256KB

Unmap()
Invalidate()

Invalidation
Queue

length = 18 bits
(256KB)

I 1 I 2 I 3

(256KB)
I 1

Free_descriptor()

I 1 I 2 I 3

descriptor

(b) F&S invalidations.

Figure 6. F&S, by exploiting its contiguous IOVA
allocation mechanism, enables a single entry in the
invalidation queue to invalidate an entire descriptor’s
worth of IOVA.Discussion in §3.

latency-cost for each IOTLB miss, invalidations also lead to a
higher CPU-cost per IOTLBmiss [7, 32, 34, 39, 42], since upon
each invalidation request, the initiating CPU core waits until
successful invalidation of IOTLB and/or PTcache-L1/L2/L3
entries by the IOMMU hardware [39].
The invalidation queue interface speci�es an IOVA start-

ing address and a size, which correspond to the IOVA range
that will be invalidated in the IOMMU caches. Existing mem-
ory protection mechanisms are unable to e�ciently use the
IOMMU invalidation queue interface. This is because existing
IOVA allocation mechanism do not guarantee contiguous
IOVA allocations (§2.2); thus, the OS must make a request to
the invalidation queue for each 4KB IOVA in a descriptor. Fig-
ure 6a illustrates this process: for each IOVA in the descriptor,
theOS requires a call to unmapand invalidate, leading to an in-
validation queue entry for each IOVA in the descriptor. There-
fore, increased invalidation requests also results in a degra-
dation of per-core application throughput (results in [42]).
The �nal design idea of F&S is to leverage the contiguous

IOVA allocation: with perfect contiguity, the IOVA range
mapped to a descriptors worth of pages can be invalidated
with a single request to the invalidation queue (�gure 6b).
F&S, using these batched invalidations, amortizes the CPU
cost of invalidating all IOVAs within a single descriptor.

Generality of F&S techniques.We have primarily focused
onF&Sdesign for the caseofmulti-pagedescriptors.However,
F&S techniques may also be useful for network devices that
do not support multi-page descriptors (e.g., Intel ICE [26]).
Speci�cally, F&S contiguous IOVA allocation and page table
cache preservation apply directly even to the extreme case
of single-page descriptors (as discussed for the Tx datapath
above). The F&S technique of batched invalidations will not

103

� 	�
� ��
�%���"� ���� &#

�

�

��

�

��

	��

��
"
%�
�!
%$
���

�!
#� ��������� �������� ��������������

�
	 �	 	
�$���!�������%"

	

�

�

�

�
�#
��
�
!�
 �
�
�#
��
��

� ���������
��������

��������������

 �� �� 	�
�+$��(�& ��#&,)

�-

�-

�-

�-

��
��

�
��

+�
*"&

%�
"%

�
��

��
�

��
")

)�
)�'

�(
��

�!
� ����� ��)

�-

�-

	-

�-

�-

�
��

+�
*"&

%�
&

�
�

�
)

� �� ��
�
�%���"� ���� &#

�'

��'

��'

��
��
�
��
%�
$�

��
��

�
�#
#�
#�!

�"
��
��
�

��������	

��� ��� ��� ��� 	��
����������#����������
�
���!!�!

�

	

��

�	

�
�!

"��
�"

��
�!

�

��

�!
!�

��
�

��
�

��
�

��
��

"��
�

������$! 	����$!

Figure 7. F&S near-completely eliminatesmemory protection overheads. (a) F&S achieves throughput close to IOMMU
o�; (b) eliminates packet drops due to memory protection; (c) decreases IOTLB miss rates by 2⇥ due to reduced number of ACKs
(due to lower drop rates); (d) reduces PTcache-L1/L2 misses to zero and reduces PTcache-L3 misses by an order of magnitude,
resulting in signi�cantly lower cost of IOTLBmisses. (e) achieves good locality for IOVAs. See §4.1 for more discussion.

work as e�ectively for single-page descriptors—while F&S
can allocate (contiguous) IOVAs across multiple descriptors,
invalidations will need to be performed at descriptor
granularity for maintaining the strict safety guarantees. We
leave it to future work to evaluate F&S bene�ts for devices
that use single-page descriptors. Nevertheless, our evaluation
(§4) suggests that multi-page descriptors have signi�cant
bene�ts in terms ofmemory protection, providingmotivation
for a wider-scale adoption of multi-page descriptors.

F&S safety guarantees. As discussed in §2.1, modern
memory protection mechanisms typically provide one of the
two safety properties: strict and deferred. As de�ned in [34],
when the strict mode is enabled, a malicious and/or faulty IO
device can no longer access physical addresses corresponding
to an IOVA after the IOVA has been unmapped from the IO
page table; on the other hand, when the deferred mode is
enabled, a malicious and/or faulty IO device may still be able
to access physical addresses corresponding to an IOVA after
the IOVA has been unmapped from the IO page table. In [42],
we show that F&S enables the same safety properties as the
strict mode under very mild assumptions that hold for most
operating systems (e.g., Linux).

4 F&S Evaluation
We implement F&S within the Linux kernel v6.0.3. F&S
implementation requires no hardware modi�cations, no
interface changes to the IOVA allocator andminimal changes
to the IOMMU and NIC drivers. F&S changes ⇠630 LOC,
primarily to establish a new datapath in the IOMMU driver
for contiguous IOVA allocation. In this section, we use this
implementation along with Mellanox NICs (that use 64-page
descriptors by default) to demonstrate that F&S signi�cantly
reduces the cost of each IOTLB miss, thus eliminating
memory protection overheads for almost all evaluated

scenarios while providing strict safety properties. Unless
mentioned otherwise, we use the same setup as in §2.2.

4.1 Understanding F&S Bene�ts
Figures 7, 8, and 9 demonstrate that F&S enables applications
to achieve the same throughput as when IOMMU is disabled
for almost all evaluated scenarios (we discuss later in §4.4
the reason for tiny gap between F&S and IOMMU disabled
throughput for large ring bu�er sizes in Figure 8a). F&S
also near-completely eliminates packet drops (the 40 �ows
scenario has 0.036% packet drops, but this matches the drop
rate when IOMMU is disabled) for all evaluated scenarios.
F&S achieves similar bene�ts with varying data transfer sizes,
core counts, andmodern direct cache accessmechanisms [42].
Additionally, F&S enables the latency-sensitive RPC appli-
cation to achieve tail latencies within 1.17⇥ the IOMMU
disabled case across all evaluated percentiles and RPC sizes
(except P99.99, which is ⇠1.42⇥), as shown in Figure 9.

F&S achieves its performance bene�ts by reducing
PTcache-L1/L2/L3 miss rates—bringing PTcache-L1/L2 cache
misses to 0, and >10⇥ reduction in PTcache-L3 misses per
page in all cases (at most 0.045 and 0.053 PTcache-L3 misses
per page in Figures 7d and 8d, respectively). In addition,
even though F&S design does not explicitly target reducing
IOTLB misses, it does reduce IOTLB misses in many cases
(e.g., almost by 2⇥ in the 40 �ow case).

We now dive deeper into F&S techniques that enable re-
duction in PTcache-L1/L2/L3 misses (and also IOTLBmisses,
albeit indirectly). For brevity we focus on the case of increas-
ing �ow sizes (Figure 7); the same insights also apply to all
other experiments. By eliminating unnecessary invalidations
of IO page table caches, F&S minimizes PTcache-L1/L2/L3
miss rates. Recall from §2.2, each PTcache-L1 and PTcache-L2
entry covers 239 and 230 bytes, respectively. In our evaluation
setup, the IOVA working set size is 227 bytes; thus we get 0

104

� �	
 	�
�
���
������%���"���&�

�

�

��

�

��

	��

��
"
%�
�!
%$
���

�!
#� ��������� �������� ��������������

��� ��� �
� �
�
������$���"���%��

	

	�

	

	�

	�

�	

�
�#
��
�
"
!�
�
�#
��
��

� ���������
��������

��������������

�
�
�� ���	 ��	�
� !���'���$��)�

�(

�(

�(

�(

��
��

�
��

'�
& "

!�
 !

�
��

��
�

��
 %

%�
%�#

�$
��

��
� ����� ��%

�(

�(

	(

�(

�(

�
��

'�
& "

!�
"�

�
�

�
%

��� ��� ���
 ��

������$���!���&�

�%

��%

��%

��
��
�
��
$�
#��

��
��

�
�"
"�
"�

�!
��
��
�

���������	

��� ��� ��� ��� 	��
���!�����"&����� �����������$$�$

�

	

��

�	

�
�$
%��

�%
��
�$
��
��
�$
$�
��

��
 #
��
�
�!
��
%��

�

�����#�����&���#�$�'� �	
�#�����&���#�$�'�

Figure 8. F&Smaintains good locality, resulting in low L3 cachemisses even as the I/Oworking set sizes increase.
With IOMMU enabled and increasing ring bu�er sizes, we observe that F&S achieves several key performance metrics: (a)
nearly-matches the performance of systems with IOMMU disabled (reason for slight degradation is described in [42]); (b)
experiences no packet drops; (c) maintains a consistent number of IOTLB misses; (d) incurs low IOMMU cache misses; and
(e) demonstrates good locality in L3 page caches. See §4.1 for more discussion.

	��
	�
	��

	
�� 	
�
�� ��� �
��
����� %�

�
	��
	�

��

�
���

��
#�

!�
$�

��
"�

��������� �������! �������!������

Figure 9. F&S enables latency-sensitive applications
to achieve tail latency within a factor of 1.42 of the
IOMMU o� case. The �gure shows P50, P90, P99, P99.9,
P99.99 latencies (represented by whiskers). We run a
latency-sensitive RPC application (running concurrently
with our throughput-bound application–iperf); we use
netperf [19] to generate RPCs with sizes varying from
128B-32KB between the sender and receiver hosts (similar
to [2]). The RPC application is run on a separate core from
throughput-bound application on both the hosts to avoid any
CPU interference. See §4.1 for more discussion.

PTcache-L1/L2misses. Qualitatively, such lowPTcache-L1/L2
miss rates are not an artifact of our workloads; in fact, even
with much larger number of cores, ring bu�er sizes, and
network bandwidths, the IOVA working set size suggest
that F&S will still lead to 0 PTcache-L1 misses and near-zero
PTcache-L2 misses. Speci�cally, assuming a cache size of 32,
PTcache-L1 working set would need to cover over 244 bytes
and PTcache-L2 working set cover over 235 bytes to see any
PTcache-L1/L2 misses. Using the same formula from §2.2 to
calculate the IOVAworking set size, we see that even with 9K
MTUs, 4096 ring bu�er size and up to 512 cores (resulting in

235 bytes) there would be 0 PTcache-L1/L2 misses; for larger
MTU sizes, ring bu�er sizes and/or number of cores, F&S
contiguous IOVA allocationwould help to reduce the number
of misses, but they could not be completely avoided.

Figure 7d shows that F&S results in a 20⇥ reduction in the
number of PTcache-L3 misses, compared to existing memory
protection mechanisms. This is due to F&S’s contiguous
IOVA allocation technique that leads to improved locality
independent of the number of �ows (as shown in Figure 7e).
As discussed in §3, contiguous IOVA allocation using F&S
guarantees that every descriptor will contain at most two
unique PTcache-L3 entries for our evaluation setup (in the
majority of cases, all IOVAs within a descriptor will in fact
share the same PTcache-L3 entry). The few spikes in Figure 7e
occur at descriptor boundaries: since IOVAs are allocated at
descriptor granularity, subsequent descriptor’s IOVAs can
possibly have di�erent PTcache-L3 entries. For all our eval-
uated scenarios, these spikes do not lead to any performance
degradation. Furthermore, F&S ensures that PTcache-L3
performance no longer depends on IOVA working set size,
since locality is now guaranteed at per descriptor granularity
(2 PTcache-L3 entries in theworst case). Thus, future increase
in ring bu�er size and/or MTU size would not a�ect F&S’s
performance in terms of PTcache-L3 misses. However,
PTcache-L3 contention (e.g., due to Rx/Tx interference and/or
larger number of cores creating larger number of concurrent
translations) can lead to additional PTcache-L3 misses.

While F&S does not explicitly try to reduce the IOTLBmiss
rate, we still observe its reduction as an indirect outcome of
the F&S performance bene�ts discussed earlier. Speci�cally,
by reducing packet drop rates, F&S leads to a reduction in the
number of ACKs per page-worth data (illustrated by crosses

105

in Figure 7c). Consequently, the decrease in interference
from ACKs results in fewer IOTLBmisses (Figure 7c).
Finally, F&S helps resolve tail latency in�ation in Figure 9

by reducing delays due to packet queueing and retrans-
missions: the reduced address translation cost due to F&S
alleviates the PCIe link underutilization problem (discussed
in §2.2), and thus leads to reduction in NIC queue build-up
and subsequent packet drops.

F&S performance with concurrent Rx and Tx tra�c. To
understand how F&S performs when pushed to extreme sce-
narioswith respect to IOMMUcache contention,we runanad-
ditional experimentwhere the servers have (1) both Rx andTx
data packets at the same time (unlike our default setup where
the receive-side server only had ACK packets for Tx); and (2)
have larger number of CPU cores, and hence run larger num-
ber of concurrent �ows (without CPU being the bottleneck).
As described in §2.2, increasing amount of Rx/Tx interference
leads to larger number of IOTLB misses (due to increased
IOTLBcontention) and larger cost for each IOTLBmiss (due to
increased PTcache-L1/L2/L3 misses). Further, Rx/Tx interfer-
ence worsens with increasing number of �ows due to increas-
ing amount of drops and ACKs (see discussion for Figure 2).
For this experiment, we use a di�erent server setup with

a larger CPU core count per socket. We use Intel Icelake
servers, with Xeon Platinum 8362 processors and 32 cores per
socket. Each socket has 8 3200MHz DDR4 memory channels
with one DIMM each. The rest of the server con�guration
and evaluated applications are the same as our default
setup, except that DDIO cannot be disabled on these servers.
We present results comparing DDIO on and o� in [42]:
we �nd that enabling DDIO only improves average CPU
utilization, while having negligible impact on IOMMU cache
performance and F&S bene�ts.
Figure 10 shows the results of this experiment. We create

separate �ows for performing Rx and Tx data transfers on
both the servers, with each �ow running on a separate core.
As the number of cores increases, so does the amount of Tx/Rx
interference, until the link is saturated in bothdirections (with
4 cores each forTx/Rx).As expected, since the�ows are runon
di�erent cores, increasing the Tx throughput does not a�ect
the Rx throughput when IOMMU is disabled. With IOMMU
enabled, increased IOTLB misses and cost per IOTLB miss
due to Rx/Tx interference leads to up to ⇠ 80% degradation
in throughput even with 4 �ows (compared to ⇠20%without
Tx data tra�c with 5 �ows). On the other hand, despite an
in�ated IOTLBmiss rate, F&S is still able to match IOMMU
disabledperformanceby reducing the cost of each IOTLBmiss
for all evaluated scenarios (except for Rx throughput when
number of cores <4, where we have a small gap between F&S
and IOMMU disabled performance; we discuss the reason in
§4.4). Note that Tx throughput observes smaller degradation
compared to Rx throughput with IOMMU enabled due to a
known result that PCIe read transactions can tolerate larger

	
 � 	�
�%���"� ��� "�#

�

�

��

��

�

	��

�
&�
��

"
%�
�!
%$
���

�!
#�

��������� �������� ��������������

(a) Rx Throughput

	
 � 	�
�$���!������!�"

�

�

��

��

�

	��

�%
��
�!
�$
��
 $
#��
�
�
"� ��������� �������� ��������������

(b) Tx Throughput

Figure 10. F&S provides signi�cant bene�ts even in the
case of extreme Rx/Tx interference. (a) Rx throughput;
and (b) Tx throughput. See discussion in §4.1.

in�ation in per transaction latency (eg., latency in�ation due
to address translation overheads in this context) than write
transactions before the PCIe link becomes underutilized [44].

4.2 RealWorld Applications with F&S
We now demonstrate that F&S provides above bene�ts
over real-world applications. We use three applications (i)
Redis, a widely deployed in-memory key-value store [41];
(ii) Nginx, a widely used web server [38]; and (iii) SPDK, a
high-performance userspace storage stack that canworkwith
LinuxTCP stack for remote/disaggregated storage [20, 21, 45].
Applications have their own CPU overheads. To focus on

scenarios where the IOMMU (and not CPU) is the primary
bottleneck, we use the same two-server setup as in §2.2 but
with twominor exceptions: we use 8 cores and 9KMTU sizes;
this allows each applications to saturate 100Gbps link. We
focus on the Rx datapath, that is, the hosts running server
instances for Redis and Nginx, and the host running client
instances for SPDK.

Redis. We use one of the hosts to run one Redis server
instance per core, and the other host to run client threads.
We �nd that Redis is able to saturate 100Gbps link bandwidth
using 32 requests in-�ight at any point of time (referred to
as pipelining/parallelism in Redis). We use the 100% SET
request workload—each request has 4B keys and value sizes
from 4 � 128KB. We vary the number of clients for each
con�guration and report the optimal aggregate throughput.

Figure 11a shows that enabling default memory protection
results in 38�70% throughput degradation in Redis; smaller
value sizes worsen throughput degradation. Enabling mem-
ory protection with F&S alleviates performance degradation
while providing strongest memory protection. There is a
small gap between IOMMU disabled and F&S performance
at 4KB value size, which we discuss in §4.4.

Nginx.We run a single Nginx server instance per core on
one host and run client threads on the other host. We use
the wrk HTTP benchmark [17], with 128KB-2MBweb page
sizes (average web page size today is around 2MB [22]). We
vary the number of client threads and report the optimal
throughput for each web page size.
Figure 11b shows that Nginx running without memory

protection achieves a maximum of 90Gbps application-level

106

��� ��� 	�� �
�� ��� 	
���
��!(���)�

�

�

��

�

��

	��

��
%#

(�
�$

('
���

�$
&� ��������� �������" �������"������

	
���
��� �	
�� 	��
��
����������!)�

�

�

��

�

��

	��

�
%#
(�
 $
('
���

�$
&� ��������� �������" �������"������

�
�� ���� 	
���
���
�"$�!�� *�

�

�

��

��

��

	��

��
&$

)�
�%

)(
���

�%
'� ��������� �������# �������#������

Figure 11. F&S enables real-world applications to achievememory protectionwith near-zero overheads. (a) Redis;
(b) nginx; and (c) SPDK. See discussion in §4.2.

���"# ���"#���� ���"#���� ���
������"��!���

�

�

��

��

�

	��

��
��

"�
��

"!
���

��
 �

�� &' �� &'���� �� &'��� ���
�! ���&#�%�!

�

�

	

�
�$
$�
$�"

�#
��
��
� ���� �� �	 �

����

����

����

����

��	�

�'
�$�

��
�
%$
�"
�#
��
��
��

��
�(
��
��
��
��
%

Figure 12. Contribution of each key idea of F&S. A is
preserving page table caches; B is contiguous IOVA
allocation and batched invalidations; discussion in §4.3.

throughput due to its application layer overheads (we observe
the link bandwidth is fully utilized); enabling default memory
protection results in 65�70% reduction in throughput across
all web page sizes. Enabling memory protection using F&S
completely eliminates these overheads for all web page sizes
while providing the strongest memory protection.

SPDK.We run an SPDK server instance on each core on one
host and distribute client threads equally among the cores on
the other host. The client threads send SPDK read requests
of varying block sizes (32KB-256KB) to the server. We use
an IO-depth of 8 requests because that achieves the highest
throughput (similar results observed in [21]). Figure 11c
shows the aggregate throughput measured at the client host.
SPDK without memory protection saturates the link

bandwidth; and, enablingmemory protection results in SPDK
performance dropping to a maximum of ⇠60Gbps across all
experiments. F&S is able to provide the strongest memory
protection while matching IOMMU disabled performance.
There is a small gap between IOMMU disabled and F&S
performance at 32KB value size, which we discuss in §4.4.

4.3 Necessity of each F&S Idea
Figure 12 shows that each of three key F&S design ideas—
contiguous IOVA allocations, perserving IO page table cache
invalidations, and batching invalidations—are necessary to
achieve its performance bene�ts.

We run the same setup as the Redis experiment (Figure 11a).
We focus on 8KB value size, for four F&S con�gurations: (i)
default Linux, (ii) Linux + A (preserve IO page table caches),
(iii) Linux + B (contiguous IOVA allocation + batching
invalidations) and (iv) Linux + F&S. Since we cannot batch

invalidations without contiguous IOVA allocations, we club
both ideas in Linux + B con�guration.We observe that simply
preserving PTcaches is not su�cient due to large number
of PTcache-L3 misses. Recall that PTcache-L3 misses occur
due to PTcache invalidations and poor locality—preserving
PTcaches only�xes the�rst issue. Likewise, while contiguous
IOVA allocation + batched invalidations improves the
PTcache-L3 locality, and reduces the total number of
invalidations, the remaining PTcache-L1/L2/L3 misses
signi�cantly reduce the application throughput. F&S, using
all its techniques, is able to achieve high throughput.

4.4 Understanding the few scenarios where
F&S doesn’t match IOMMU disabled performance

F&S enables matching the IOMMU disabled throughput for
almost all evaluated settings. However, in a few scenarios,
F&S observes a tiny gap compared to IOMMUdisabled perfor-
mance. This is primarily due to two reasons: CPU overheads
due to memory protection operations (mapping/unmapping
and invalidations) and Rx/Tx interference leading to in�ated
IOTLBmisses. We discuss both these scenarios below.
In Figure 8a, despite F&S resulting in similar reduction

in IOTLB and PTcache-L1/L2/L3 miss rates for both 256 and
2048 sized ring bu�ers, we observe slightly lower throughput
with larger ring bu�er sizes compared to IOMMU disabled
case (eg., ⇠10Gbps for 2048 size ring bu�er). This is because
F&S becomes CPU-bottlenecked for the 2048 ring bu�er size;
digging deeper, we found that larger ring bu�er sizes result in
larger CPU cache miss rates for data reads due to decreased
e�ciency of hardware prefetching [42]. In comparison to
IOMMU disabled case, F&S does have tiny CPU overheads for
memory protection operations; these overheads result in the
gap between F&S and IOMMU disabled for this speci�c case.
Enabling DDIO, increasing MTU sizes, and/or using more
cores alleviates this bottleneck, allowing F&S to achieve the
same throughput as IOMMU disabled case even with 2048
ring bu�er size [42]. The additional CPU overheads of mem-
ory protection operations are also the reason for the slight
gap between F&S and the IOMMU disabled case in Figure 10.
The second reason for F&S throughput degradation com-

pared to IOMMUdisabled is in�ated IOTLBmisses. Recall that
F&S does not directly attempt to reduce the number of IOTLB
misses, only the cost of each miss. In the Redis experiment in

107

Figure11a, thegapbetweenF&Sand IOMMUo� for 4KBvalue
size exists because of a larger rate of IOTLBmisses usingRedis
with small value sizes; IOTLB misses per page increase by
⇠2⇥ at 4KB value sizes (when compared to 128KB value sizes).
This happens because Redis sends an application-level reply
for every request (similar to ACK packets for each segment re-
ceived inmicrobenchmarks); and, smaller value sizes increase
the Tx sending rate, resulting in increased IOVA translations
and thus IOTLB contention. SPDK application performance
at smaller block sizes (Figure 11c) is similar to the Redis result
at 4KB value size: we observe⇠1.5x increase in IOTLBmisses
compared to 256KBblock size due to larger rates of Tx packets
(SPDK clients sends small-sized request packets for each read
response from server). We discuss potential complementary
approaches to F&S to reduce IOTLBmisses in §5.

5 RelatedWork
We are not aware of any other work that utilizes IO page
table caches in modern servers to design high-performance
IO memory protection mechanisms that guarantee strict
safety. Below, we discuss the most closely related work.

Software-based approaches. There have been several
software based approaches to reduce address translation
overheads [9, 16, 32–34, 39]. Some of these approaches
speci�cally focus on reducing the CPU overheads in address
translation [32]; others explore reducing the cost of address
translation in terms of memory accesses by resorting to
weaker security properties [9, 16, 39].

F&S design reduces the address translation overheads by
lowering the cost of each IOTLB miss, but not explicitly at-
tempting to reduce the IOTLBmisses themselves. Hugepages
can potentially be used to reduce the number of IOTLBmisses
by increasing the reach of each IOTLB cache entry. A re-
cent work uses hugepages to reduce IOTLB contention [16];
however, they target a weaker safety property because they
keep IOVAs permanently mapped to pages in the IO page
table and not invalidating them after each DMA. Integrating
hugepages with F&S to further reduce memory protection
overheads (fewer IOTLBmisses) while providing strict mem-
ory protection is an interesting direction for future work.
DAMN [34], building upon its predecessor [33], claims to

achieve strong safety properties while achieving high perfor-
mance. Unfortunately, we could not con�rm either of these
claims. DAMN has two implementations: compatible with
the Linux kernel v4.7 and v5.1. We could not get the former
kernel image to boot. We were able to boot into the latter, but
found that it su�ers from the same performance degradation
as the default Linux strict mode. When we inquired with the
authors, they suggested that their implementation in v5.1
is incomplete. We provide more details in [42].
Conceptually, DAMN cannot avoid performance degra-

dation of modern memory protection mechanisms under
the strict mode due to the following reason. The key idea

in DAMN is to keep persistent mappings between IOVA
to physical addresses until the page is explicitly freed, and
recycle pre-mapped pages within descriptors. This avoids
unmapping and invalidation overheads under the (implicit)
assumption that applications are reading data faster than the
rate at which the NIC is DMAing the data.When this assump-
tion does not hold true, DMA’d pages can be overwritten
(since they are never unmapped, the NIC still has access to
them); to ensure that the data is never overwritten, after all
the pre-mapped pages are consumed, DAMN continuously
allocates new pages and creates new mappings, resulting
in large active IOVA address space. Without any additional
mechanisms,DAMNwill thus su�er fromthe same IOTLBand
PTcache-L1/L2/L3 miss rates and subsequent performance
degradation as in modern memory protection mechanisms.
Irrespective of the above, DAMN requires intrusive

modi�cation in the operating systemmemory management
mechanisms. F&S, on the other hand, guarantees strict
safety properties while alleviating the overheads of memory
protection mechanisms with minimal modi�cations.

Hardware-based approaches. There has been signi�cant
work on rearchitecting IOMMU hardware to reduce the cost
of address translation, e.g., by reducing the number of IOTLB
misses [7] and/or invalidation overheads [8, 31]. While F&S
focuses on reducing the cost of address translation with
minimal changes within the operating systems, it would be
interesting to integrate these hardware approaches with F&S
to further reduce memory protection overheads.

6 Conclusion
We have presented Fast & Safe, a simple modi�cation to
existingmemory protectionmechanisms that enables them to
provide strongest safety properties, and yet, near-completely
eliminates their overheads. Fast & Safe builds upon the
observation thatmodernmemory protection hardware has IO
page table caches that store most frequently accessed entries
from each level of the IO page table, and that these caches can
be used to minimize the overheads of IO memory protection.
That is, rather than solely focusing on minimizing IOTLB
misses, Fast & Safe focuses on minimizing the cost of each
IOTLBmiss. We demonstrate that this change of perspective
enables a simple F&S design that requires nomodi�cations in
host hardware, minimal modi�cations within the operating
system, and yet, near-completely eliminates the overheads
of existing memory protection mechanism.

Acknowledgments
We would like to thank our shepherd and SOSP reviewers
for insightful feedback. We would also like to thankMidhul
Vuppalapati for useful discussions. This research was in part
supported by NSF grant CNS-2047283, and a Sloan fellowship.

108

References
[1] Saksham Agarwal, Rachit Agarwal, Behnam Montazeri, Masoud

Moshref, Khaled Elmeleegy, Luigi Rizzo, Marc Asher de Kruijf, Gautam
Kumar, Sylvia Ratnasamy, David Culler, and Amin Vahdat. 2022.
Understanding host interconnect congestion. InACMHotNets.

[2] Saksham Agarwal, Arvind Krishnamurthy, and Rachit Agarwal. 2023.
Host Congestion Control. InACM SIGCOMM.

[3] A. Aggarwal, S. Savage, and T. Anderson. 2000. Understanding the
performance of TCP pacing. In IEEE INFOCOM.

[4] Markuze Alex, Shay Vargaftik, Gil Kupfer, Boris Pismeny, Nadav Amit,
Adam Morrison, and Dan Tsafrir. 2021. Characterizing, exploiting,
and detecting DMA code injection vulnerabilities in the presence of
an IOMMU. InACM EUROSYS.

[5] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra
Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. 2010. Data Center TCP (DCTCP). InACM SIGCOMM.

[6] Nadav Amit, Muli Ben-Yehuda, IBM Research, Dan Tsafrir, and Assaf
Schuster. 2011. vIOMMU: E�cient IOMMUEmulation. InUSENIXATC.

[7] Nadav Amit, Muli Ben-Yehuda, and Ben-Ami Yassour. 2010. IOMMU:
Strategies for mitigating the IOTLB bottleneck. In ISCA.

[8] Arkaprava Basu, Mark D Hill, and Michael M Swift. 2017. I/O memory
management unit providing self invalidated mapping. (2017). US
Patent 9,547,603.

[9] Muli Ben-Yehuda, Jimi Xenidis, Michal Ostrowski, Karl Rister, Alexis
Bruemmer, Leendert van Doorn, and Doorn Amd. 2007. The price of
safety: Evaluating IOMMU performance. InOLS.

[10] Abhishek Bhattacharjee. 2013. Large-reach memory management unit
caches. In IEEE/ACMMICRO.

[11] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jaehyun
Hwang, and Rachit Agarwal. 2021. Understanding host network stack
overheads. InACM SIGCOMM.

[12] Kevin K. Chang. 2017. Understanding and Improving the Latency of
DRAM-Based Memory Systems. CoRR (2017).

[13] Kevin K. Chang, Abhijith Kashyap, Hasan Hassan, Saugata Ghose,
Kevin Hsieh, Donghyuk Lee, Tianshi Li, Gennady Pekhimenko, Samira
Khan, and Onur Mutlu. 2016. Understanding Latency Variation in
Modern DRAMChips: Experimental Characterization, Analysis, and
Optimization. ACM SIGMETRICS (2016).

[14] Dilip Chhajed and Timothy Lowe. 2008. Building Intuition: Insights
From Basic Operations Management Models and Principles. Vol. 115.

[15] Jon Dugan, John Estabrook, Jim Ferbuson, Andrew Gallatin, Mark
Gates, Kevin Gibbs, Stephen Hemminger, Nathan Jones, Gerrit Renker
Feng Qin, Ajay Tirumala, and Alex Warshavsky. 2021. iPerf.
h�ps://iperf.fr/. (2021).

[16] Alireza Farshin, Luigi Rizzo, Khaled Elmeleegy, and Dejan Kostić.
2023. Overcoming the IOTLB wall for multi-100-Gbps Linux-based
networking. PeerJ Comput. Sci. (2023).

[17] Will Glozer. 2021. wrk HTTP benchmark. h�ps://github.com/wg/wrk.
(2021).

[18] Yuchen Hao, Zhenman Fang, Glenn Reinman, and Jason Cong. 2017.
Supporting Address Translation for Accelerator-Centric Architectures.
InHPCA.

[19] HewlettPackard. 2021. Netperf. h�ps://github.com/Hewle�Packard/
netperf. (2021).

[20] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agarwal. 2020. TCP
⇡ RDMA: CPU-e�cient Remote Storage Access with i10. In NSDI.

[21] JaehyunHwang,Midhul Vuppalapati, Simon Peter, and Rachit Agarwal.
2021. Rearchitecting Linux Storage Stack for �s Latency and High
Throughput. In USENIX OSDI.

[22] Jamie Indigo, Dave Smart, Chris Steele, and Danielle Rohe.
2022. Web Almanac 2022: Page Weight. (2022). h�ps:

//almanac.h�parchive.org/en/2022/page-weight#request-bytes
[23] Intel. 2012. Intel® Data Direct I/O Technology. h�ps:

//www.intel.com/content/dam/www/public/us/en/documents/
technology-briefs/data-direct-i-o-technology-brief.pdf. (2012).

[24] Intel. 2023. Intel Virtualization Technology for Directed
I/O. h�ps://www.intel.com/content/www/us/en/content-
details/774206/intel-virtualization-technology-for-directed-i-o-
architecture-specification.html. (2023).

[25] Intel. 2024. Intel Performance Counter Monitor . h�ps:
//github.com/intel/pcm. (2024).

[26] Intel. 2024. Intel® Network Adapter Driver for E810 Series Devices
under Linux. h�ps://www.intel.com/content/www/us/en/download/
19630/intel-network-adapter-driver-for-e810-series-devices-under-
linux.html. (2024).

[27] Taehun Kim, Hyeongjin Park, Seokmin Lee, Seunghee Shin, Junbeom
Hur, and Youngjoo Shin. 2023. DevIOus: Device-Driven Side-Channel
Attacks on the IOMMU. In IEEE Symposium on Security and Privacy.

[28] Sanjay Kumar. 2008. New abstractions and mechanisms for virtualizing
future many-core systems. Georgia Institute of Technology.

[29] Alexey Lavrov and DavidWentzla�. 2020. HyperTRIO: hyper-tenant
translation of I/O addresses. InACM/IEEE ISCA.

[30] Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan,
Vivek Seshadri, Kevin Chang, and Onur Mutlu. 2015. Adaptive-latency
DRAM:OptimizingDRAM timing for the common-case. In IEEEHPCA.

[31] Moshe Malka, Nadav Amit, Muli Ben-Yehuda, and Dan Tsafrir. 2015.
rIOMMU: E�cient IOMMU for I/O Devices that Employ Ring Bu�ers.
InACMASPLOS.

[32] Moshe Malka, Nadav Amit, and Dan Tsafrir. 2015. E�cient intra-
operating system protection against harmful DMAs. In USENIX FAST.

[33] Alex Markuze, AdamMorrison, and Dan Tsafrir. 2016. True IOMMU
Protection from DMAAttacks: When Copy is Faster than Zero Copy.
InACMASPLOS.

[34] Alex Markuze, Igor Smolyar, Adam Morrison, and Dan Tsafrir. 2018.
DAMN: Overhead-Free IOMMU Protection for Networking. In ACM
ASPLOS.

[35] BenoîtMorgan, Éric Alata, Vincent Nicomette, andMohamedKaâniche.
2016. Bypassing IOMMU Protection against I/O Attacks. In LADC.

[36] Robert TappanMorris. 1997. TCP behavior with many �ows. In IEEE
ICNP.

[37] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich,
Sergio López-Buedo, and Andrew W. Moore. 2018. Understanding
PCIe performance for end host networking. InACM SIGCOMM.

[38] nginx. 2024. nginx. h�ps://nginx.org/en/. (2024).
[39] Omer Peleg, AdamMorrison, Benjamin Serebrin, and Dan Tsafrir. 2015.

Utilizing the IOMMU scalably. In USENIX ATC.
[40] Solal Pirelli and George Candea. 2020. A Simpler and Faster NIC Driver

Model for Network Functions. In USENIX OSDI.
[41] Redis. 2024. Redis. h�ps://redis.io. (2024).
[42] Benny Rubin, Saksham Agarwal, Qizhe Cai, and Rachit Agarwal. 2024.

Fast & Safe IOMemory Protection. In tech report.
[43] Sami Vaarala and Jukka Manner. 2006. Security considerations of

commodity x86 virtualization. Helsinki University of Technology,
Telecommunications Software and Multimedia Laboratory (2006).

[44] Midhul Vuppalapati, Saksham Agarwal, Henry Schuh, Baris Kasikci,
Arvind Krishnamurthy, and Rachit Agarwal. 2024. Understanding the
host network. InACM SIGCOMM.

[45] Ziye Yang, James R. Harris, Benjamin Walker, Daniel Verkamp,
Changpeng Liu, Cunyin Chang, Gang Cao, Jonathan Stern, Vishal
Verma, and Luse E. Paul. 2017. SPDK: A Development Kit to Build High
Performance Storage Applications. In IEEE CLOUDCOM.

109

