
Tiered Memory Management: Access Latency is the Key!
Midhul Vuppalapati

Cornell University
Rachit Agarwal
Cornell University

Abstract
The emergence of tiered memory architectures has led to
a renewed interest in memory management. Recent works
on tiered memory management innovate on mechanisms for
access tracking, page migration, and dynamic page size de-
termination; however, they all use the same page placement
algorithm—packing the hottest pages in the default tier (one
with the lowest hardware-specified memory access latency).
This makes an implicit assumption that, despite serving the
hottest pages, the access latency of the default tier is less
than that of alternate tiers. This assumption is far from real: it
is well-known in the computer architecture community that,
in the realistic case of multiple in-flight requests, memory
access latency can be significantly larger than the hardware-
specified latency. We show that, even under moderate loads,
the default tier access latency can inflate to be 2.5× larger
than the latency of alternate tiers; and that, under this regime,
performance of state-of-the-art memory tiering systems can
be 2.3× worse than the optimal.

Colloid is a memory management mechanism that embod-
ies the principle of balancing access latencies—page place-
ment across tiers should be performed so as to balance their
average (loaded) access latencies. To realize this principle,
Colloid innovates on both per-tier memory access latency
measurement mechanisms, and page placement algorithms
that decide the set of pages to place in each tier. We integrate
Colloid with three state-of-the-art memory tiering systems—
HeMem, TPP and MEMTIS. Evaluation across a wide variety
of workloads demonstrates that Colloid consistently enables
the underlying system to achieve near-optimal performance.

CCS Concepts: • Software and its engineering → Mem-
ory management; • Computer systems organization →
Heterogeneous (hybrid) systems.

Keywords: Operating Systems, Tiered Memory Management

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
SOSP ’24, November 4–6, 2024, Austin, TX, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 979-8-4007-1251-7/24/11
https://doi.org/10.1145/3694715.3695968

ACM Reference Format:
Midhul Vuppalapati and Rachit Agarwal. 2024. Tiered Memory Man-
agement: Access Latency is the Key!. In ACM SIGOPS 30th Sym-
posium on Operating Systems Principles (SOSP ’24), November
4–6, 2024, Austin, TX, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3694715.3695968

1 Introduction
Modern memory-intensive applications such as in-memory
databases, graph processing engines, and machine learning
frameworks benefit from larger memory capacity and mem-
ory interconnect bandwidth. Indeed, memory contributes
to increasingly larger fractions of cloud server costs (e.g.,
∼37% for Meta [35] and ∼50% for Microsoft Azure [38]).
Unfortunately, technology trends for the classical memory
architecture—DRAM modules exposed to the processor via
DDR memory interconnect—have become stagnant, making
it hard to scale both memory capacity and memory intercon-
nect bandwidth in a cost-effective manner [41, 46, 49, 54, 59].
The situation for memory interconnect bandwidth is partic-
ularly dire: as number of cores and concurrency-per-core
continue to increase, the memory interconnect is becoming
increasingly contended [2, 36]. For instance, across the
most recent generations of Intel servers—Intel Cascade
Lake (2019), Ice Lake (2021) and Sapphire Rapids (2023)—
processors are able to generate 2.98×, 3.31× and 4.5× larger
traffic than the memory interconnect bandwidth, respectively;
for AMD Genoa (2023), processors can generate 9.37× larger
traffic than the memory interconnect bandwidth.

Classical memory architecture reaching its scaling lim-
its has led to the emergence of tiered memory architectures.
These architectures expose to the processor, in addition to
the classical DDR-attached memory, new forms of cache-
coherent memory via alternate memory interconnects [10,
32, 35, 54, 62]. For instance, Compute Express Link (CXL)
enables processors to access cache-coherent memory over
the serial interface technology of peripheral interconnects
(e.g., PCIe), thus enabling a new memory tier with additional
memory bandwidth but with higher latency [10, 54, 62]. Emer-
gence of such tiered memory architectures has led to renewed
interest in memory management since page placement across
memory tiers critically impacts application performance.

Recent work on memory management for tiered memory
architectures [1, 12, 24, 29, 35, 48, 60, 61] has led to many in-
novative mechanisms for access tracking, page migration, dy-
namic page size determination, etc.; however, they all use the
same page placement algorithm—packing as many hot pages
as possible in the memory tier with the lowest unloaded access

https://doi.org/10.1145/3694715.3695968
https://doi.org/10.1145/3694715.3695968

latency1 (referred to as the default tier), with the remaining
pages placed in alternate tiers. This page placement algorithm
is based on a core implicit assumption that, despite serving the
hottest pages, memory access latency of the default tier is less
than that of alternate tiers. This assumption is far from real: it
is well-known in the computer architecture community that,
in the realistic case of multiple in-flight requests, memory
access latency can be significantly larger than the unloaded
latency, even when the memory interconnect bandwidth is far
from saturated [13, 42–44, 58]; see §3. We refer to this regime
as memory interconnect contention. Indeed, we demonstrate
that memory interconnect contention can lead to 5× inflation
in access latency of the default tier even under moderate loads.
Given the access latency of existing CXL hardware, such in-
flation would result in the default tier having 2.5× higher
latency than alternate tiers. We show in §2 that, under mem-
ory interconnect contention, performance of state-of-the-art
memory tiering systems can be 2.3× worse than the optimal.

We present Colloid, a tiered memory management mech-
anism that embodies the principle of balancing access
latencies—page placement across tiers should be performed
so as to balance their average (loaded) access latencies. The
principle of balancing access latencies builds upon a simple
observation: placing more hot pages in the tier with lower
access latency may increase the access latency of the tier and
decrease the access latency of other tiers (thus, more closely
balancing the access latencies of the tiers); however, it will re-
duce the overall average memory access latency. This observa-
tion is important because each processor core is able to keep a
bounded number of memory requests in-flight; thus, minimiz-
ing average memory access latency directly maximizes mem-
ory access throughput and application-level performance (§3).

The principle of balancing access latencies provides a uni-
fied approach to memory management. First, it naturally cap-
tures the unloaded latency of the tiers—if the (loaded) access
latency of the default tier is smaller than that of alternate tiers,
then balancing access latencies requires increasing the frac-
tion of accesses to the default tier, thus converging to the page
placement algorithm in existing systems. Second, it captures
the fact that memory interconnect contention can happen even
when memory bandwidth is far from saturated—memory in-
terconnect contention at any point within the CPU-to-memory
datapath will result in access latency increasing for the corre-
sponding tier, and will thus automatically get factored in while
making page placement decisions based on the principle.

Memory management based on the principle of balanc-
ing access latency changes the core structure of the tiered
memory management problem. Indeed, it is no longer op-
timal to pack as many hot pages as possible in the default
tier since placing hot pages in the alternate tier may result in

1The unloaded access latency is defined as the memory access latency when
there is only one request in-flight. In contrast, the loaded access latency is
defined as the access latency when there are multiple requests in-flight.

improved application performance. We thus need new mech-
anisms to measure memory access latency, and new page
placement algorithms that decide the set of pages to place in
each tier. Colloid innovates along both these directions. First,
Colloid demonstrates that modern servers have vantage points
within the CPU-to-memory datapath that can be leveraged
to perform low-overhead measurements of per-tier queue oc-
cupancy and request arrival rates; using Little’s Law, this
enables Colloid to measure per-tier memory access latency
at fine-grained timescales. Second, Colloid presents a new
page placement algorithm that takes per-tier memory access
latency and per-page access tracking information as input, and
uses the principle of balancing access latencies to efficiently
decide the set of (hot and cold) pages to place at each tier.

Colloid design is compatible with any cache-coherent
tiered memory architecture where different tiers do not share
memory channels; this includes local DDR-attached memory,
remote socket memory exposed through the processor
interconnect, CXL-attached memory, and High Bandwidth
Memory [19, 37]. Colloid design is also compatible with
existing mechanisms for access tracking, page migration and
page size determination, thus enabling Colloid to easily inte-
grate with existing memory tiering systems. We demonstrate
this by integrating Colloid with state-of-the-art memory
tiering systems—HeMem [48], TPP [35], and MEMTIS [29].
We evaluate these implementations using real-world applica-
tions and using standard workload generators over a range of
static and time-varying workloads with varying memory inter-
connect contention, varying core counts, varying object sizes,
varying memory access latencies, and varying read/write char-
acteristics. Across all evaluated scenarios, we find that Colloid
enables each system to achieve near-optimal performance,
independent of the memory interconnect contention intensity;
we also find that Colloid does not impact the convergence
time for the underlying system under time-varying workloads.

Colloid implementation for each system, along with the
documentation to reproduce all our results, is available at
https://github.com/host-architecture/colloid.

2 Motivation
In this section, we study three state-of-the-art memory tiering
systems—HeMem [48], TPP2 [35] and MEMTIS [29]—and
demonstrate that:
• Under the realistic case of multiple in-flight memory

requests, access latency of the default tier can be 5×
higher than its unloaded latency. We refer to this regime
as the memory interconnect contention regime (defined
precisely in §3.1). In our setup, the default tier latency in
the memory interconnect contention regime can inflate
to be 2.4× higher than the alternate tier latency. Based on
latencies reported for real CXL hardware [54, 62], a 5×

2For TPP, we use Linux kernel v6.3 that includes TPP upstreamed version
along with several improvements [16, 27]. We enable Transparent Huge Pages.

https://github.com/host-architecture/colloid

inflation in default tier access latency would correspond
to 2.5× higher latency than the alternate tier.
• Existing memory tiering systems pack as many hot pages

as possible in the default tier. Under memory interconnect
contention regime, this turns out to be a suboptimal strategy,
resulting in these systems performing far from optimal—as
much as 2.3×, 2.36× and 2.46× worse performance than
optimal for HeMem, TPP and MEMTIS, respectively.

2.1 Experimental Setup
We use a dual-socket server, with each socket having an Intel
Xeon Platinum 8362 CPU with 32 cores, 1.25MB L2 cache
per-core, 48MB LLC, and 8× 3200MHz DDR4 memory
channels with one DIMM attached per channel. Thus, the
total theoretical maximum bandwidth across all channels is
205GB/s. Sockets are connected by a UPI link with 75GB/s
theoretical maximum bandwidth (in each direction). We use
processors only on one of the sockets; the default tier is the
locally-attached memory of the socket (32GB capacity, and
70ns unloaded latency), and the alternate tier is the memory
attached to the other socket (96GB capacity, and 135ns
unloaded latency).

We use the GUPS workload from [48] adapted to our setup.
The working set consists of a virtually contiguous buffer of
size 72GB. A random 24GB region of this buffer constitutes
the hot set; thus, the hot set fits in the default tier but the
full working set does not. Cores 1−15 run one thread each,
reading and updating (1 :1 RW ratio) a 64 byte object chosen
at random from the hot set with 90% probability and from the
full working set with 10% probability. Cores 31−32 are used
for samping and migration threads used in memory tiering
systems. We do not oversubscribe CPU cores as our evalu-
ation does not focus on evaluating CPU overheads of existing
systems; that has already been studied in prior works [29, 48].

We focus on memory interconnect contention on the
default tier; memory interconnect contention on the alternate
tier does not break the assumption of default tier latency
being lower than the alternate tier latency—existing systems
already perform ideal page placement under such a regime.
To generate controlled memory interconnect contention, as
in prior works [2, 3, 8, 58], we use a memory antagonist on
cores 16−30 that generates sequential 1 :1 read/write memory
traffic to a 500MB buffer that is pinned to the default tier
memory. To study behavior of the systems in steady-state and
provide deeper insights into the observed results, we generate
constant memory interconnect contention throughout the
experiment; we study the behavior of systems under dynamic
changes in memory interconnect contention later (§5). Across
experiments, we vary the intensity of the memory intercon-
nect contention by varying the number of cores used to run
the memory antagonist—0×,1×,2×,3× intensities correspond
to 0, 5, 10, 15 cores, with memory bandwidth usage of 0%,
51%, 65%, 70%, respectively, when run in isolation. We

 0

 20

 40

 60

 80

 100

0x 1x 2x 3x

Best−case
HeMem

 TPP
MEMTIS

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Memory interconnect contention intensity

Figure 1. Even at moderate memory interconnect contention
intensity, existing memory tiering systems achieve performance
that is far from optimal. Each bar shows GUPS throughput averaged
across 3 runs, with error bars showing the minimum and maximum
values across the runs.

allow enough time so that each system reaches steady-state,
and measure steady-state application throughput.

We determine the best-case memory placement for each
configuration by manually placing 0−100% of the hot set in
the default tier (in increments of 10) using the Linux mbind
API; the remaining hot set is placed in the alternate tier
and any remaining capacity in the default tier is filled with
randomly chosen pages from the cold set. We call the highest
throughput across these manual placements as the best-case
application throughput.

2.2 Understanding impact of memory interconnect
contention on existing memory tiering systems

Figure 1 shows the steady-state throughput for each
system alongside the best-case throughput with varying
intensity of memory interconnect contention. With 0×
memory interconnect contention intensity, HeMem, TPP,
and MEMTIS achieve throughput within 1.5%, 4.6% and
10.1% of the best-case respectively. MEMTIS automatically
decides whether to use 4KB or 2MB pages for different parts
of the working set based on access tracking information.
Here, it incurs additional performance degradation because
it splits 2MB pages into 4KB pages even though it is not
beneficial for this workload. This is because it ends up
making hugepage splitting decisions before the workload has
reached steady-state and is unable to coalesce pages that have
been split; digging deeper, we found that MEMTIS performs
page coalescing using an inefficient mechanism of scanning
the virtual address space which takes significantly longer
than the time it takes for this workload to reach steady-state.

With increasing memory interconnect contention, the
throughput achieved by these systems begins to diverge from
the best-case. Even with 1× memory interconnect contention
intensity, HeMem, TPP and MEMTIS throughput is 1.21×,
1.35×, and 1.41× lower than the best-case, respectively. The
throughput gap increases with higher memory interconnect
contention intensities, reaching as high as 2.3×, 2.36×, 2.46×
for HeMem, TPP and MEMTIS, respectively.

 50

 150

 250

 350

0x 1x 2x 3x

Default Alternate
HeMem

TPP
MEMTIS

L
a

te
n

c
y
 (

n
s
)

Memory interconnect contention intensity

 0

 20

 40

 60

 80

0x 1x 2x 3x

Default Alternate
Best−case

HeMem
TPP

MEMTIS

B
a

n
d

w
id

th
 (

G
B

/s
)

Memory interconnect contention intensity

Figure 2. Understanding the root cause of suboptimal perfor-
mance of existing memory tiering systems in Figure 1 (a-b; top-
bottom). (a) Even with moderate memory interconnect contention
intensity, the average memory access latency of the default tier ex-
ceeds that of the alternate tier. (b) Existing memory tiering systems
place nearly the entire hot set in the default tier independent of mem-
ory interconnect contention intensity, while the optimal placement
entails placing an increasingly larger fraction of the hot set in the
alternate tier with increasing memory interconnect contention.

Under memory interconnect contention, default tier access
latency can exceed that of alternate tier. We measure the av-
erage memory access latency for each tier during the above ex-
periments using hardware counters in the processor Caching
and Home Agent (CHA); see §3.1 for details. Figure 2(a)
demonstrates that the assumption made in all prior work—
despite serving the hottest pages, default tier having lower
memory access latency than the alternate tier—does not hold.
Indeed, we find that, with memory interconnect contention in-
creasing from 1× to 2× to 3×, the default tier’s access latency
increases by 2.5×, 3.8× and 5×, respectively. In our setup, this
corresponds to default tier access latency exceeding that of
the alternate tier by 1.2×, 1.8× and 2.4×, respectively. Access
latency increases due to queueing of requests at the memory
controller which can happen even when memory bandwidth
is far from saturated (see §3.1 for more detailed discussion).

Existing systems continue to greedily place hottest pages
in default tier under memory interconnect contention.
Figure 2(b) shows the memory bandwidth usage of GUPS
across individual tiers for the best-case and for each system,
measured using Intel’s Memory Bandwidth Monitoring

(MBM) feature. For the best-case, the default tier bandwidth
accounts for only 25%, 4.5%, 4% of total bandwidth at 1×,
2× and 3× intensities of memory interconnect contention
respectively—corresponding to increasingly larger fractions
of the hot set being placed in the alternate tier. Intuitively,
when the default tier access latency exceeds that of the
alternate tier, it is no longer optimal to place the entire hot set
in the default tier. However, for HeMem, TPP and MEMTIS,
default tier bandwidth accounts for more than 90%, 75% and
85% of total bandwidth independent of memory interconnect
contention intensity—indicating that they always place a
majority of the hot set in the default tier. Such memory
interconnect contention agnostic page placement is the root
cause for their throughput becoming increasingly far from
optimal. Specifically, since each core can maintain a fixed
number of in-flight memory requests [55, 58], per-core
throughput (𝑇) is given by 𝑁 ·64

𝐿
where 𝑁 is the number of

in-flight requests, 𝐿 is the access latency and 64 is the size of
each memory request in bytes (that is, 1 cacheline). From 0×
to 3× memory interconnect contention intensity, default tier
access latency increases by ∼3.5× and throughput of each
of the systems reduces by a similar factor (3.42×, 3.39× and
3.29× for HeMem, TPP and MEMTIS respectively).

3 Colloid
We now present the Colloid design. We start with the core
underlying principle in the Colloid design—the principle of
balancing access latencies—and discuss how it provides a
unified approach to guide page placement in tiered memory
architectures (§3.1). We then describe how Colloid realizes
this principle into an end-to-end tiered memory management
mechanism. Specifically, we describe an efficient mechanism
to measure per-tier memory access latency at fine-grained
timescales (§3.1) and a new algorithm that performs dynamic
page placement across tiers based on access latencies (§3.2).

We consider a tiered memory architecture illustrated in
Figure 3. Memory in all tiers is exposed in the host physical
address space, and can be accessed by the CPU cores through
load/store instructions in a cache-coherent manner with the
same memory consistency model. The tier with the smallest
unloaded latency is called the default tier, and the others are
collectively called alternate tiers. Access to each tier is fa-
cilitated through a separate memory controller. All the above
properties hold for existing tiered memory architectures
where the default tier is local DDR-attached memory, and
the alternate tiers are either remote socket memory exposed
through the processor interconnect, CXL-attached memory,
and/or High Bandwidth Memory.

To keep the discussion succinct, we assume that all
mechanisms within the memory tiering system (access
tracking, latency measurements, page placement, etc.) are
performed periodically at fixed time intervals, referred to
as quantums. As we discuss in §4, Colloid can be easily

Alternate Tier
Memory Controller

CHA / L3CHA / L3

CHA / L3CHA / L3

Root Complex

Default Tier
Memory Controller

PCIe Lanes

Processor interconnect

DDR
Channels

Memory
Module

Figure 3. Illustration of a tiered memory architecture with two
memory tiers. Cores, L3 cache, Caching and Home Agent (CHA),
and default tier memory controller are connected through the on-chip
processor interconnect. Both the L3 cache and CHA are physically dis-
tributed into multiple slices (co-located with cores). The physical path
between the processor and alternate tier memory controller depends
on the type of alternate memory tier. The figure shows CXL-attached
memory as an example. Here, the first hop is the root complex on the
processor interconnect which is connected to an external memory
controller through PCIe lanes.

integrated with systems that use various triggers (e.g., page
faults) for access tracking and/or page placement.

3.1 Access latency is the key
The key conceptual idea underlying the Colloid design is the
principle of balancing access latencies. The principle suggests
that page placement across tiers should be performed so as
to balance their average access latencies.

A memory request refers to a memory access issued by
a core that misses all levels of the cache hierarchy and is
serviced from either the default or the alternate tier. We define
the unloaded latency as the latency when there is only one
in-flight memory request in the system; and, loaded latency
as the latency under multiple concurrent memory requests.
It is well-known that the loaded latency for both default and
alternate tiers can increase beyond their unloaded latency due
to contention within the CPU-to-memory datapath:

• Latency can increase due to queueing of requests
when the corresponding interconnect bandwidth is satu-
rated [13, 14, 21, 25, 26, 39, 40, 42–45, 51–54]. Memory
bandwidth utilization at the saturation point is hard to
characterize in advance since it can vary by as much as
1.75× depending on whether the workload is read-heavy
or write-heavy, and be as much as 2.5× lower than the
theoretical maximum bandwidth [54].

• Latency can also increase even when the interconnect band-
width is far from saturated [13, 25, 26, 39, 40, 42–45, 51–
53, 58]. This happens due to contention within the internal
hierarchy of memory modules. For example, each DRAM
module consists of multiple banks; load imbalance across
these banks and lack of locality in access patterns within
each bank can result in queueing of requests at the memory
controller, leading to latency inflation [13, 40, 43–45, 58].

We collectively refer to the regime of memory access latency
increasing beyond the unloaded latency as memory intercon-
nect contention. We define the access probability of a page
during a given quantum as the total number of memory re-
quests to that page normalized by the total number of memory
requests across all pages during that quantum. During a given
quantum, let 𝐿𝐷 , 𝐿𝐴 be the average access latencies of the
default and alternate tiers, respectively, and let 𝑝 be the sum
of access probabilities of pages currently in the default tier.

The principle of balancing access latencies suggests that:

• If 𝐿𝐷 <𝐿𝐴, page placement should be adapted to increase
𝑝 (e.g., by placing more hot pages in the default tier).
• If 𝐿𝐷 > 𝐿𝐴, page placement should be adapted to reduce
𝑝 (e.g., by placing more hot pages in the alternate tier).
• If 𝐿𝐷 =𝐿𝐴, page placement does not need to be adapted.

The reasoning behind the principle of balancing access
latencies is simple. The performance of memory-intensive ap-
plications is bound by the overall memory access throughput
(rate at which memory requests are serviced). The maximum
number of in-flight memory requests that each core can
maintain (𝑁) is limited by hardware buffer sizes (Line Fill
Buffers [55, 58]). As a result, the average per-core memory
access throughput (𝑇) is directly related to the average
memory access latency (𝐿) by 𝑇 = 𝑁 ·64

𝐿
, where 64 is the size

of each memory request in bytes (that is, one cacheline).
Therefore, minimizing average access latency maximizes
throughput. The average memory access latency is given by
𝑝 ·𝐿𝐷 + (1−𝑝) ·𝐿𝐴. If 𝐿𝐷 < 𝐿𝐴, then increasing 𝑝 reduces the
average access latency; on the other hand, if 𝐿𝐷 > 𝐿𝐴, then
decreasing 𝑝 reduces the average access latency. Finally, if
𝐿𝐷 =𝐿𝐴, then changing 𝑝 does not change the average access
latency. Overall, 𝐿𝐷 =𝐿𝐴 is indeed the equilibrium point to
minimize average access latency and maximize throughput.

The principle of balancing access latencies provides a
unified approach to guide page placement across tiers. First, it
automatically captures unloaded latencies of each tier—these
are included in 𝐿𝐷 and 𝐿𝐴, respectively. For example, if the
gap between unloaded latencies of the tiers is larger, then 𝐿𝐷
will remain less than 𝐿𝐴 until larger degree of contention on
the default tier and the principle of balancing access latencies
will suggest placing a larger amount of hot pages in the
default tier. Second, it captures the maximum theoretical
bandwidth of each tier. Higher tier bandwidth usually implies
that higher loads can be handled while keeping access
latency closer to the unloaded latency (and vice versa). If

the bandwidth of any tier is saturated, then its corresponding
access latency will increase, and thus get captured by the
principle of balancing access latencies. Third, it captures
the impact of memory interconnect contention even when
bandwidth is not saturated—queueing at any point in the
memory access datapath will result in access latency increase
for the corresponding tier, and will thus get factored into
page placement decisions based on the principle.

The principle of balancing access latencies naturally gen-
eralizes to tiered memory architectures with more than two
tiers. If the access latencies of all the tiers are not equal, then
the average access latency can be reduced by placing more
hot pages in the tier with the smallest access latency. This is
because doing so will increase the sum of access probabilities
of pages in this tier while correspondingly reducing the sum
of access probabilities of pages in other tier(s) which have
higher access latencies. Similar reasoning can be applied
recursively for the tier with the second smallest access
latency and so on. If the access latencies of all the tiers are
equal, then adapting page placement will not lead to change
in average access latency. Hence, the state of balanced access
latency across tiers remains to be the equilibrium point that
minimizes average access latency and maximizes throughput.

Measuring access latency. Recent generations of Intel and
AMD processors provide hardware counters that enable low-
overhead measurements of per-tier access latency [4, 17, 18,
20]. For brevity, we focus our discussion on Intel processors.

Independent of the read/write ratio of the workload, overall
memory access throughput primarily depends on the latency
of memory read requests. This is because, even for write
requests, store instructions first generate memory read upon
cache miss to load data into the cache; the data is then
updated in the cache and memory write is processed asyn-
chronously upon cache writeback [28, 58]. Thus, the memory
access throughput for write requests directly depends on the
latency of memory read requests. To that end, we just need
mechanisms to measure the latency of memory read requests.

Colloid leverages the processor’s Caching and Home
Agent (CHA) as a vantage point to measure the access
latency of each tier. The CHA abstracts away memory tiers
from the rest of the system while handling cache-coherence.
As shown in Figure 3, the CHA is physically partitioned into
multiple slices (colocated with cores), each of which owns
a disjoint subset of the host physical address space. Upon
an L1/L2 cache miss, memory requests are first forwarded
to their corresponding CHA slice based on their physical
address. The CHA looks up the L3 cache. Upon a miss, the
CHA queues the request in its buffers and then forwards the
request to the default or alternate tier based on the physical
address. The request remains queued at the CHA until it has
been serviced from the corresponding tier.

CHA hardware counters enable low-overhead measure-
ments of queue occupancy and request arrival rates on a

per-request type (read/write) and per-tier basis for local
DDR-attached memory, remote socket memory exposed
through the processor interconnect, CXL-attached memory,
as well as High Bandwidth Memory. These measurements
can be performed at much finer-grained timescales (as low as
1 microsecond) than the timescales at which memory tiering
systems typically make page placement decisions. During
a given time quantum, let 𝑂𝐷 , 𝑂𝐴 be the average queue
occupancy of default and alternate tier requests, respectively,
and let 𝑅𝐷 , 𝑅𝐴 be the average arrival rate of requests to
the default and alternate tiers (number of memory requests
that arrived during the quantum divided by the quantum
duration). 𝑅𝐷 and 𝑅𝐴 are directly related to 𝑝 (sum of access
probabilities of pages in the default tier): 𝑝 = 𝑅𝐷

𝑅𝐷+𝑅𝐴
. Colloid

uses Little’s Law to measure the access latency (𝐿𝐷 , 𝐿𝐴)
of each tier: 𝐿𝐷 =𝑂𝐷/𝑅𝐷 , 𝐿𝐴 =𝑂𝐴/𝑅𝐴. Since Little’s Law
applies to any system where queues do not grow unboundedly
(without any assumptions on arrival, service behaviors,
scheduling policies etc.), applying it at the CHA gives us
the average CHA to memory latency; recent work [58]
provides in-depth validation of Little’s law based memory
access latency measurements. The only missing component
in measured 𝐿𝐷 , 𝐿𝐴 is CPU to CHA latency. This accounts
for only a tiny fraction of the CPU to memory access latency
and can thus be ignored. For example, on our hardware
setup, out of ∼70ns unloaded latency for default tier, ∼5ns
is CPU to CHA and ∼65ns is CHA to DRAM; under memory
interconnect contention, the latter will become even higher,
making the former an even smaller fraction of the overall
latency. We apply Exponentially Weighted Moving Averaging
(EWMA) on the both the occupancy and rate measurements
to smooth noise in the signals. This trades-off slightly higher
reaction time during workload changes for better stability.

3.2 Colloid page placement algorithm
Colloid page placement algorithm takes per-tier access
latency and per-page access tracking information as input,
and adapts page placement across tiers.

Overview of the Colloid page placement algorithm.
Algorithm 1 shows the end-to-end Colloid page placement
algorithm. At the beginning of each quantum, it obtains
the per-tier average queue occupancy (𝑂𝐷 , 𝑂𝐴) and average
request rates (𝑅𝐷 , 𝑅𝐴) over the duration of the previous
time quantum, computes the per-tier access latencies (𝐿𝐷 ,
𝐿𝐴), and current value of the sum of access probabilities of
pages in the default tier 𝑝. It then decides where to migrate
pages based on the principle of balancing access latencies
(§3.1)—if default tier access latency is smaller than that
of the alternate tier, then it promotes hot pages from the
alternate tier to the default tier; otherwise it demotes hot
pages from the default tier to the alternate tier (Lines 5-8).
Next, it determines what pages to migrate in three steps. First,
it computes how much access probability to shift between the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

LD > LA

LD < LA

Static Workload

p* plo phi p

P
ro

b
a
b
ili

ty

Time (t)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

LD > LA

LD < LA

Change in workload access pattern
(leading to change in p)

p* plo phi p

P
ro

b
a
b
ili

ty

Time (t)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

LD > LA

LD < LA

Change in memory interconnect contention
(leading to change in p*)

p* plo phi p

P
ro

b
a
b
ili

ty

Time (t)

Figure 4. Conceptual illustration of Colloid page placement algorithm (a-c; left-right). Each figure shows the change in sum of access
probabilities of pages in default tier 𝑝 over time, along with the equilibrium point 𝑝∗, low watermark 𝑝𝑙𝑜 , and high watermark 𝑝ℎ𝑖 . Colloid page
placement algorithm adapts 𝑝, 𝑝𝑙𝑜 and 𝑝ℎ𝑖 so as to maintain two invariants: both 𝑝 and 𝑝∗ are contained between 𝑝𝑙𝑜 and 𝑝ℎ𝑖 at all times, and the
gap between 𝑝𝑙𝑜 and 𝑝ℎ𝑖 reduces over time. (a) Static workload: 𝑝 eventually converges to 𝑝∗ (b) Upon sudden change in 𝑝 at 𝑡 =3, 𝑝ℎ𝑖 is updated,
after which 𝑝 eventually converges to 𝑝∗ (c) Upon sudden change in 𝑝∗ at 𝑡 =3, 𝑝ℎ𝑖 is reset, after which 𝑝 eventually converges to 𝑝∗.

tiers, denoted as Δ𝑝 (Line 9). Second, it computes a migration
limit. Third, it executes a page finding procedure (Line 10),
whose goal is to find a set of pages in default/alternate tier
for demotion/promotion under the following two constraints:
(1) their sum of access probabilities is less than or equal to
Δ𝑝; and (2) their sum of sizes in bytes does not exceed the
migration limit or the available capacity in the destination
tier. Depending on the underlying system and access tracking
mechanism, one can implement different page finding pro-
cedures, which we describe in §4. Finally, it migrates these
pages through an underlying page migration mechanism.

Algorithm 1 : Colloid page placement algorithm.

[Input parameter] 𝑀: Migration limit per-quantum (in bytes)
Every quantum:

1: 𝑂𝐷 , 𝑅𝐷 : Measured default tier queue occupancy, rate
2: 𝑂𝐴, 𝑅𝐴: Measured alternate tier queue occupancy, rate
3: 𝐿𝐷← 𝑂𝐷

𝑅𝐷
and 𝐿𝐴← 𝑂𝐴

𝑅𝐴

4: 𝑝← 𝑅𝐷

𝑅𝐷+𝑅𝐴

5: if 𝐿𝐷 <𝐿𝐴 then
6: mode← promotion
7: else
8: mode← demotion
9: Δ𝑝← COMPUTESHIFT(𝑝, 𝐿𝐷 , 𝐿𝐴)

10: 𝑆← FINDPAGES(mode, Δ𝑝,𝑚𝑖𝑛(Δ𝑝 (𝑅𝐷+𝑅𝐴),𝑀))
11: if mode is promotion then
12: promote pages in 𝑆 from alternate to default
13: else
14: demote pages in 𝑆 from default to alternate

Desired shift in per-tier access probability. In existing
memory tiering systems, the decision on the set of hot pages
to migrate during each quantum is trivial—simply migrate
as many hot pages as possible (while respecting migration
rate limits). For Colloid, however, the principle of balancing
access latencies changes the structure of the problem—the
equilibrium point may correspond to placing a subset of hot
pages in the default tier and a subset of the hot pages in the
alternate tier. As a result, the decision on the set of hot pages

to migrate during each quantum is non-trivial. Migrating
too many hot pages may result in oscillations around the
equilibrium point. Migrating too few hot pages, may result
in longer time to converge to the equilibrium point. Colloid
determines the set of hot pages to migrate by computing the
desired shift in per-tier access probabilities.

Algorithm 2 : Computing desired shift in access probability.

/* Initialize 𝑝𝑙𝑜←0 and 𝑝ℎ𝑖←1 */
1: procedure COMPUTESHIFT(𝑝, 𝐿𝐷 , 𝐿𝐴)
2: if |𝐿𝐷−𝐿𝐴 |<𝛿 ·𝐿𝐷 then return 0
3: else
4: if 𝐿𝐷 <𝐿𝐴 then 𝑝𝑙𝑜←𝑝 else 𝑝ℎ𝑖←𝑝

5: if 𝑝ℎ𝑖 <𝑝𝑙𝑜+𝜖 then
6: if 𝐿𝐷 <𝐿𝐴 then 𝑝ℎ𝑖←1 else 𝑝𝑙𝑜←0

return
��𝑝𝑙𝑜+𝑝ℎ𝑖

2 −𝑝
��

To find the desired shift in access probability, Colloid exe-
cutes a binary-search style procedure (Algorithm 2) using two
watermarks, 𝑝𝑙𝑜 and 𝑝ℎ𝑖 . Intuitively, 𝑝ℎ𝑖 upper bounds the sum
of access probabilities (known so far based on measurements
during previous quanta) for which the default tier access
latency may be smaller than that of alternate tier; 𝑝𝑙𝑜 , on the
other hand, bounds the sum of access probabilities (known so
far based on measurements during previous quanta) for which
the default tier access latency is definitely smaller than that of
alternate tier. The above intuitive definitions suggest that 𝑝𝑙𝑜
should be initialized to 0 and 𝑝ℎ𝑖 should be initialized to 1,
based on the unloaded access latencies of the tiers. Moreover,
if there is a feasible equilibrium point 𝑝∗, it will be always be
somewhere between the low and high watermarks—that is,
𝑝𝑙𝑜 ≤𝑝∗ ≤𝑝ℎ𝑖 . During each quantum, Colloid tries to reduce
the gap between 𝑝𝑙𝑜 and 𝑝ℎ𝑖 , thus moving the system closer to
the equilibrium point. If default tier access latency is smaller
than that of alternate tier, then 𝑝𝑙𝑜 is updated to 𝑝, otherwise,
𝑝ℎ𝑖 is updated to 𝑝. Colloid then moves the system towards
the midpoint of 𝑝𝑙𝑜 and 𝑝ℎ𝑖 . To that end, the desired shift in
access probability across the tiers is computed as

��𝑝𝑙𝑜+𝑝ℎ𝑖
2 −𝑝

��.
As illustrated in Figure 4(a), for any given static workload,

the above procedure will converge to the equilibrium point

if one exists. This is because the gap between 𝑝𝑙𝑜 and
𝑝ℎ𝑖 reduces during each quantum, while the invariants
𝑝𝑙𝑜 ≤𝑝 ≤𝑝ℎ𝑖 and 𝑝𝑙𝑜 ≤𝑝∗ ≤𝑝ℎ𝑖 continue to hold. As a result, 𝑝
eventually converges to 𝑝∗. If the access latency of the default
tier is lower than the alternate tier even when 𝑝 = 1, then
Colloid converges to the optimal operating point of 𝑝 =1.

The key challenge is to handle dynamic time-varying
workloads. Such workloads can result in two unexpected
changes: (1) changes in workload access patterns can result in
abrupt change in 𝑝 value violating the 𝑝𝑙𝑜 ≤𝑝 ≤𝑝ℎ𝑖 invariant;
and, (2) changes in memory interconnect contention can
result in abrupt change in 𝑝∗ value violating the 𝑝𝑙𝑜 ≤𝑝∗ ≤𝑝ℎ𝑖
invariant. As illustrated in Figure 4(b), changes in 𝑝 are
automatically handled by the above procedure, since the
watermarks are updated before computing the Δ𝑝 value.

Changes in 𝑝∗, however, require more care. For example,
say 𝑝∗ abruptly becomes larger than 𝑝ℎ𝑖 due to change in
memory interconnect contention, as illustrated at 𝑡 = 3 in
Figure 4(c). Since the above procedure ensures that 𝑝 remains
lower than 𝑝ℎ𝑖 at all times and since 𝑝∗ is now larger than
𝑝ℎ𝑖 , 𝑝 will fail to converge to the new 𝑝∗. To handle dynamic
changes in the equilibrium point, Colloid checks if the
watermarks have gotten very close to each other and if the
system has not yet reached the equilibrium point (that is, the
access latencies of the tiers are not balanced); if so, Colloid
resets the watermarks based on the access latencies of the
tiers. Specifically, if 𝑝𝑙𝑜 is very close to 𝑝ℎ𝑖 and the default tier
access latency is smaller than that of the alternate tier, then 𝑝∗

has likely exceeded 𝑝ℎ𝑖 ; thus Colloid resets 𝑝ℎ𝑖 to 1. Similarly,
if 𝑝𝑙𝑜 is very close to 𝑝ℎ𝑖 and default tier access latency is
larger than that of alternate tier, then 𝑝∗ has likely become
smaller than 𝑝𝑙𝑜 ; thus Colloid resets 𝑝𝑙𝑜 to 0. Resetting the
watermarks when needed enables Colloid to converge to
the equilibrium point even when the equilibrium point shifts
due to changes in memory interconnect contention. This is
illustrated in Figure 4(c). To quantify the gap between the
watermarks, we use a threshold 𝜖 (0<𝜖 <1), and to determine
whether the system is close to the equilibrium point we check
whether the access latencies of the tiers are within a factor
𝛿 of each other (0<𝛿 < 1). Given fixed 𝛿 , increasing 𝜖 leads
to faster detection of dynamic workload changes at the cost
of worse stability. Given fixed 𝜖, increasing 𝛿 leads to better
stability at the cost of suboptimal steady-state throughput.

Dynamic migration limit. As Colloid converges closer to
the equilibrium point, it must carefully navigate the trade-off
between the desired shift in access probability Δ𝑝 and the
impact of additional memory traffic generated by page migra-
tions on application performance. During a given quantum,
if Δ𝑝 is small and there are many pages each with tiny access
probability (e.g., if Δ𝑝 =0.01, and there are 1000 pages with
probability 0.00001 each), Colloid may end up unnecessarily
migrating a large number of pages. This may lead to a large
volume of migration traffic, causing oscillations around

the equilibrium point, and hurting application performance.
To address this, Colloid introduces a dynamic migration
limit proportional to Δ𝑝. If migration traffic is larger than
the desired perturbation in rates Δ𝑝 (𝑅𝐷 +𝑅𝐴), then it is not
ideal to execute such a migration. Therefore, Colloid sets
the migration limit to the minimum of Δ𝑝 (𝑅𝐷 +𝑅𝐴) and a
static limit based on maximum rate-limit for migration traffic,
which is a configurable parameter in existing systems.

Selecting pages to migrate. Given a desired shift in access
probability Δ𝑝, Colloid uses the access tracking mechanism
in the underlying system to find a small set of pages that meet
the bound on the desired shift in access probability (§4).

4 Colloid with existing memory tiering systems
Colloid leverages existing access tracking and page migration
mechanisms, thus enabling easy integration with existing
memory tiering systems. We integrate Colloid with three
state-of-the-art memory tiering systems, HeMem [48],
MEMTIS [29] and TPP [35]. This section provides the most
interesting system-specific implementation details.

Integrating Colloid with any system requires implementing
access latency measurement (§3.1), Colloid page placement
algorithm (§3.2), and a page finding procedure based on
available access tracking information. Colloid implementa-
tion uses the same trigger for page placement decisions (e.g.,
periodically, or on page faults), and the same page migration
limits as the underlying system.

4.1 HeMem with Colloid
HeMem uses Processor Event-Based Sampling (PEBS) to
compute per-page access frequencies. In particular, it uses
a busy polling thread that reads PEBS access samples with
a fixed sampling rate, and updates per-page frequency counts.
It maintains a hot list and cold list of pages for each tier.
Pages are placed in the hot list if their access frequency count
exceeds a fixed threshold. Pages are cooled by halving their
frequency count whenever the frequency count of any page
reaches a certain threshold (COOLING_THRESHOLD). Page
migrations are performed asynchronously by a migration
thread using a quantum of 10ms.

We implement Colloid on top of HeMem with 520 lines
of code. Colloid access latency measurements are performed
on HeMem’s migration thread—CHA hardware counters are
sampled every quantum to obtain average queue occupancy
and average rate of requests for each tier. Colloid page
placement algorithm, that replaces the page placement
algorithm of HeMem, is also implemented on the migration
thread. We leverage HeMem’s per-page frequency counts to
compute the access probability of each page. Specifically, the
access probability of each page is obtained by dividing its
frequency count by the cumulative frequency count across
all pages. To efficiently identify pages that correspond to
Δ𝑝 access probability, we extend HeMem’s hot/cold lists:

rather than binary hot/cold lists, we split the frequency space
(0-COOLING_THRESHOLD) into equal sized bins and maintain
a separate page list per bin. We use 5 bins by default. These
lists are updated in the exact same fashion as HeMem’s
original hot/cold lists. Using these, we can easily determine
which pages to migrate: we iterate over bins to find pages
whose sum of access probability is less than or equal to Δ𝑝,
until either Δ𝑝 is satisfied, migration limit is hit, or there are
no feasible page choices.

4.2 MEMTIS with Colloid
MEMTIS is similar to HeMem, with four key differences.
First, it uses a dynamic sampling rate for PEBS to reduce
CPU overhead. Second, it uses a dynamic threshold (based
on the measured access distribution) to determine the hot and
the cold page list for each tier. Third, it performs promotion
and demotion using separate per-tier kmigraterd threads
using a quantum of 500ms. Finally, MEMTIS performs page
size determination—based on certain heuristics, MEMTIS
coalesces pages into hugepages using a background thread,
and splits hugepages into pages using kmigraterd threads.

We implement Colloid on top of MEMTIS with 411 lines
of code. Since Colloid design is agnostic to the sampling
rate used to maintain per-page frequency counts, our im-
plementation on top of MEMTIS computes per-page access
probabilities similar to our implementation on top of HeMem.
We do not modify MEMTIS hot/cold list management, and
simply use the per-tier hot lists to select pages for migration.
We implement Colloid latency measurement and page
placement algorithm on the alternate tier kmigraterd thread
(default tier kmigraterd is unmodified and demotes cold
pages based on capacity constraints as before). To determine
which pages to migrate, we scan the corresponding tier’s hot
list and pick pages until either Δ𝑝 is satisfied or the migration
limit is hit. To handle different page sizes, we simply need to
take each individual page’s size into account when checking
the migration limit.

4.3 TPP with Colloid
TPP periodically scans process page tables and marks
pages with a special protection bit. Subsequent accesses to
these pages result in a hint page fault. Hot and cold pages
are determined using time-to-fault, that is, time duration
between a page being marked and subsequent hint fault being
triggered. A page is deemed to be hot if the time-to-fault
is larger than a dynamically adapted threshold, and cold
otherwise. Upon hint fault for a page in the alternate tier, it
is synchronously promoted to the default tier if the page is
deemed to be hot. Demotion of cold pages from default tier
to alternate tier happens asynchronously through the kswapd
thread which demotes pages based on capacity watermarks.
Cold pages for demotion are picked from the kernel’s inactive
list (which is maintained based on page access bits).

We implement Colloid on top of TPP in Linux kernel v6.3
with ∼315 lines of code. We implement Colloid access la-
tency measurement in a kernel module that runs a spin polling
thread which samples CHA counters at microsecond-scale,
and exposes occupancy and rate metrics to the core kernel.
This requires dedicating one core similar to vanilla HeMem.
To compute per-page access probability, we use time-to-fault
as a proxy—pages with higher access probability are likely to
hint fault more quickly than those with lower access probabil-
ity. Specifically, in a stream of requests, the average number of
requests before a page with access probability 𝑝 is accessed is
1
𝑝

. If 𝑟 is the current rate of requests to the corresponding tier,
we get an average inter-request time of 1

𝑟
. Thus, the expected

time before a page is accessed (or equivalently, the time-to-
fault for a page) is given by Δ𝑡 = 1

𝑝 ·𝑟 . Rearranging the equation,
the access probability of a page can be calculated as 𝑝 = 1

Δ𝑡 ·𝑟 .
Colloid page placement algorithm is implemented by modi-

fying the hint fault handler. Upon hint fault of page in alternate
tier, the page is promoted to default tier if current access la-
tency of alternate tier is larger than default tier and the page’s
access probability is less than or equal to Δ𝑝 (Algorithm 1). To
enable demotion of hot pages from the default tier to the alter-
nate tier, we enable hint faults on the default tier pages. Upon
hint fault of default tier page, the page is demoted to alternate
tier if default tier access latency is larger than alternate tier ac-
cess latency, and its access probability is less than or equal to
Δ𝑝. Demotion of cold pages from default tier to alternate tier
via kswapd continues as before to meet capacity constraints.

5 Evaluation
We now evaluate the performance of three state-of-the-art
memory tiering systems—HeMem, MEMTIS and TPP—with
and without Colloid. Unless specified otherwise, all parame-
ters of all systems are set to their default values. We evaluate
TPP both with and without Transparent Huge Pages (THP);
we present results with THP enabled (results with THP
disabled are provided in [57]). For Colloid, we set 𝜖 = 0.01
and 𝛿 = 0.05; sensitivity analysis with these parameters is
presented in [57]. Throughout, we use the same setup as in §2.

We focus on two key metrics: steady-state application
throughput, and convergence time upon changes in workload
and memory interconnect contention intensity. For real
applications, we measure application-specific performance
metrics that are described inline.

5.1 Steady-state Throughput
Figure 5 shows the steady-state throughput achieved by each
system with and without Colloid, along with the best-case
throughput for the same GUPS workload as in Figure 1. With
0× memory interconnect contention intensity, performance
with Colloid matches performance without Colloid for all
systems. With increasing memory interconnect contention,
Colloid provides increasingly larger benefits in terms of

 0

 20

 40

 60

 80

0x 1x 2x 3x

Best−case
HeMem

HeMem+Colloid
 TPP

 TPP+Colloid
MEMTIS

MEMTIS+Colloid

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Memory interconnect contention intensity

Figure 5. Colloid enables each system to achieve near-optimal
performance, independent of the memory interconnect intensity.
Discussion in §5.1.

steady-state throughput: 1.2−2.3× for HeMem, 1.35−2.35×
for TPP and 1.29− 2.3× for MEMTIS. Independent of the
intensity of memory interconnect contention, Colloid enables
HeMem, TPP and MEMTIS to achieve close to the best-case
performance (within 3%, 8% and 13%, respectively).

Understanding Colloid benefits. Figure 6(a) shows that
Colloid enables each system to better adapt page placement
based on memory interconnect contention; intuitively, this
is because Colloid page placement algorithm is able to
determine the precise set of hot pages to place in each tier
so as to balance access latencies as shown in Figure 6(b).

With 0×memory interconnect contention intensity, Colloid
behavior is similar to the underlying system (Figure 2(b))—it
places nearly the entire hot set in the default tier since the
default tier access latency remains lower than that of the alter-
nate tier. For 1×,2× and 3× memory interconnect contention
intensity, unlike the results in Figure 2(b), each system
now places an increasingly larger fraction of the hot set in
the alternate tier, similar to the best-case placement. With
1× memory interconnect contention intensity, it balances
the hot set across the tiers in order to equalize their access
latencies. With 2×, and 3× memory interconnect contention
intensity, Colloid places the entire hot set in the alternate
tier. In these cases, even after doing so, the default tier access
latency remains higher than that of the alternate tier, but the
gap between the two is significantly lower compared to the
Figure 2(a) measurements without Colloid for all systems.

We now perform sensitivity analysis for Colloid with varying
alternate tier unloaded access latency, varying object sizes,
varying number of application cores, and varying read/write
ratios. Each of these parameters impact the optimal operating
point in terms of the set of hot pages that must be placed in
each tier to achieve optimal performance, thus enabling us to
understand Colloid effectiveness across the spectrum. Here,
we present results for varying alternate tier unloaded access
latency and object sizes; other results are provided in [57].

Impact of alternate tier unloaded latency. Existing CXL-
attached memory has 2× higher unloaded latency relative to
the default tier for ASIC-based memory controllers [54, 62].

 0

 20

 40

 60

 80

0x 1x 2x 3x

Default Alternate
Best−case

HeMem+Colloid
TPP+Colloid

MEMTIS+Colloid

B
a

n
d

w
id

th
 (

G
B

/s
)

Memory interconnect contention intensity

 50

 150

 250

 350

0x 1x 2x 3x

Default Alternate
HeMem+Colloid

TPP+Colloid
MEMTIS+Colloid

L
a

te
n

c
y
 (

n
s
)

Memory interconnect contention intensity

Figure 6. Understanding Colloid benefits (a-b; top-bottom) (a)
Colloid enables each system to better balance hot pages across tiers
based on the memory interconnect contention, similar to the best-case
placement; (b) Colloid reduces the gap between the access latencies
across tiers compared to Figure 2(a).

In our evaluation so far, the unloaded latency of our alter-
nate tier is 1.9× the default tier latency, roughly matching
the current CXL-attached memory latency ratio. To better
understand Colloid behavior under a wider range of realis-
tic unloaded latencies of tiered memory deployments, we
increase the unloaded latency on our servers by reducing the
uncore frequency of the remote socket only for this experiment.
This enables us to vary the unloaded latency of the alternate
tier from 1.9−2.7× of the default tier latency. Reducing un-
core frequency has the side effect of reducing alternate tier
bandwidth in addition to increasing unloaded latency. Such
bandwidth reduction only hurts Colloid (that is, the reported
gains are conservative)—for real hardware with comparable
unloaded latency, higher bandwidth would allow Colloid to
achieve better results: it will be able to place larger number of
hot pages in the alternate tier since loaded latency will not in-
crease as quickly due to higher bandwidth of the alternate tier.

Figure 7 demonstrates that Colloid enables significant
performance benefits for existing memory tiering systems
even when the alternate tier unloaded latency is as high as
2.7× that of the default tier. As expected, Colloid enables
larger benefits for higher memory interconnect contention
intensities. For a fixed memory interconnect contention
intensity, the benefits of Colloid reduce with increasing
alternate tier unloaded latency because the throughput

0x

1x

2x

3x

1.9 2.1 2.4 2.7

1.01 1.00 0.99 0.99

1.17 1.09 1.02 1.01

1.65 1.54 1.37 1.25

2.36 2.19 1.97 1.76

In
te

n
s
it
y

Alternate Tier Unloaded Latency
 (normalied by default tier unloaded latency)

 0.5

 1

 1.5

 2

 2.5

HeMem+Colloid

0x

1x

2x

3x

1.9 2.1 2.4 2.7

0.97 1.00 0.99 1.01

1.25 1.19 1.13 1.03

1.81 1.66 1.52 1.42

2.36 2.14 1.97 1.76

In
te

n
s
it
y

Alternate Tier Unloaded Latency
 (normalied by default tier unloaded latency)

 0.5

 1

 1.5

 2

 2.5

TPP+Colloid

0x

1x

2x

3x

1.9 2.1 2.4 2.7

1.02 1.02 1.01 0.99

1.11 1.07 1.02 1.01

1.56 1.54 1.29 1.24

2.24 2.01 1.81 1.63

In
te

n
s
it
y

Alternate Tier Unloaded Latency
 (normalied by default tier unloaded latency)

 0.5

 1

 1.5

 2

 2.5

MEMTIS+Colloid

Figure 7. Colloid enables performance benefits for the underlying system even with larger alternate tier unloaded latency (a-c; left-right).
Each cell in the heatmap shows performance improvement enabled by Colloid (throughput of the underlying system with Colloid normalized by
throughput without Colloid) for a specific alternate tier unloaded latency and memory interconnect contention intensity.

0x

1x

2x

3x

64 256 1024 4096

1.01 1.17 1.31 1.25

1.17 1.40 1.38 1.33

1.65 1.50 1.49 1.47

2.36 1.68 1.52 1.51

In
te

n
s
it
y

Object size (bytes)

 0.5

 1

 1.5

 2

 2.5

HeMem+Colloid

0x

1x

2x

3x

64 256 1024 4096

0.97 1.18 1.35 1.27

1.25 1.45 1.46 1.37

1.81 1.55 1.56 1.53

2.36 1.72 1.60 1.56

In
te

n
s
it
y

Object size (bytes)

 0.5

 1

 1.5

 2

 2.5

TPP+Colloid

0x

1x

2x

3x

64 256 1024 4096

1.02 1.21 1.35 1.29

1.11 1.43 1.43 1.32

1.56 1.51 1.54 1.49

2.24 1.65 1.55 1.55

In
te

n
s
it
y

Object size (bytes)

 0.5

 1

 1.5

 2

 2.5

MEMTIS+Colloid

Figure 8. Colloid enables performance benefits for the underlying system, independent of the object size. With larger object sizes, Colloid
enables performance improvements even at low memory interconnect contention intensity. (a-c; left-right). Each cell in the heatmap shows
performance improvement enabled by Colloid (throughput of the underlying system with Colloid normalized by throughput without Colloid) for
a specific object size and memory interconnect contention intensity.

benefits achieved from placing hot pages in the alternate tier
reduce with higher access latency; in addition, a relatively
smaller number of hot pages can be placed in the alternate
tier before its access latency exceeds that of the default
tier. Nevertheless, even at the maximum alternate tier
unloaded latency (2.7× of default tier), Colloid still achieves
1.01 − 1.76×, 1.03 − 1.76× and 1.01 − 1.63× performance
improvement for HeMem, TPP and MEMTIS, respectively.

Impact of object size. Figure 8 shows the benefits of Colloid
with the GUPS object size varying from 64 to 4096 bytes, with
all other parameters fixed to their default values. For object
sizes 256 bytes and above, Colloid provides performance
improvements even for 0× memory interconnect contention
intensity (1.17−1.31× for HeMem, 1.18−1.35× for TPP and
1.21 − 1.35× for MEMTIS). This is because larger object
sizes make the workload access pattern more sequential; as a
result, hardware prefetchers perform better and the effective
per-core parallelism for memory objects in increased. For
example, with HeMem at 0× intensity, the average number of
in-flight L3 misses per core at the CHA—which corresponds
to effective per-core parallelism—are 2.82× higher for 4096
byte object size compared to 64 byte object size. Thus, the
application becomes more memory intensive, causing the
default tier access latency to exceed that of the alternate tier
even at 0× intensity. For example, with HeMem at 0× inten-
sity, the default tier access latency exceeds the alternate tier
latency by 1.77× for 4096 byte object size enabling Colloid
to provide performance improvement even at 0× intensity.

With higher memory interconnect contention intensity, Col-
loid benefits reduce a little bit with increase in object sizes.
This is because the alternate tier memory interconnect be-
comes contended, thus limiting the additional throughput that
Colloid can achieve by placing hot pages in the alternate tier.
For example, with HeMem+Colloid at 3× intensity and for 64
byte object size, the alternate tier bandwidth utilization is 53%
of the theoretical maximum bandwidth for this workload; for
4096 byte object size, the alternate tier bandwidth utilization is
96% of the theoretical maximum bandwidth for this workload.

Colloid CPU overheads. Colloid requires additional CPU cy-
cles for latency measurements and page placement algorithm.
Measurements for Figure 5 experiments for each system with-
out and with Colloid suggest that Colloid has <2% CPU over-
heads for HeMem and MEMTIS, independent of the memory
interconnect contention intensity. Colloid has slightly higher
CPU overheads (4−6.5%) for TPP due to an additional core
being used for access latency measurement (§4).

5.2 Convergence Time
Adapting to dynamic, time-varying, workloads is a common
challenge for any memory tiering system—if the workload
changes faster than the tiering system can adapt, then the ef-
fectiveness of the memory tiering system reduces. Fundamen-
tally, there are two sources of dynamism: change in memory
access pattern, and change in memory interconnect con-
tention. We evaluate the impact of Colloid on the convergence
time of the underlying system to each of these separately.

 0

 20

 40

 60

 80

 50 75 100 125 150

HeMem HeMem+Colloid
T

h
ro

u
g

h
p

u
t

(G
B

/s
)

Time (secs)

 0

 20

 40

 60

 80

 50 75 100 125 150

HeMem HeMem+Colloid

T
h

ro
u
g

h
p

u
t

(G
B

/s
)

Time (secs)

 0

 20

 40

 60

 80

 50 75 100 125 150

HeMem HeMem+Colloid

T
h

ro
u
g

h
p

u
t

(G
B

/s
)

Time (secs)

 0

 20

 40

 60

 80

 300 400 500 600 700 800 900

TPP TPP+Colloid

T
h

ro
u
g

h
p

u
t

(G
B

/s
)

Time (secs)

 0

 20

 40

 60

 80

 300 400 500 600 700 800 900

TPP TPP+Colloid

T
h

ro
u
g

h
p

u
t

(G
B

/s
)

Time (secs)

 0

 20

 40

 60

 80

 300 400 500 600 700 800 900

TPP TPP+Colloid

T
h

ro
u
g

h
p

u
t

(G
B

/s
)

Time (secs)

 0

 20

 40

 60

 80

 50 75 100 125 150

MEMTIS MEMTIS+Colloid

T
h

ro
u
g

h
p

u
t

(G
B

/s
)

Time (secs)

 0

 20

 40

 60

 80

 50 75 100 125 150

MEMTIS MEMTIS+Colloid

T
h

ro
u
g

h
p

u
t

(G
B

/s
)

Time (secs)

 0

 20

 40

 60

 80

 50 75 100 125 150

MEMTIS MEMTIS+Colloid

T
h

ro
u
g

h
p

u
t

(G
B

/s
)

Time (secs)

Figure 9. Colloid enables the underlying system to maintain its convergence time upon dynamic changes in access pattern and/or memory
interconnect contention intensity. Each row (top-bottom) shows instantaneous throughput for the system, measured at per-second timescale,
with and without Colloid. Each column uses a different scenario: (left) change in access pattern under no memory interconnect contention (center)
change in access pattern under memory interconnect contention (right) change in memory interconnect contention intensity.

Dynamism due to change in access pattern. We dynamically
change the hot set of the GUPS workload using the same
methodology as in HeMem [48]. We run the application on
15 cores with 0× memory interconnect contention intensity
and allow enough time for each of the systems to reach
steady-state. Then, at a particular instant of time (𝑡 = 100),
we instantaneously change the workload’s hot set—pages
previously in the hot set are marked as cold, and a different
set of random pages are marked as hot. Figure 9 (top, left)
shows the result with HeMem. Before the change, both
HeMem and HeMem+Colloid are operating at the same
throughput—both of them place the entire hot set in default
tier. Upon the change, there is a sudden drop in throughput
since several pages in the new hot set are now in the alternate
tier. Both HeMem and HeMem+Colloid detect the change in
access distribution, migrate the new hot pages to default tier,
and converge back to the original throughput. We observe
similar trends for TPP and MEMTIS, as shown in Figure 9
(left, center) and (left, bottom). TPP takes significantly
longer relative to HeMem and MEMTIS (100s of seconds)
to converge after change in access pattern because it takes
longer to identify the new hot pages due to page table scan
latency and less precise access information; Colloid does not
change TPP’s convergence times.

Figure 10 (left) shows the migration rate (that is, the
number of bytes migrated per second) for HeMem and
HeMem+Colloid over time for the above experiment. As
expected, both HeMem and HeMem+Colloid observe sudden
increase in migration rate upon change of the workload.
However, compared to HeMem, HeMem+Colloid migration
rate decreases more gradually; this is because of the dynamic

migration limit in the Colloid algorithm (§3.2)—as the
system approaches the equilibrium point, smaller Δ𝑝 values
lead to lower migration rates. Overall, this relatively more
gradual decrease in migration rate results in HeMem+Colloid
takes marginally longer than HeMem (∼3 seconds) to
converge. This overhead does not scale with increasing
convergence time; for example, if the hot set size is larger,
HeMem+Colloid migration rate will be bound by the static
migration limit for most of the time; the dynamic migration
limit will apply only when Δ𝑝 becomes relatively small at
which point Colloid is already close to convergence. Overall,
HeMem+Colloid does not exceed HeMem’s peak migration
rate. In the steady state, HeMem+Colloid has marginally
higher migration rate compared to HeMem, but this does not
impact application performance since it is very small (<0.7%
of application throughput). For TPP and MEMTIS peak
migration rate is <1.6% and 4.5% of application throughput,
respectively (results in [57]).

We repeat the same experiment as above, but with 3×
memory interconnect contention intensity, to understand the
behavior of the systems with change in access distribution
under memory interconnect contention. Figure 9 (top,
center) shows that, before the change, HeMem+Colloid
operates at higher throughput by placing part of the hot set
in the alternate tier. Upon the change, HeMem throughput
increases since pages in the new hot set are now in the
alternate tier; HeMem detects the change and migrates all
hot pages back to the default tier thus converging back to
its original suboptimal throughput. On the other hand, upon
the change, HeMem+Colloid throughput degrades since
larger-than-ideal fraction of the new hot set is in the default

 0

 2

 4

 6

 8

 10

 50 75 100 125 150

HeMem HeMem+Colloid

M
ig

ra
ti
o
n
 R

a
te

 (
G

B
/s

)

Time (secs)

 0

 2

 4

 6

 8

 10

 50 75 100 125 150

HeMem HeMem+Colloid

M
ig

ra
ti
o
n
 R

a
te

 (
G

B
/s

)

Time (secs)

 0

 2

 4

 6

 8

 10

 50 75 100 125 150

HeMem HeMem+Colloid

M
ig

ra
ti
o
n
 R

a
te

 (
G

B
/s

)

Time (secs)

Figure 10. Migration rate (measured per-second) over time for HeMem and HeMem+Colloid corresponding to Figure 9 experiments.

 1

 1.4

 1.8

 2.2

0x 1x 2x 3x

HeMem+Colloid
TPP+Colloid

MEMTIS+Colloid

P
e

rf
o

rm
a

n
c
e

Im
p

ro
v
e

m
e

n
t

Memory interconnect contention intensity

 1

 1.4

 1.8

 2.2

0x 1x 2x 3x

HeMem+Colloid
TPP+Colloid

MEMTIS+Colloid

P
e

rf
o

rm
a

n
c
e

Im
p

ro
v
e

m
e

n
t

Memory interconnect contention intensity

 1

 1.4

 1.8

 2.2

0x 1x 2x 3x

HeMem+Colloid
TPP+Colloid

MEMTIS+Colloid

P
e

rf
o

rm
a

n
c
e

Im
p

ro
v
e

m
e

n
t

Memory interconnect contention intensity

Figure 11. Colloid enables end-to-end performance benefits for real-world applications that exhibit different compute-to-memory
bandwidth demands and access patterns (a-c; left-right): (a) GAPBS, a graph processing application; (b) Silo, an in-memory transactional
database; and, (c) CacheLib, an in-memory key-value cache. Discussion in §5.3.

tier. HeMem+Colloid detects the change and recovers back
to its original throughput by migrating pages to maintain the
ideal fraction of hot set in the alternate tier. Both HeMem and
HeMem+Colloid converge within 10 seconds. We observe
a similar trend for TPP, although at a different timescale.
MEMTIS+Colloid throughput is not impacted by the change.
This is becuase MEMTIS proactively places cold pages in
the alternate tier even when there is capacity available in the
default tier. As a result, for MEMTIS+Colloid, the entire
working set is already in the alternate tier before the change.

Dynamism due to change in memory interconnect
contention. We keep the workload access distribution fixed,
and dynamically change the intensity of memory interconnect
contention. Initially, the application is run on 15 cores with
0× memory interconnect contention. At a particular time
instant, we introduce 3× memory interconnect contention.
Figure 9 (top, right) shows that, before the change, both
HeMem and HeMem+Colloid operate at same throughput
with the entire hot set in default tier. Upon the change, there
is a sudden drop in throughput due to increased memory
interconnect contention. HeMem, being agnostic to memory
interconnect contention, does not react and continues to
operate at degraded throughput. HeMem+Colloid detects
the change, migrates pages in the hot set to alternate tier, and
converges to a point of higher throughput within ∼10 seconds
(similar timescale as its reaction to access pattern changes).
The throughput that it converges to closely matches the
best-case throughput for 3× memory interconnect contention
(Figure 5). We observe similar trends for TPP and MEMTIS,
as shown in Figure 9—both of them converge to near
best-case throughput at similar timescales at which they adapt
to access pattern changes (∼250s and ∼25s, respectively).

5.3 Real Applications
We now evaluate Colloid benefits to end-to-end performance
of three real-world applications that exhibit different
compute-to-memory bandwidth demands and access patterns.
As before, we run each application on 15 cores and evaluate
with varying intensity of memory interconnect contention.

Graph processing (GAPBS). This application implements
several graph processing algorithms operating on top of in-
memory graphs, producing a large number of memory ac-
cesses in the process. We evaluate the PageRank algorithm in
GAPBS [5] on a Twitter graph, similar to [29]. Access local-
ity arises from skew in the degree distribution of graph nodes.
We set the default tier size to one-third of the total working
set size (∼12.6GB) and execute 16 trials of the algorithm. The
performance metric is the average execution time across all tri-
als (lower is better). Figure 11(a) shows that, with increasing
memory interconnect contention, Colloid improves the perfor-
mance of HeMem by 1.05×−1.92×, TPP by 1.05−1.48× and
MEMTIS by 1.12− 2.12×. Performance improvement with
TPP is relatively smaller compared to HeMem and MEMTIS
because it takes longer to identify hot pages.

In-memory transaction processing (Silo). This application
implements a high-performance in-memory transactional
database; we evaluate it using the YCSB-C benchmark, as
in [29]. The working set consists of 400 million key-value
pairs with 64 byte keys and 100 byte values; the total working
set size is thus ∼60GB. Default tier size is set to one-third
of the working set size. We execute 15 billion lookup
operations using a Zipfian access distribution. Figure 11(b)
shows the corresponding results. Colloid matches baseline
performance at low memory interconnection contention
and improves the performance of HeMem by 1.13− 1.25×,
TPP by 1.09−1.17× and MEMTIS by 1.08−1.17×, at higher
memory interconnection contention intensities.

In-memory key-value cache (CacheLib). We evaluate
CacheLib, a popular open-source caching library, in
RAM-only mode and execute workloads using the standard
CacheBench tool. We use the key-value workload from [48]
(HeMemKV): the key and the value sizes are fixed to 64B
and 4KB, respectively, 20% of keys are in the hot set, and re-
maining are in the cold set. The hot set is accessed uniformly
at random with 90% probability, and cold set with 10%
probability. The GET/UPDATE ratio is 90/10. We populate
15 million KV pairs leading to working set size of ∼75GB, set
the default tier size to one-third of the working set size, and
execute 1 billion operations from 15 cores. The performance
metric is average throughput (operations per second) over the
entire duration of the experiment. Figure 11(c) shows that, at
2× and 3× memory interconnect contention intensity, Colloid
improves performance of HeMem by 1.37−1.74×, TPP by
1.42−1.79×, and MEMTIS by 1.48−1.93×.

6 Related Work
We discuss key works related to Colloid.

Memory management for NUMA architectures. Classical
literature in this space [6, 7, 11, 30, 34, 56] has primarily
focused on the problem of placing both compute tasks
and memory pages in multi-socket systems to optimize
application performance. The work that comes closest to our
problem is Carrefour [11]. Carrefour, among other techniques,
performs page placement to balance load (average rate of
requests) across memory attached to different NUMA nodes.
In the memory tiering context, where each tier has a different
unloaded latency, this will lead to unnecessarily placing
pages in alternate tiers even when the memory interconnect
is not contended. Moreover, under memory interconnect
contention, balancing request rates could lead to suboptimal
application performance. Colloid demonstrates that memory
management using the principle of balancing access latencies
is a better approach to maximize application performance.

Software-managed tiered memory management. We have
already demonstrated the benefits of Colloid with state-of-
the-art software-based memory tiering systems [29, 35, 48].
Colloid can be integrated with any of the other exist-
ing systems [1, 9, 12, 23, 24, 60, 61] to perform memory
management using the principle of balancing access latencies.

BATMAN [9] performs tiered memory management using
a bandwidth-centric approach—it balances fractions of
accesses to the tiers based on the ratio of their theoretical
maximum bandwidths, independent of memory interconnect
contention. Such an approach is suboptimal due to two rea-
sons. First, when unloaded latencies of the tiers are different
(as is the case for modern tiered memory architectures),
this approach may unnecessarily place hot pages in tiers
with higher access latency leading to suboptimal application
performance. Second, as discussed in §3.1, access latency

of tiers can increase significantly, far before their maximum
bandwidth is saturated; as a result, using bandwidth as
a metric fails to fully capture the impact of memory
interconnect contention. Colloid automatically captures
unloaded latencies and memory interconnect contention
(independent of whether memory bandwidth is saturated or
not) using the principle of balancing access latencies.

Hardware-managed tiered memory management. An
alternate approach to tiered memory management is to use
the default tier as an inclusive cache (e.g., Intel memory
mode [31, 48], stacked DRAM caches [15, 22, 33, 47, 50])
or exclusive cache (e.g., Intel flat memory mode [62]) for the
alternate tier. These approaches have the benefit of enabling
data placement across tiers at cacheline granularity. However,
existing hardware-managed tiered memory systems make
the same assumption as their software counterparts: despite
serving most of the hot data from the default tier, the access
latency of the default tier remains lower than that of the
alternate tier. It would be interesting to integrate Colloid with
hardware-based tiered memory management mechanisms to
perform data placement at cacheline granularity using the
principle of balancing access latencies.

7 Conclusion
Existing memory tiering systems innovate on mechanisms
for access tracking, page migration, and dynamic page size
determination; however, they all use the same page placement
algorithm—packing the hottest pages in the default tier (one
with the lowest hardware-specified memory access latency).
This is based on the implicit assumption that, despite serving
the hottest pages, access latency of the default tier is always
lower than that of alternate tiers. We have demonstrated
that this assumption does not hold in the regime of multiple
concurrent memory requests leading to memory interconnect
contention, and that existing systems achieve far from optimal
performance in this regime. We have presented Colloid, a
memory management mechanism that embodies the principle
that page placement should be adapted to balance the access
latencies of the memory tiers. This principle provides a
unified approach to memory management, enabling Colloid
to optimize application performance independent of the
latency and bandwidth characteristics of individual memory
tiers, with and without memory interconnect contention. We
have integrated Colloid with three state-of-the-art memory
tiering systems, and demonstrated its effectiveness over a
wide variety of workloads and real-world applications.

Acknowledgements
We would like to thank our shepherd, Sudarsun Kannan, the
SOSP reviewers, Qizhe Cai, Shouxu Lin, Shreyas Kharbanda
and Benny Rubin for their insightful feedback. This research
was in part supported by NSF grant CNS-1704742, and a
Sloan fellowship.

References
[1] Neha Agarwal and Thomas F. Wenisch. 2017. Thermostat: Application-

Transparent Page Management for Two-Tiered Main Memory. In ACM
ASPLOS.

[2] Saksham Agarwal, Rachit Agarwal, Behnam Montazeri, Masoud
Moshref, Khaled Elmeleegy, Luigi Rizzo, Marc Asher de Kruijf,
Gautam Kumar, Sylvia Ratnasamy, David Culler, and Amin Vahdat.
2022. Understanding Host Interconnect Congestion. In ACM HotNets.

[3] Saksham Agarwal, Arvind Krishnamurthy, and Rachit Agarwal. 2023.
Host Congestion Control. In ACM SIGCOMM.

[4] AMD. 2024. Performance Monitor Counters for AMD Family
1Ah Model 00h0Fh Processors. https://www.amd.com/content/
dam/amd/en/documents/epyc-technical-docs/programmer-
references/58550-0.01.pdf.

[5] Scott Beamer. 2023. GAPBS PageRank Implementation.
https://github.com/sbeamer/gapbs/blob/master/src/pr.cc.

[6] William Bolosky, Robert Fitzgerald, and Michael Scott. 1989. Simple
But Effective Techniques for NUMA Memory Management. In ACM
SOSP.

[7] Timothy Brecht. 1993. On The Importance of Parallel Application
Placement in NUMA Multiprocessors. In USENIX SEDMS.

[8] Shuang Chen, Christina Delimitrou, and José F Martínez. 2019.
PARTIES: QoS-Aware Resource Partitioning for Multiple Interactive
Services. In ACM ASPLOS.

[9] Chiachen Chou, Aamer Jaleel, and Moinuddin Qureshi. 2017. BAT-
MAN: Techniques for Maximizing System Bandwidth of Memory
Systems with Stacked-DRAM. In ACM MEMSYS.

[10] Debendra Das Sharma, Robert Blankenship, and Daniel Berger. 2024.
An Introduction to the Compute Express Link (CXL) Interconnect. In
ACM CSUR.

[11] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fabien Gaud,
Renaud Lachaize, Baptiste Lepers, Vivien Quema, and Mark Roth. 2013.
Traffic Management: A Holistic Approach to Memory Placement on
NUMA Systems. In ACM ASPLOS.

[12] Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar, David Culler,
Zhiyi Xu, Jianing Fan, Christopher Kennelly, Bill McCloskey, Danijela
Mijailovic, Brian Morris, Chiranjit Mukherjee, Jingliang Ren, Greg
Thelen, Paul Turner, Carlos Villavieja, Parthasarathy Ranganathan, and
Amin Vahdat. 2023. Towards an Adaptable Aystems Architecture for
Memory Tiering at Warehouse-Scale. In ACM ASPLOS.

[13] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N Patt. 2010.
Fairness via Source Throttling: A Configurable and High-Performance
Fairness Substrate for Multi-Core Memory Systems. In ACM ASPLOS.

[14] Saugata Ghose, Hyodong Lee, and Jose F Martinez. 2013. Improving
Memory Scheduling via Processor-Side Load Criticality Information.
In IEEE/ACM ISCA.

[15] Nagendra Gulur, Mahesh Mehendale, R Manikantan, and R Govindara-
jan. 2014. Bi-Modal DRAM Cache: Improving Hit Rate, Hit Latency
and Bandwidth. In IEEE/ACM MICRO.

[16] Ying Huang. 2022. [PATCH -V4 0/3] Memory Tiering: Hot Page Se-
lection. https://lwn.net/ml/linux-kernel/20220622083519.708236-
1-ying.huang@intel.com/.

[17] Intel. 2017. Intel Xeon Processor Scalable Memory Family Uncore
Performance Monitoring. https://kib.kiev.ua/x86docs/Intel/PerfMon/
336274-001.pdf.

[18] Intel. 2021. 3rd Gen Intel Xeon Processor Scalable Family, Code-
name Ice Lake, Uncore Performance Monitoring. https://cdrdv2-
public.intel.com/679093/639778%20ICX%20UPG%20v1.pdf.

[19] Intel. 2024. Intel Xeon CPU Max Series. https://www.intel.com/
content/www/us/en/products/details/processors/xeon/max-
series.html.

[20] Intel. 2024. Sapphire Rapids (SPR) Uncore Events.
https://github.com/intel/perfmon/blob/main/SPR/events/
sapphirerapids_uncore_experimental.json.

[21] Ravi Iyer, Li Zhao, Fei Guo, Ramesh Illikkal, Srihari Makineni, Don
Newell, Yan Solihin, Lisa Hsu, and Steve Reinhardt. 2007. QoS Policies
and Architecture for Cache/Memory in CMP Platforms. In ACM
SIGMETRICS.

[22] Djordje Jevdjic, Gabriel H Loh, Cansu Kaynak, and Babak Falsafi. 2014.
Unison Cache: A Scalable and Effective Die-Stacked DRAM Cache.
In IEEE/ACM ISCA.

[23] Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and Karsten Schwan.
2017. HeteroOS: OS Design for Heterogeneous Memory Management
in Datacenter. In IEEE/ACM ISCA.

[24] Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn. 2021. Exploring
the Design Space of Page Management for Multi-Tiered Memory
Systems. In USENIX ATC.

[25] Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter. 2010.
ATLAS: A Scalable and High-Performance Scheduling Algorithm for
Multiple Memory Controllers. In IEEE HPCA.

[26] Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-
Balter. 2010. Thread Cluster Memory Scheduling: Exploiting
Differences in Memory Access Behavior. In IEEE/ACM ISCA.

[27] Aneesh KV Kumar. 2022. [PATCH v7 00/12] mm/demotion:
Memory Tiers and Demotion. https://lwn.net/ml/linux-kernel/
20220622082513.467538-1-aneesh.kumar@linux.ibm.com/.

[28] Chang Joo Lee, Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, and
Yale N. Patt. 2010. DRAM-Aware Last-Level Cache Writeback: Reduc-
ing Write-Caused Interference in Memory Systems. https://utw10235.
utweb.utexas.edu/people/cjlee/TR-HPS-2010-002.pdf.

[29] Taehyung Lee, Sumit Kumar Monga, Changwoo Min, and Young Ik
Eom. 2023. MEMTIS: Efficient Memory Tiering with Dynamic Page
Classification and Page Size Determination. In ACM SOSP.

[30] Baptiste Lepers, Vivien Quema, and Alexandra Fedorova. 2015. Thread
and Memory Placement on NUMA systems: Asymmetry Matters. In
USENIX ATC.

[31] Baptiste Lepers and Willy Zwaenepoel. 2023. Johnny Cache: the End of
DRAM Cache Conflicts (in Tiered Main Memory Systems). In USENIX
OSDI.

[32] Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti,
Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar
Agarwal, Mark D Hill, Marcus Fontoura, and Ricardo Bianchini. 2023.
Pond: CXL-Based Memory Pooling Systems for Cloud Platforms. In
ACM ASPLOS.

[33] Gabriel H Loh and Mark D Hill. 2011. Efficiently Enabling Conventional
Block Sizes for Very Large Die-Stacked DRAM Caches. In IEEE/ACM
MICRO.

[34] Zoltan Majo and Thomas R Gross. 2011. Memory System Performance
in a NUMA Multicore Multiprocessor. In ACM SYSTOR.

[35] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,
Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-
hury, Shobhit Kanaujia, and Prakash Chauhan. 2023. TPP: Transparent
Page Placement for CXL-Enabled Tiered-Memory. In ACM ASPLOS.

[36] John McCalpin. 2023. The Evolution of Single-Core Bandwidth in Mul-
ticore Systems. https://sites.utexas.edu/jdm4372/2023/12/19/the-
evolution-of-single-core-bandwidth-in-multicore-systems-
update/.

[37] John D McCalpin. 2023. Bandwidth Limits in the Intel Xeon Max
(Sapphire Rapids with HBM) Processors. In ISC High Performance.

[38] Timothy Prickett Morgan. 2020. CXL And Gen-Z Iron Out A Coherent
Interconnect Strategy. https://www.nextplatform.com/2020/04/03/
cxl-and-gen-z-iron-out-a-coherent-interconnect-strategy/.

[39] Thomas Moscibroda and Onur Mutlu. 2008. Distributed Order
Scheduling and its Application to Multi-Core DRAM Controllers. In
ACM PODC.

[40] Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu,
Mahmut Kandemir, and Thomas Moscibroda. 2011. Reducing Memory
Interference in Multicore Systems via Application-Aware Memory
Channel Partitioning. In IEEE/ACM ISCA.

https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/58550-0.01.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/58550-0.01.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/58550-0.01.pdf
https://github.com/sbeamer/gapbs/blob/master/src/pr.cc
https://lwn.net/ml/linux-kernel/20220622083519.708236-1-ying.huang@intel.com/
https://lwn.net/ml/linux-kernel/20220622083519.708236-1-ying.huang@intel.com/
https://kib.kiev.ua/x86docs/Intel/PerfMon/336274-001.pdf
https://kib.kiev.ua/x86docs/Intel/PerfMon/336274-001.pdf
https://cdrdv2-public.intel.com/679093/639778%20ICX%20UPG%20v1.pdf
https://cdrdv2-public.intel.com/679093/639778%20ICX%20UPG%20v1.pdf
https://www.intel.com/content/www/us/en/products/details/processors/xeon/max-series.html
https://www.intel.com/content/www/us/en/products/details/processors/xeon/max-series.html
https://www.intel.com/content/www/us/en/products/details/processors/xeon/max-series.html
https://github.com/intel/perfmon/blob/main/SPR/events/sapphirerapids_uncore_experimental.json
https://github.com/intel/perfmon/blob/main/SPR/events/sapphirerapids_uncore_experimental.json
https://lwn.net/ml/linux-kernel/20220622082513.467538-1-aneesh.kumar@linux.ibm.com/
https://lwn.net/ml/linux-kernel/20220622082513.467538-1-aneesh.kumar@linux.ibm.com/
https://utw10235.utweb.utexas.edu/people/cjlee/TR-HPS-2010-002.pdf
https://utw10235.utweb.utexas.edu/people/cjlee/TR-HPS-2010-002.pdf
https://sites.utexas.edu/jdm4372/2023/12/19/the-evolution-of-single-core-bandwidth-in-multicore-systems-update/
https://sites.utexas.edu/jdm4372/2023/12/19/the-evolution-of-single-core-bandwidth-in-multicore-systems-update/
https://sites.utexas.edu/jdm4372/2023/12/19/the-evolution-of-single-core-bandwidth-in-multicore-systems-update/
https://www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron-out-a-coherent-interconnect-strategy/
https://www.nextplatform.com/2020/04/03/cxl-and-gen-z-iron-out-a-coherent-interconnect-strategy/

[41] Onur Mutlu. 2013. Memory Scaling: A Systems Architecture
Perspective. In IEEE IMW.

[42] Onur Mutlu and Thomas Moscibroda. 2007. Memory Performance
Attacks: Denial of Memory Service in Multi-Core Systems. In USENIX
Security.

[43] Onur Mutlu and Thomas Moscibroda. 2007. Stall-Time Fair Memory
Access Scheduling for Chip Multiprocessors. In IEEE/ACM MICRO.

[44] Onur Mutlu and Thomas Moscibroda. 2008. Parallelism-Aware Batch
Scheduling: Enhancing Both Performance and Fairness of Shared
DRAM Systems. In IEEE/ACM ISCA.

[45] Kyle J Nesbit, Nidhi Aggarwal, James Laudon, and James E Smith.
2006. Fair Queuing Memory Systems. In IEEE/ACM MICRO.

[46] Dylan Patel, Jeff Koch, Tanj Bennett, and Wega Chu. 2024.
The Memory Wall: Past, Present, and Future of DRAM.
https://www.semianalysis.com/p/the-memory-wall.

[47] Moin Qureshi and Gabriel H Loh. 2012. Fundamental Latency Trade-
Offs in Architecturing DRAM Caches: Outperforming Impractical
SRAM-tags With a Simple and Practical Design. In IEEE/ACM MICRO.

[48] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon
Peter. 2021. HeMem: Scalable Tiered Memory Management for Big
Data Applications and Real NVM. In ACM SOSP.

[49] Shigeru Shiratake. 2020. Scaling and Performance Challenges of Future
DRAM. In IEEE IMW.

[50] Jaewoong Sim, Gabriel H Loh, Hyesoon Kim, Mike OConnor, and
Mithuna Thottethodi. 2012. A Mostly-Clean DRAM Cache for Effective
Hit Speculation and Self-Balancing Dispatch. In IEEE/ACM MICRO.

[51] Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi,
and Onur Mutlu. 2014. The Blacklisting Memory Scheduler: Achieving
High Performance and Fairness at Low Cost. In IEEE ICCD.

[52] Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan,
and Onur Mutlu. 2015. The Application Slowdown Model: Quantifying
and Controlling the Impact of Inter-Application Interference at Shared

Caches and Main Memory. In IEEE/ACM MICRO.
[53] Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, and

Onur Mutlu. 2013. MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems. In IEEE HPCA.

[54] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan
Huang, Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom Jeong,
Ren Wang, Jung Ho Ahn, Tianyin Xu, and Nam Sung Kim. 2023.
Demystifying CXL Memory with Genuine CXL-Ready Systems and
Devices. In IEEE/ACM MICRO.

[55] James Tuck, Luis Ceze, and Josep Torrellas. 2006. Scalable Cache Miss
Handling for High Memory-Level Parallelism. In IEEE/ACM MICRO.

[56] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosenblum.
1996. Operating System Support for Improving Data Locality on
CC-NUMA Compute Servers. In ACM ASPLOS.

[57] Midhul Vuppalapati and Rachit Agarwal. 2024. Tiered Memory
Management: Access Latency is the Key! (Extended Version).
https://github.com/host-architecture/colloid.

[58] Midhul Vuppalapati, Saksham Agarwal, Henry N Schuh, Baris Kasikci,
Arvind Krishnamurthy, and Rachit Agarwal. 2024. Understanding the
Host Network. In ACM SIGCOMM.

[59] Hao Wang, Chang-Jae Park, Gyung-su Byun, Jung Ho Ahn, and
Nam Sung Kim. 2015. Alloy: Parallel-Serial Memory Channel Architec-
ture for Single-Chip Heterogeneous Processor Systems. In IEEE HPCA.

[60] Lingfeng Xiang, Zhen Lin, Weishu Deng, Hui Lu, Jia Rao, Yifan Yuan,
and Ren Wang. 2024. Nomad: Non-Exclusive Memory Tiering via
Transactional Page Migration. In USENIX OSDI.

[61] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee.
2019. Nimble Page Management for Tiered Memory Systems. In ACM
ASPLOS.

[62] Yuhong Zhong, Daniel S Berger, Carl Waldspurger, Ishwar Agarwal,
Rajat Agarwal, Frank Hady, Karthik Kumar, Mark D Hill, Mosharaf
Chowdhury, and Asaf Cidon. 2024. Managing Memory Tiers with CXL
in Virtualized Environments. In USENIX OSDI.

https://www.semianalysis.com/p/the-memory-wall
https://github.com/host-architecture/colloid

	Abstract
	1 Introduction
	2 Motivation
	2.1 Experimental Setup
	2.2 Understanding impact of memory interconnect contention on existing memory tiering systems

	3 Colloid
	3.1 Access latency is the key
	3.2 Colloid page placement algorithm

	4 Colloid with existing memory tiering systems
	4.1 HeMem with Colloid
	4.2 MEMTIS with Colloid
	4.3 TPP with Colloid

	5 Evaluation
	5.1 Steady-state Throughput
	5.2 Convergence Time
	5.3 Real Applications

	6 Related Work
	7 Conclusion
	References

