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1. INTRODUCTION

In order to efficiently support complex database applications, many major
relational database vendors support user-defined functions. Such functions
can be invoked in SQL queries, making it easier for developers to imple-
ment their applications with significantly greater efficiency. However, such
extensions also make the task of the execution engine and the optimizer
more challenging. In particular, when user-defined functions are used in
the Where clause of SQL, such predicates, henceforth called user-defined
(or expensive) predicates cannot be treated as SQL built-in predicates.
Unlike evaluation of built-in SQL predicates, the evaluation of such predi-
cates may involve substantial CPU and I/O cost. In such cases, the
traditional heuristic of evaluating predicates as early as possible may
result in significantly suboptimal plans, as the following example demon-
strates.

Consider the problem of identifying potential customers for a mail-order
distribution. The mail-order company wants to ensure that the customer
has a high credit rating, is in the age group from 30 to 40, resides in the
San Francisco bay area, and has purchased at least $1,000 worth of goods
in the last year. This query has a join between the Person and the Sales
relation and two user-defined functions zone and high_credit_rating .

Select name, street_address, zip

From Person, Sales

Where high_credit_rating(ss_no)

and age In [30,40]

and zone(zip) 5 “bay area”

and Person.name 5 Sales.buyer_name

Group By name, street_address, zip

Having Sum(Sales.amount) . 1000

Let us assume that the user-defined predicate high_credit_rating is
expensive. In such a case, we may evaluate the predicate after the join so
that fewer tuples invoke the expensive predicate. However, if the predicate
is very selective, then it is better to execute high credit rating first so
that the cost of the join is reduced.

As the above example illustrates, the traditional heuristic of evaluating
predicates as early as possible is inappropriate in the context of queries
with user-defined predicates. There are two known approaches to optimiz-
ing queries that treat user-defined predicates in a special way. Given a SPJ
query, the first technique, used in LDL [Chimenti et al. 1989], treats a
user-defined predicate much like a relation (see Section 2) and is exponen-
tial in the number of user-defined predicates. This technique fails to
consider the class of traditional plans where user-defined predicates are
evaluated as early as possible. The second technique, known as Predicate
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Migration [Hellerstein and Stonebraker 1993] is polynomial in the number
of user-defined predicates in a SPJ query and takes into consideration the
traditional execution space as well. However, this algorithm cannot guar-
antee finding the optimal plan, and in some situations may need to
exhaustively enumerate the space of join ordering.

This paper shows how commercial optimizers, many of which are based
on a system R-style dynamic programming algorithm [Selinger et al. 1979],
can be extended easily to optimize queries with user-defined predicates and
guarantee optimality of the plan. First, we present an algorithm that can
guarantee the optimal evaluation of queries with user-defined predicates
with no assumptions on the cost model except that it follows the principle
of optimality [Cormen et al. 1990]. However, the complexity of the algo-
rithm is exponential in the number of user-defined predicates. Next, we
show that under broad assumptions about the cost formulas for join
methods, satisfied by common join methods, we can reduce the complexity
of the first algorithm to be polynomial in the number of user-defined
predicates.1 This required proving the nontrivial result that, for the given
assumptions on the cost model, placement of the predicates in an execution
tree must follow the rank ordering (see Section 4.1) of user-defined predi-
cates. Finally, we discovered powerful pruning techniques that further
reduce the search space of the optimizer without compromising the optimal.

Although the above optimization algorithms guarantee the optimality of
plans and have satisfactory performance for a large class of queries, their
complexity grows monotonically with increasing query size. Therefore, we
explore if computationally inexpensive heuristics can be used as viable
alternatives. The conservative local heuristic that we present has very little
overhead above traditional optimizers. It is able to guarantee the optimal-
ity of the chosen plan in several cases, and experimental results show that
it typically chooses an execution plan very close to the optimal. This
heuristic serves as an excellent alternative where query size or complexity
of the optimization algorithm is a concern.

Our techniques provide optimization algorithms for queries containing
user-defined selections as well join predicates. In the rest of this paper, we
use the term user-defined predicate (or expensive predicate) to generically
refer to any user-defined predicate whether it occurs as a selection or a join
predicate. In contrast, we reserve the term “join predicate” to refer to
traditional join predicates in queries.

We implemented the optimization algorithms by extending a System R
style optimizer. We present worst-case complexity analysis and experimen-
tal results that illustrate the characteristics of the optimization algorithms
proposed in this paper.

The rest of the paper is organized as follows. In the next section, we
present the cost model and execution space in traditional framework and
the extensions needed to handle user-defined predicates (selections as well

1The complexity is exponential in the number of joins. This is to be expected, since the
traditional join optimization problem itself is NP-hard.
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as join predicates) in query optimization. In Section 3, we review the
System R optimization algorithm [Selinger et al. 1979], which is the basis
of many commercial optimizers. Next, we describe the desired execution
space and review past work on optimizing queries with user-defined
predicates. Sections 4 and 5 present the two optimization algorithms that
find the optimal plan. In Section 6, we provide the complexity analysis for
these algorithms. The pruning techniques and extensions of the optimiza-
tion algorithms to incorporate these techniques are presented in Section 7.
Section 8 presents the conservative local heuristic that is simpler but
produces a nearly optimal plan. The performance results and implementa-
tion details are given in Section 9.

2. OPTIMIZATION FRAMEWORK

In this paper, we consider Select-Project-Join queries containing user-
defined predicates. We assume that the Where clause of the query consists
of a conjunction of built-in and user-defined predicates. Our techniques also
extend to queries that have a more general form. Many commercial
database management systems have adopted the framework of the System
R optimizer [Selinger et al. 1979] for optimization. We use the same
framework for studying the problem of optimization of queries with user-
defined predicates. First, we describe the traditional optimization frame-
work (cost model as well as execution space) and then explain how we need
to extend the framework when user-defined predicates are present.

2.1 Traditional Framework

We describe the traditional optimization framework for SPJ queries. An
execution plan of such a query is represented syntactically as an annotated
join tree where the internal node is a join operation and each leaf node is a
scan of a base relation. The edges of the tree indicate the flow of data. The
annotations provide details such as selection predicates, the choice of
access paths, join methods, and projection attributes of the result relation.
The set of all execution plans for a query that is considered by the
optimizer is the execution space of the query. A cost function is used to
determine the cost of an execution plan in the execution space. The task of
the optimizer is to choose a plan of minimal cost from the execution space.
Optimizers of commercial database systems often restrict search for a plan
to only a subset of the space of all annotated join trees. For example, the
execution space may be restricted to have only linear join trees. A linear
join tree represents an execution that is a linear sequence of joins. Thus,
each internal join node has at least one of its two child nodes as a leaf (base
relation). A join among multiple relations is represented as a linear
sequence of 2-way joins. In contrast, in a bushy join tree, both the operands
of one or more join nodes may be an intermediate (computed) relation.

The traditional optimization framework only concerned itself with han-
dling conditions in the Where clause that used inexpensive built-in predi-
cates. It was assumed that the cost of evaluating built-in predicates is zero,
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and so conditions are evaluated in an eager fashion. A selectivity is
associated with each condition to estimate the effect of applying the
predicate on the relation. Another assumption that is commonly made in
traditional query optimization is that of independence of conditions, i.e., if
p1 and p2 are two predicates, then Selectivity~p1 ∧ p2! 5 Selectivity
~p1! 3 Selectivity~p2!.

It is assumed that the problem of query optimization satisfies the
principle of optimality [Cormen et al. 1990]. The principle of optimality
forms the basis of dynamic programming-based query optimization algo-
rithms that are used in commercial optimizers. In other words, for linear
join trees, the optimal plan for join of ~n 1 1! relations Sn11 5 $R1,
. . . Rn11% must be obtained by extending some optimal plan S over a subset
(of size n) of the relations in Sn11, i.e., S # Sn11 and the cardinality of S is
n. It should be noted that when subplans that represent the join of the
same set of relations but differ in their physical properties (e.g., sort-order),
they cannot be compared, i.e., optimal plans for each of the physical
properties need to be extended to guarantee that the optimality of the final
plan is not compromised.

Finally, optimization algorithms based on dynamic programming need to
estimate the sizes of the intermediate relations to choose among alternative
execution plans. The optimizer estimates the size of the relation repre-
sented by a node in the execution tree by using the sizes of the children
nodes in the execution tree. For example, they compute the sizes of
intermediate relations for se~E! from the estimated sizes for E and that of
E”“R from the estimated sizes of E and R. As in all past optimization
work, we need to assume that the cost model is consistent, i.e., the sizes of
resulting relations of two execution trees that would result in the same
relation must also be estimated to be the same.

2.2 Extensions for User-Defined Predicates

Unlike built-in predicates, we associate a per tuple cost for evaluation with
every user-defined predicate. In other words, if a relation has r tuples then
the cost of evaluating a user-defined predicate p on the relation is rcp

where cp is the per tuple cost of evaluating the predicate p. As in the case of
built-in predicates, we assume that every user-defined predicate p has a
selectivity (a user-defined real number between 0 and 1) sp associated with
it. Applying the user-defined predicate is assumed to reduce the size of the
relation to rsp. The above cost model is used uniformly for user-defined
selections and join predicates. Thus, a user-defined predicate is character-
ized by selectivity as well as by a cost per tuple parameter. As in the case of
built-in predicates, we make the assumption that each user-defined predi-
cate is independent of every other condition in the Where clause. In this
paper, we do not discuss how the cost per tuple parameter can be estimated
(see discussion in Hellerstein [1995]). Naturally, for a user-defined predi-
cate to be evaluated, the intermediate relation must contain the columns
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over which the predicate is defined. For example, if the user-defined
predicate is of the form P~R1.c1, R2.c2!, then the above predicate may
not be evaluated until the join between R1 and R2 is taken.

Since the conditions using built-in predicates are assumed to have zero
cost, all such predicates are evaluated at the earliest. However, since a
user-defined predicate has an associated cost, we need to consider place-
ment of user-defined predicates on the execution tree in a cost-based way.
Consider any choice of execution space of join ordering. For any such
choice, its natural extension when user-defined predicates are present is
the execution space where we consider placing a user-defined predicate
following any number of (including zero) joins, as long as the placed
user-defined predicate is evaluable at the point of its placement. For
example, a user-defined selection condition can be placed either immedi-
ately following the scan of the relation on which it applies, or after any
number of joins following the scan. Likewise, a user-defined secondary join
predicate can be placed either immediately after it becomes evaluable
(following the necessary joins), or after any number of subsequent joins. In
other words, we consider unconstrained placement of user-defined predi-
cates. However, as in traditional optimization, we can continue to restrict
the join ordering to be linear. In such a case, we refer to the execution
space of unconstrained linear join trees. This is the same execution space
that is studied in Hellerstein and Stonebraker [1993] and in Hellerstein
[1994] and is formally defined below.

Definition 2.1 An unconstrained linear join tree is an execution tree
where the sequence of operators form a linear sequence (tree) and a
user-defined predicate may be placed anywhere in the sequence, provided it
is evaluable at the point of evaluation.

Alternatively, we can consider a join execution space as consisting of
bushy trees, and extend it in a similar way when user-defined predicates
are present. In such a case, we refer to the execution space as uncon-
strained bushy join trees or unconstrained join trees.

Example 2.2 Figure 1 shows examples of unconstrained linear join trees
for the execution plans of a query in which there are three relations and
two user-defined selection predicates e1 applicable on R1 and e2 applicable
on R2.

Fig. 1. Examples of unconstrained linear join trees.
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3. PREVIOUS APPROACHES

In this section, we review the basics of the System R optimization algo-
rithm. We also discuss two approaches that were proposed for optimizing
queries with user-defined predicates. However, since the results presented
in this paper contain our results in Chaudhuri and Shim [1996], we do not
discuss the latter paper in this section.

3.1 System R Dynamic Programming Algorithm

Figure 2 (adopted from Ganguly et al. [1992]) illustrates the System R
dynamic programming algorithm that finds an optimal plan in the space of
linear (left-deep) join trees [Selinger et al. 1979]. The input for this
algorithm is a select-project-join (SPJ) query on relations R1, . . . ,Rn. The
function joinPlan( p, R) extends the plan p into another plan that is the
result of p being joined with the base relation R in the best possible way.
The function cost~p! returns the cost of the plan p. The cost function
assigns a real number to any given plan in the execution space that we
have chosen and satisfies the principle of optimality [Cormen et al. 1990].
The optimization algorithm chooses a plan of least cost from the execution
space.

The algorithm proceeds by building optimal execution plans for increas-
ingly larger subsets of the set of all relations in the join. In order to build
an optimal plan for a set S of ~i 1 1! relations, the optimal plan for each
subset of S, consisting of i relations is extended (by invoking joinplan in
Figure 2), and the cheapest of the extended plans is chosen. Such an
approach guarantees the optimal, since the optimization problem satisfies
the principle of optimality, i.e., an optimal plan for a set of relations must
be an extension of an optimal plan for some subset of the set. Optimal plans
for subsets are stored in the optPlan() array and are reused (rather than
recomputed).

The algorithm does not expose two important details of the System R
optimization algorithm. First, all selection conditions and secondary join

Fig. 2. System R algorithm for linear join trees.
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predicates are evaluated as early as possible. Thus, all selections on
relations are evaluated before any join is evaluated. Next, the algorithm
also considers interesting orders. Consider a plan P for R1”“R2 that uses
sort-merge join and costs more than another plan P9 that uses hash-join.
Although P9 is a cheaper plan than P, the sort-order of P may be used to
reduce the cost of a plan that extends P. Such an extension may still be the
optimal plan if the sort-order used in P can be reused in a subsequent join.
Thus the System-R algorithm saves not a single plan, but multiple optimal
plans for every subset S in Figure 2, one for each distinct such order,
termed interesting order [Selinger et al. 1979]. An upper bound on the
number of optimal linear join subplans stored for a query with a join of n
tables is 2n (the number of subsets of n tables) times the number of
interesting orders. The enumeration complexity of the algorithm is
O~n2n21!.

The optimization algorithm for the space of bushy join trees is similar to
the algorithm in Figure 2, except that the both inputs of a join operator can
be an intermediate result. The dynamic programming algorithm in the
space of bushy join trees is shown in Figure 3. An upper bound on the
number of optimal subplans that must be stored for a query with joins
among n tables is 2n times the number of interesting orders. The corre-
sponding enumeration complexity is O~3n!.

3.2 LDL Approach

In this approach, a user-defined predicate is treated as a relation from the
point of view of optimization. This approach was first used in the LDL
project at MCC [Chimenti et al. 1989] and subsequently at the Papyrus
project at HP Laboratories [Chaudhuri and Shim 1993]. Viewing expensive
predicates as relations has the advantage that the System-R style dynamic
programming algorithm can be used for enumerating joins as well as
expensive predicates. Thus, if e is an expensive predicate and R1 and R2

Fig. 3. System R algorithm for bushy join trees.
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are two relations, then the extended join enumeration algorithm will treat
the optimization problem as that of ordering R1, R2 and e using the
dynamic programming algorithm.

This approach suffers from two drawbacks, both stemming from the
problem of over-generalizing and viewing an expensive predicate as a
relation. First, if we restrict ourselves to search only linear join trees, then
the algorithm cannot be used to consider all plans in the space of uncon-
strained linear execution trees (see Section 2 for the definition). In partic-
ular, the algorithm fails to consider plans that evaluate expensive predi-
cates on both operands of a join prior to taking the join [Hellerstein 1994].
For example, consider a SPJ query with a join between the relations R1 and
R2, having user-defined predicates e1 and e2 defined on R1 and R2 respec-
tively. Since the LDL algorithm treats expensive predicates and relations
alike, it will only consider linear join sequences of joins and selections.
However, the plan which applies e1 on R1 and e2 on R2 and then takes the
join between the relations R1 and R2, is not a linear sequence of selections
and joins.2 Thus, the LDL algorithm may produce plans that are signifi-
cantly worse than plans produced by even the traditional optimization
algorithm where all selections are evaluated as early as possible. Further-
more, the optimization algorithm is exponential not only in the number of
relations but also in the number of expensive predicates. Let us look at the
case where only linear join trees are considered for execution. Thus, in
order to optimize a query that consists of a join of n relations and k
expensive predicates, the dynamic programming algorithm will need to
construct 2n1k optimal subplans. In other words, the cost of optimizing a
query with n relations and k expensive predicates is as high as that of
optimizing (n1 k) relations. As we will show, in many cases we can exploit
the properties of join methods to achieve an algorithm that is polynomial in
the number of user-defined predicates (when the number of relations is
bounded).

3.3 Predicate Migration

This approach to optimizing queries with user-defined predicates has two
components. First, we discuss the predicate migration algorithm, which
given a linear join tree, chooses a way of interleaving the join and the
user-defined predicates. Next, we describe how the predicate migration
algorithm is integrated with a System R style optimizer. For additional
details, we refer the reader to Hellerstein and Stonebraker [1993] and
Hellerstein [1994].

The predicate migration algorithm takes as input a join tree, annotated
with a given join method, for each join node and an access method for every
scan node, and a set of expensive predicates. The algorithm places the
user-defined predicates in their “optimal” position relative to the join nodes

2Such a plan will only be considered if the enumeration is extended to the space of bushy joins,
which is significantly more expensive than the linear join space.
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(see the following discussion about the shortcomings). The algorithm as-
sumes that join costs are linear in the sizes of the operands. This allows
them to assign a rank for each of the join predicates in addition to
assigning ranks for expensive predicates. The notion of rank has been
studied previously in Monma and Sidney [1979] and Krishnamurthy et al.
[1986]. Having assigned ranks, the algorithm iterates over each stream,
where a stream is a path from a leaf to a root in the execution tree. Every
iteration potentially rearranges the placement of the expensive selections.
The iteration continues over the streams until the modified operator tree
changes no more. It is shown in Hellerstein and Stonebraker [1993] that
convergence occurs in a polynomial number of steps in the number of joins
and user-defined predicates.

We now discuss how the algorithm is integrated with a System R style
optimizer. The steps of the dynamic programming algorithm are followed
and the optimal plan for each subexpression is generated with the following
change. At each join step, the option of evaluating predicates (if applicable)
is considered: Let Q be the query se~R!”“S”“T. Let P be the optimal
subplan of se~R”“S! and P9 be the optimal subplan for se~R!”“S. If
cost~P! , cost~P9!, then the algorithm continues with the next step in the
traditional join enumeration. In effect, application of the user-defined
predicate is deferred and the plan P9 is pruned without compromising the
optimal. In contrast, if the plan for P9 is cheaper, then the predicate
migration algorithm needs to further extend P as well as P9. Note that it is
not possible to discard plan P because doing so may compromise the
optimal plan. For example, it is possible that although P9 is cheaper, the
optimal placement of e in the query succeeds the join among R, S, and T,
i.e., the plan se~P”“T! is optimal. In the predicate migration approach,
once such a plan P9 is found to be cheaper, the step of enumerating plans
that extend P9 is treated separately from the dynamic programming-based
optimization algorithm. In particular, the predicate migration algorithm
marked such a plan P9 as unprunable. In the remaining steps of the
dynamic programming algorithm, the unprunable plans are ignored. After
the dynamic programming algorithm terminates, each such unprunable
plan is extended through exhaustive enumeration, i.e., all possible ways of
extending each such unprunable plan are considered. So completion of an
unprunable plan is an expensive operation. In contrast, in our approach, it
is not necessary to treat unprunable plans separately, they can be inte-
grated with the dynamic programming algorithm in a seamless fashion.

The predicate migration algorithm improves on the LDL approach in two
important ways. First, it considers the space of unconstrained linear trees
for finding a plan, i.e., considers pushing down selections on both operands
of a join while restricting the space of join ordering to linear join trees.
Next, the algorithm is polynomial in the number of user-defined predicates.
Unfortunately, this approach to optimization has serious drawbacks that
limit its applicability. First, the algorithm cannot guarantee an optimal
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plan because it uses a heuristic to estimate the rank of join predicates that
influence the choice of the plan. This is because using the predicate
migration algorithm may force estimations of cardinality of relations used
in determining the rank to be inaccurate. The migration algorithm requires
a join predicate to be assigned a rank, which depends on the cost of the join,
and the latter is a function of the input sizes of the relations. Unfortu-
nately, the input sizes for the join depend on whether the user-defined
predicates have been evaluated! The predicate migration algorithm side-
steps this cyclic dependency by estimating the results of the joins, assum-
ing that all user-defined predicates have been pushed down. This ad-hoc
assumption sacrifices the guarantee of optimality (see Section 5.3 in
Hellerstein [1994] for a detailed discussion). Next, since the predicate
migration algorithm does not satisfy the principle of dynamic program-
ming, it makes it difficult to do integration with a System R style optimi-
zation algorithm. In some cases the algorithm may require exhaustive
enumeration. As an example, consider a query that has n relations and a
single user-defined selection e on the relation R1. Let us assume that, for
the given database, the traditional plan where the predicate e is evaluated
prior to any join is the optimal plan. In such a case, plans for se~R1!”“Ri

~i Þ 1! are marked as unprunable. For each of these plans, there are
~n 2 2!! distinct join orderings and for each of these join orderings, there
can be a number of join methods. Thus, the optimization process may
require exhaustive enumeration of the join space.

4. NAIVE OPTIMIZATION ALGORITHM

Our discussion in the previous section shows that none of the known
approaches are guaranteed to find an optimal plan over the space of
unconstrained linear join trees. In this section, we present our optimization
algorithm, which is guaranteed to produce an optimal plan over the above
execution space. To the best of our knowledge, this is the first algorithm
that provides such a guarantee of optimality. The techniques in this section
are adaptable for other join execution spaces (e.g., bushy joins) as well.
Thus, our algorithm addresses the shortcomings of the predicate migration
algorithm without sacrificing the benefit of considering the execution space
of unconstrained linear join trees.

For notational convenience, we indicate ordering of the operators in a
plan by nested algebraic expressions. For example, ~se~R1!”“R2!”“se9~R3!
designate a plan where we first apply selection e on relation R1, then join
that relation with R2 before joining it with the relation R3, which was
reduced by application of a selection condition e9. Note that R1, R2, and R3

need not necessarily be base tables but may themselves be query expres-
sions. In describing the rest of this section, we assume that no traditional
interesting orders are present; this assumption is for ease of exposition
only.
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4.1 Key Observations

The following two principles are key to our enumeration algorithm:

—Equivalent plan pruning. The strength of the traditional optimization
algorithm for join enumeration is in its ability to compare the costs of
different plans that represent the same subexpression but are evaluated
in different orders. Since selection and join operations may be commuted,
we can prune plans for queries that have the same expensive predicates
and joins, i.e., if P and P9 are two plans that represent the same
select-project-join subexpressions of the given query with the same
physical properties and if Cost~P9! , Cost~P!, then P may be pruned.
For example, we can compare the costs of the plans P and P9 where P is
the plan ~se~R1!”“R2!”“se9~R3! and P9 is the plan ~R2”“se9R3!”“se~R1!.

—Selection ordering. Consider a conjunction of a set of expensive selection
predicates applied on a relation, as in the query Q 5 se1∧..∧en~R! where
e1, ..en are the expensive predicates. The problem of ordering the evalu-
ation of these predicates is the selection ordering problem. The complex-
ity of selection ordering is very different from that of ordering joins
among a set of relations. It is well known that for traditional cost models,
the latter problem is NP-hard. On the other hand, the selection ordering
problem can be solved in polynomial time with our assumed cost model
for user-defined predicates. Furthermore, the ordering of the selections
does not depend on the size of the relation on which they apply. The
problem of selection ordering is addressed in Hellerstein and Stone-
braker [1993] (cf., Krishnamurthy et al. [1986]; Monma and Sidney
[1979; and Whang and Krishnamurthy 1990]). It utilizes the notion of a
rank. The rank of a predicate is the ratio c/~1 2 s! where c is its cost per
tuple and s is its selectivity.

THEOREM 4.1 Consider the query se~R! where e 5 e1 ∧ . . . ∧ en. The
optimal ordering of the predicates in e is in the order of ascending ranks
and is independent of the size of R.

For example, consider two predicates e and e9 with selectivities .2 and .6
and costs 100 and 25. Although the predicate e is more selective, its rank
is 125 and the rank of e9 is 62.5. Thus evaluation of e9 should precede that
of e. The above technique of selection ordering can be extended to broader
classes of boolean expressions. In particular, when the selection conditions
form a pure disjunction, a dual of Theorem 4.1 applies where the predicates
are ordered by ascending values of c/s. On the other hand, the selection
ordering problem is intractable when the selection conditions are arbi-
trarily complex. However, efficient heuristics for the general case were
proposed in Kemper et al. [1992].

The ability to order predicates using ranks (called “rank-order”-ing in
this paper) is a key property that is exploited in this work. Although we
leverage this property in this section, note that Theorem 4.1 does not allow
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us to order user-defined predicates across joins. However, in Section 5, we
show how the relative order of ranks among predicates can be exploited
even across joins that lead to the optimization algorithm with complete
rank-ordering.

4.2 Tags: Exploiting Properties for Plan Representation

The properties concept that extends the idea of interesting orders [Selinger
et al. 1979] was addressed in Graefe and Dewitt [1987]; Lee et al. [1988];
and Graefe and McKenna [1993]. Properties help describe the intermediate
result of a plan. Properties include tables, projected columns, sort-order of
tuples, and the set of predicates applied. The query optimizer keeps a
single cheapest plan for each distinct set of properties during optimization.
However, traditional optimization algorithms always process selection
predicates as early as possible. In order to address the problem of optimiz-
ing queries with user-defined predicates, we exploit this well-understood
notion of properties by incorporating the information on application of each
user-defined predicate as part of the properties of a plan. We keep multiple
plans that represent the join of the same set of relations but differ in the
sets of user-defined predicates that have been evaluated. Thus, with every
plan, we also record as a property the set of yet-to-be evaluated user-
defined predicates applicable to the plan, i.e., it records the complement of
the (applicable set of) predicates that were evaluated in the plan. In the
rest of this paper, we refer to the above property as the tag of a plan. Of
course, the representation of the tag can be combined with the representa-
tion of other properties, e.g., interesting orders. The following definition
states formally how we associate a tag with an unconstrained join tree.

Definition 4.2 Let T be an unconstrained linear join tree that consists of
a join among a set 5 of relations and evaluation of a set 8 # 6 of
user-defined predicates where 6 is the set of all user-defined predicates in
the query that can be evaluated over the subexpression of the query that
consists of the join among relations in 5. Then, the tag associated with the
tree T is the ordered set of predicates 6 2 8, sorted by rank order.

Example 4.3 Figure 4 illustrates the execution plans (and subplans)
that need to be considered when there are three relations and two expen-
sive selection predicates e1 and e2 on R1. P1, P2, P3, and P4 are possible
plans for R1”“R2 (each with differing tags). The plans from P6 to P15 are
for R1”“R2”“R3. The tags for P6 and P7 are ,. and ,e2., respectively.

Two unconstrained join trees represent the same expression iff they have
the same tag and consist of the join of the same set of relations. Notice that
whenever two plans represent the join of the same set of relations and
agree on the tags, they can be compared and pruned.
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4.3 Algorithm

In this section we present the naive optimization algorithm that is widely
applicable and makes no assumptions about the nature of the cost formu-
las, except that it satisfies the principle of optimality. The algorithm
exploits the notion of tags, and thus demonstrates that the traditional
notion of properties can be applied to the problem of optimizing queries
with user-defined predicates to produce a general solution, independent of
any assumptions on a cost model.

The equivalent plan-pruning rule allows us to compare two plans that
represent the same expression. This observation enables the use of dy-
namic programming and integrates well with the System R algorithm. In
addition, the naive optimization algorithm uses the result of Theorem 4.1,
which tells us that ordering user-defined predicates on a relation is
constrained by rank order (but not across joins). This optimization algo-
rithm also introduces the key idea of exploiting tags. In Section 5, we
present a much improved algorithm for which these foundational ideas are
crucial. However, the algorithm in that section exploits these key ideas
more aggressively and takes full advantage of rank ordering even across
joins.

The naive optimization algorithm for the space of unconstrained linear
join trees is shown in Figure 5. In determining the access methods and
choice of join methods, the algorithm behaves exactly like the traditional

Fig. 4. Search space of naive optimization algorithm.
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algorithm in Figure 2. The bestPlan data structure stores all plans that
need to be retained for the optimizer’s future steps. For every subset of
relation Sj (in Figure 2) and for each distinct tag, an optimal plan may need
to be stored. For each optimal plan Sj

t with a tag t, instead of JoinPlan (as
in Figure 2), exjoinPlan is invoked to extend the optimal plan Sj

t. Observe
that exjoinPlan also takes as arguments two sets of user-defined predicates
to be applied to the plan P for Sj

t and relation Rj, respectively (in rank
order), prior to taking the join.

Let us assume that tag t has r applicable user-defined predicates and the
base relation Rj has a set w of s applicable user-defined selections. The
function exjoinPlan is invoked for each distinct subset of ~r 1 s! predicates
(i.e., 2r1s invocations). In the next section we show how, with broad
assumptions on join costs, we can sharply reduce the overhead of so many
invocations. The choices of u and v in the algorithm uniquely determine the
tag for the plan p in Figure 5 as the set (sorted in rank order) ~t 2 u! ø

~w 2 v! ø l, where l is the set of additional user-defined predicates that
are now evaluable due to the join between Sj

t and Rj. Note that Theorem 4.1
assumes that when a sequence of user-defined predicates is applied without
any intervening joins (e.g., the set of predicates u or v), the predicates can
be applied in the rank order without sacrificing optimality.

In our algorithm described in Figure 5, we use the array of bestPlans
indexed by tag t, and the function tag~p! returns the tag of plan p. Plan p

Fig. 5. Naive optimization algorithm for linear join trees.
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is compared against plans over the same set of relations that have already
been stored and that have the same tag. If p is more expensive than the
plan in the bestPlan with the same tag, then plan p is pruned and the
iteration procedes to the next ~u, v! combination. Otherwise, plan p is
added to bestPlan.

At the end of the final join, we consider all plans over relations $R1,
. . . , Rn%. Some of these plans may need to be completed by adding the step
to evaluate the remainder of the predicates. The function completecost~p!
computes this completion cost of plan p. Finally, the cheapest among the
set of completed plans is chosen.

Since we store the best plan for every subset of user-defined predicates
per each distinct set of relations, the total number of stored plans per each
distinct set of relations increases to 2k, and therefore the number of plans
that need to be stored increases to 2k1n, where k is the number of
user-defined predicates. Consider Figure 4 for Example 2. Since the tag for
P6 and P7 are ,. and ,e2. respectively, we distinguish between P6 and
P7, but keep a single plan among P6, P8, P11, P14, and P15.

The naive optimization algorithm is very general and makes no assump-
tions on the cost model. So it has wide applicability. However, the complex-
ity of this algorithm is exponential in the number of user-defined predi-
cates as well as in the number of relations in the query, as shown in Section
6. In the next section, we show how rank ordering among user-defined
predicates may be exploited in conjunction with realistic assumptions on a
cost model to develop an algorithm that is polynomial in the number of
user-defined predicates (for a given number of relations) in a query.

5. OPTIMIZATION ALGORITHMS WITH COMPLETE RANK-ORDERING

The complexity of enumeration by the naive optimization algorithm is
exponential in the number of user-defined predicates. In the algorithm,
rank ordering (Theorem 4.1) is only used to order the execution of predi-
cates that were applied prior to application of any other operators. It turns
out that if we could exploit rank ordering irrespective of whether predicates
are separated by join nodes, then we can make the optimization algorithm
polynomial in the number of user-defined predicates (for a given number of
relations). In this section, we show that as long as the join implementations
follow the assumption of being a regular join (defined below), we can exploit
rank ordering even if user-defined predicates are separated by join nodes.
We provide a definition of regular join methods in Section 5.1 and justify
that this definition reflects the cost of popular join methods in practice. In
Section 5.2, we show that when all join operators follow the assumption of
being regular joins, we can indeed restrict our enumeration to execution
trees where all predicates are ordered by rank order. This key result
immediately leads to a new algorithm that is polynomial in the number of
user-defined predicates, which we present in Section 5.4. Indeed, the
results in this section are robust enough to extend to execution trees
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containing other operators (in addition to join), as long as the dependence
of operators on input relation size(s) follows Definition 5.1.

5.1 Regular Join Methods

In addition to the magnitude of relation sizes, the cost of a join method
depends on a variety of system parameters such as prefetching techniques,
specific I/O algorithms, and existing indexes. However, for a given set of
system parameters, the following definition captures the first order depen-
dence of join methods on input relations for a large class of implementa-
tions:

Definition 5.1 A join method is called regular if the cost f~R1, R2! of
joining two relations of sizes R1 and R2 depends on the sizes of the
relations as follows: f~R1, R2! 5 a 1 bR1 1 cR2 1 dR1R2 where the con-
stants a, b, c, d are independent of the sizes of relations R1 and R2.

An important subtlety in the above definition is that the value of factors
a, b, c, and d may depend on system parameters (e.g., available indexes),
rather than being global constants. In particular, each join node in the
execution tree may have a different value of these parameters. This lends a
significant generality to the above definition.

We now explain why a large number of join methods satisfy the con-
straints on join methods that are assumed by the above definition of
regular joins. Furthermore, in the remainder of this paper, we represent
the cost of joins in terms of I/O cost only. Although it is an approximation,
this cost is predominantly used in many commercial optimizers. Further-
more, many components of even the CPU costs of joins fits the form of
regular join. Below, we consider I/O costs for nested-loop, merge-scan, and
hash joins [Shapiro 1986] and demonstrate that they follow the assumption
of a regular join. The detailed cost formulas for the three common join
methods can be found in Shim [1993]. Note that the cost of writing the
result of the join to disk depends only on the size of the result of the join,
and has the form R1*R2*SJ, where SJ is join selectivity. Since this cost
element fits the form of regular joins, we ignore it in the rest of this
discussion.

For a nested-loop join without any index being used, the cost formula
becomes f~R1, R2! 5 R1W1/P 1 R2W2/P when the buffer size available can
hold the inner relation R2. Here, Wi is the tuple width of relation Ri and P
is the page size in bytes. Thus, RiWi/P is the number of pages occupied by
relation Ri. If the available buffer is not enough, the join cost becomes
f~R1, R2! 5 R1W1/P 1 R1~R2W2/P!. With block-nested join methods, the
cost becomes f~R1, R2! 5 R1W1/P 1 ~R1W1/P!/~B 2 1!~R2W2/P!, where
B is the available buffer size. Thus, join cost formulas for nested loop joins
without an indexed inner relation are consistent with Definition 5.1. For a
nested-loop join with an indexed inner relation, the cost of scanning the
inner relation per tuple of outer relation is replaced by the cost of probing
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the index, which is typically a constant number of page accesses. Thus, the
cost formula in such a case is f~R1, R2! 5 R1W1/P 1 R1I, where I is the
cost of probing the index. Observe that the above is a degenerate form of a
regular join cost formula.

For sort-merge and hash joins, the cost formula given in Shapiro [1986]
fits our form of join cost, assuming large buffers. For example, the simple
estimate of sorting costs for relation Ri in terms of I/O is two times the cost
of scanning the base table, i.e., 2 RiWi/P. The merge cost is equivalent to
scanning both relations, resulting in the estimate R1W1/P 1 R2W2/P,
which is consistent with the form of regular join cost formulas. Similar
comments apply to the cost formulas for hash join [Shapiro 1986]. With
decreasing costs for memory, the large buffer assumption is often a realistic
operating assumption. Finally, note that the cost formulas for regular joins
generalize the assumption of the linear cost model in Hellerstein and
Stonebraker [1993] and Hellerstein [1994]. The latter corresponds to a
special case of Definition 5.1 where the coefficient d 5 0.

5.2 Predicate Ordering on a Join Tree

The selection ordering rule (Theorem 4.1) applies when all predicates are
applied on a relation without any intervening join nodes. In this section, we
present a powerful generalization of the selection ordering rule. We show
that for a given join tree, the placement of the user-defined-predicates
cannot violate the rank order, i.e., for every such execution tree, there is
another execution tree that has less or equal cost and where the sequence
of predicate applications follows rank ordering. We refer to such execution
trees as rank-ordered, as defined below:

Definition 5.2 The user-defined predicates in an unconstrained execu-
tion tree t are rank-ordered if for any two user-defined predicates p and p9
in t such that rank~p! , rank~p9!, either p precedes p9 in the tree t, or p is
not evaluable in the tree t9 obtained by exchanging the positions of p and
p9 in t.

Example 5.3 Consider Figure 4, in which there are execution plans (and
subplans) that need to be considered when there are three relations and
two expensive selection predicates e1 and e2 on R1. Assume that we have
rank~e1! , rank~e2!. The user-defined predicates e1 and e2 in P8 are
rank-ordered. However, the two predicates in P15 are not rank-ordered.

The following theorem, which is the central result of this section, asserts
that it is sufficient to restrict ourselves to the plans that correspond to
rank-ordered trees. We prove the result by contradiction. We begin by
assuming that indeed there is an execution tree that is not rank-ordered
(let us call it the “spoiler”), but has a cost strictly lower than all rank-
ordered trees. We pick a set of rank-ordered trees that are equivalent and
syntactically “similar.” We exploit the syntactic similarity to derive a
constraint among the costs of these rank-ordered trees and the spoiler tree.
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Fig. 6. Plans used in correctness proof.
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Then we show that because join operators are assumed to satisfy the
constraint of being regular joins, the above constraint cannot be satisfied.
We now present the formal proof.

THEOREM 5.4 If T is any unconstrained execution tree using only regular
join methods, then there must exist an equivalent unconstrained execution
tree T9 such that cost~T9! # cost~T! and the user-defined predicates in T9
are rank-ordered.

PROOF. We prove the result by contradiction. For a contradiction to
occur, the number of user-defined predicates in the execution tree must be
at least 2. Furthermore, it must be the case that the cost of all equivalent
rank-ordered trees are strictly higher. In other words:

(1) There is an unconstrained execution tree T0 and two user-defined
predicates p1 and p2 where rank~p1! , rank~p2!, and p2 precedes p1.

(2) The user-defined predicate p1 is evaluable in the tree T90 obtained by
exchanging the relative positions of p1 and p2 in T0.

(3) In T0, there must be one or more joins separating applications of p1 and
p2.

(4) The cost of T0 is strictly lower than the cost of any equivalent uncon-
strained rank-ordered execution tree.

Observe that condition (3) must be true, since if p1 and p2 were applied
without any intervening joins, the selection ordering rule (Theorem 4.1)
implies that selections must be in order of rank. Thus, an unconstrained
violation of rank order can occur only if the predicates p1 and p2 are
separated by one or more joins.

We now exploit condition (3) to derive a constraint on the relative costs of
alternative execution trees. Specifically, we consider four additional execu-

Fig. 7. Definitions of t0, t1 and t2.

196 • S. Chaudhuri and K. Shim

ACM Transactions on Database Systems, Vol. 24, No. 2, June 1999.



tion trees that are equivalent. Figure 6 shows these execution trees,
including T0 and T90. The execution tree T1 corresponds to positioning p1

just after p2 in the execution tree T0. Let T91 be the same tree as T1, except
that the positions of p1 and p2 are exchanged. Observe that from Theorem
4.1 it follows that cost~T9! # cost~T1!. The execution tree T2 is a tree
obtained from T0 by moving p2 to a position immediately preceding p1. We
obtained T92 by exchanging the positions of p1 and p2 in T2. Once again, by
using Theorem 4.1, it follows that cost~T92! # cost~T2!.

The encircled query expression in Figure 6 with a single input relation
identifies a common subexpression among execution trees. Let us refer to
this subexpression by t~R!, where the parameter R refers to the input
relation of t. Three instances of this common expression (with different
input relations R) are depicted in Figure 7. The following identities are
evident:

t0 5 t~R1!

t1 5 t~sp1~R1!!

t2 5 t~sp2~R1!!

In the rest of this proof we also use t12 to denote t~sp1~sp2R1!! and t21 to
denote t~sp2~sp1R1!!. Note that relation sizes for t0, t1, t2, and t12 bear
the obvious relationship. We can relate the execution trees in Figure 7 with
those in Figure 6. In particular, the following correspondences hold:

T0 5 sp1~t2!

T9 5 sp2~t1!

T1 5 t12

T91 5 t21

T2 5 sp1~sp2~t0!!

T92 5 sp2~sp1~t0!!

Table I. Definition of Parameters for Correctness Proof

ci Cost of predicate Pi per tuple
si Selectivity of predicate Pi

ri Number of tuples in relation Ri

Cti Cost of execution tree ti
Nti Size of the output of execution tree ti
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We now estimate the costs of the execution trees using the parameters
defined in Table I. We use notation Cti and Nti to designate the cost and
size of the output relation resulting from the execution trees t i.

Since the cost model is consistent (see Section 2), it follows that Nti 5 siNt0

(for i 5 1, 2). Furthermore, N12 5 s1s2Nt0.
Observe that execution trees T90, T91, and T92 are rank-ordered. By our

assumption, it must be that the cost of T0 is strictly less than the cost of
each of these trees. We now use these relationships to derive a contradic-
tion.

By definition, cost~T0! 5 c2r1 1 Ct2 1 c1Nt2. However, Nt2 5 s2Nt 0.
Hence,

cost~T0! 5 c2r1 1 Ct2 1 c1s2Nt0 (1)

By our assumption, cost~T0! , cost~T91! # cost~T1!. Note that cost~T1! 5
c2r1 1 c1s2r1 1 Ct12. Therefore, using Eq. (1), we conclude that

Nt0 , r1 2 ~Ct2 2 Ct12!/s2c1 (2)

Next, note that cost~T2! . cost~T0!. We now estimate cost~T2!:

cost~T2! 5 Ct0 1 c2Nt0 1 c1s2Nt0 (3)

Using Eqs. (1) and (3), we conclude that

Nt0 . r1 2 ~Ct0 2 Ct2!/c2 (4)

It follows from Eqs (2) and (4) that

~Ct2 2 Ct12!/s2c1 , ~Ct0 2 Ct2!/c2 (5)

The rest of this proof shows that when the joins follow the constraint of
regular joins, Eq. (5) cannot be true. The cost of evaluating a tree is the
sum of costs of the joins and the costs of applying user-defined predicates.
We can represent that the cost of an expression t~R! to be the sum of the
following three components:

—Cost of evaluating expensive predicates in the expression t~R!: Denote
such costs by Pu~R! and the sum of all such costs as (

u
Pu~R!. For our

assumed cost model for user-defined predicates, Pu~R! 5 cuhu~R!, where
the constant cu is the cost of applying the user-defined predicate with per
tuple cost cu, where hu~R! is the size of the relation preceding application
of the u-th application of a user-defined predicate.

—Cost of evaluating join nodes in the expression t~R! that are ancestors of
R: Denote this cost by Jv~R! and the sum of all such costs as (

v
Jv~R!.

Note that since join is a binary operation, at most one input can be
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dependent on the input relation R for each join. Furthermore, in our
assumed cost model, all the join methods are regular. Therefore, we
assume that Jv~R! 5 av 1 bvmv~R! 1 cvqv 1 dvmv~R!qv, where we as-
sumed that mv~R! and qv are the sizes of the input relations to the v-th
join and only mv~R! depends on the input relation R. Thus, so far as
reflecting the dependence of R on the cost of the join, we can simplify
Jv~R! 5 fvmv~R! 1 lv.

—Cost of evaluating all other operators that are not affected by the input
relation R: We denote this cost by I.

We apply the above costing framework to each of the three instances of t,
i.e., t0, t1, and t2 to establish a relationship between Ct2 and Ct0. We
begin by rewriting the cost components for Ct2 and Ct0 and distinguishing
the respective cost components by superscripts:

Ct0 5 O
u

cuhu
0 1 O

v
~fvmv

0 1 lv! 1 I

Ct1 5 O
u

cuhu
1 1 O

v
~fvmv

1 1 lv! 1 I

Ct2 5 O
u

cuhu
2 1 O

v
~fvmv

2 1 lv! 1 I

The only difference between t2 and t0 is in application of the predicate
p2 on R1. In order to estimate mv

2, we note that, because the cost formula is
consistent, we can assume that size mv

2 is the same whether the predicate
p2 is applied before any operator in t is applied or the predicate p2 is
applied just before the v-th join is executed. By using the latter method, we
note that mv

2 5 s2mv
0. Likewise, Pu

2 5 s2Pu
0. We can extend the same

approach to compute Ct12 and arrive at the following equalities: mv
12 5

s1s2mv
0, Pu

12 5 s1s2Pu
0. From the above, we conclude that: Ct0 2 Ct2 5

~1 2 s2!C90, Ct2 2 Ct12 5 s2~1 2 s1!C90 where C90 5 (
u
Pu

0 1 (
v
fvmv

0.

Therefore, from Eq. (5), we conclude that ~1 2 s1!/c1 , ~1 2 s2!/c2. In
other words, rank~p1! . rank~p2!, which violates our assumption. e

5.3 Comments on the Generality of the Result

The above proof is extremely robust; we explain by discussing the following
generalizations.

Execution space: Observe that the proof makes no assumption about
the structure of the execution space. Our proof technique simply exploits
the fact that for a violation of the theorem to occur, there must exist a
nonempty sequence of join nodes ~J1, . . . , Jk21! in between the applica-
tion of two predicates (p2 and p1). This observation is independent of any
assumptions on whether the space of unconstrained join trees is linear or
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not. So the result is uniformly applicable for linear as well as bushy join
trees.

Expensive join predicates: Theorem 5.4 makes no assumption on the
structure of predicates, and so is uniformly applicable for user-defined
predicates. This has two consequences. First, our theorem is applicable to
user-defined predicates that may involve columns of multiple tables. Spe-
cifically, note that we do not assume R1 in T0 (and in other execution trees)
is a base relation. Rather, R1 represents the relation resulting from the
execution of the subtree of which p2 is the parent node. When p2 is an
expensive predicate over columns of multiple relations, the subtree below
p2 must include the join among the needed relations for T0 to be an
admissible execution tree. Next, our cost model for a user-defined predicate
is based on a constant per-tuple cost. The internal structure of the user-
defined predicate is irrelevant as long as the above assumption of a
constant per-tuple cost is appropriate. For example, as argued in Heller-
stein [1995], complex subqueries fit the above cost model in many cases.
Another example is when user-defined predicates have disjunctions among
them. In such cases, it may be possible to associate a per tuple cost with
each conjunct when the boolean expression is translated into a conjunctive
normal form.

Operators other than join: The unconstrained join trees consist of only
user-defined predicates and join trees as the only operators in the execution
tree. However, the above result is robust for any binary or unary operators
that satisfy the syntactic condition specified in the definition of regular
joins. This is because the proof only exploits the specific syntactic depen-
dence of each Jj on the sizes of its input relations.

Relationship to results in Hellerstein [1995]: As explained earlier,
Hellerstein’s approach in Hellerstein [1995] suffers from the cyclic depen-
dency that compromises the correctness of his approach. His approach
requires that we assign an a priori rank to each traditional equijoin
predicate (J1, . . . , Jk21), so that their rank can be compared to those of
user-defined (selection or join) predicates. Unfortunately, computation of
the rank of a traditional equijoin predicate depends on the sizes of its input
relations, which in turn depends on which user-defined predicates are
applied prior to computing the join. This cyclic dependency is successfully
avoided in our approach. In Theorem 5.4 the ranks of only user-defined
predicates need to be assigned, but the algorithm is still able to correctly
order user-defined predicates with respect to traditional join predicates
using a dynamic programming algorithm. The property that the joins follow
the constraints of regular joins implies that the executions of user-defined
predicates must follow the order of rank to ensure optimality. However, we
do not need to assign any rank to the traditional equijoin predicates, and
thus unlike Hellerstein [1995], we do not encounter cyclic dependency.
Finally, our definition of a regular join strictly generalizes the linearity
assumption for a join cost formula in Hellerstein [1995].
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5.4 Algorithm

This algorithm, which, from now on, we refer to as the optimization
algorithm with complete rank-ordering is shown in Figure 8. It assumes
that the joins follow the assumptions of regularity. When the join methods
are regular, Theorem 5.4 enables us to further restrict the sequence in
which the user-defined predicates may be applied and reduces the complex-
ity of enumeration from exponential to polynomial in the number of
user-defined predicates. In particular, the user-defined predicates must
now be applied in rank order even if there are intervening joins. Therefore,
the algorithm iteratively considers all ~r 1 1!~s 1 1! possibilities,, which
corresponds to applying the first u predicates and the first v predicates on
Sj and Rj respectively (ordered by rank), where 0 # u # r and 0 # v # s.
This is the only change in the algorithm from the naive optimization
algorithm.

6. COMPLEXITY

In this paper we study the complexity of the algorithms in terms of two
parameters. The number of subplans to be stored provides a measure of the
space requirement for optimization. The number of enumerations is the
other measure, and it reflects the time complexity of optimization algo-

Fig. 8. Optimization algorithm with rank-ordering for linear join trees.
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rithms. We define the latter parameter as counting the number of calls
made to extjoinplan, which is the step that extends an existing subplan
with one more join to create a plan for a larger subquery of the given query.

We now introduce the input parameters that we use for complexity
analysis. We assume that there are n relations. A user-defined predicate
can be either a selection or a join predicate. We assume that there are at
most g relations ~g # n! that have one or more user-defined selections
defined on them, i.e., there are g types of selection predicates. Likewise, we
can characterize the type of a user-defined join predicate by the two
relations over which the predicate is defined. We assume there are h types
of user-defined join predicates ~h , n2!. We let u be the total number of
types (i.e. u 5 g 1 h) of user-defined predicates and let k denote the total
number of user-defined predicates. We assume w denotes the maximum
number of user-defined predicates (either selection or join) of the same
type. Table II summarizes these parameters.

Example 6.1 Consider a query that represents a join among four rela-
tions R1, .., R4, where each of R1 and R2 has two user-defined selections
and there is a secondary user-defined join predicate between R1 and R2.
Since the number of relations in the query is four and among them only two
relations have user-defined predicates (i.e. R1 and R2), we have n 5 4 and
g 5 2. Furthermore, h 5 1, w 5 2, u 5 3 and k 5 5.

6.1 Number of Subplans Stored

In this section we examine the number of subplans to be stored by the
naive optimization and the optimization algorithm with complete rank-
ordering .

THEOREM 6.2 The total number of subplans that need to be stored by the
naive optimization algorithm is no more than 2n1k.

PROOF. The naive optimization algorithm potentially creates a subplan
for every subset of relations that are joined and every subset of user-
defined predicates present in the query. Since there are n relations and
there are k user-defined predicates, the total number of such plans is at
most 2n1k. e

Table II. Definition of Parameters for Complexity Proof

n Total number of relations
g Number of relations with user-defined selection predicates applicable
h Number of pairs of relations having user-defined join predicates
k Total number of user-defined predicates
w Maximum of number of user-defined selections applicable per relation and number

of user-defined join predicates per pair of relations
u Sum of g and h
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In contrast, the optimization algorithm with complete rank ordering does
not need to store subplans for each subset of user-defined predicates. We
begin by defining an upper-bound on the number of distinct tags that may
need to be considered for optimization with complete rank ordering.

LEMMA 6.3 The number of distinct tags to be stored for a distinct set of
relations in the plan table is no more than ~1 1 w!u.

PROOF. Given a distinct set of relations, we can partition user-defined
predicates into u sets. There can be at most w user-defined predicates that
belong to the same partition. The application of these predicates must
follow the order of rank. Therefore, over each partition, there can be at
most ~1 1 w! possibilities. Since there are altogether u partitions, there
can be at most ~1 1 w!u distinct tags altogether. e

THEOREM 6.4 The total number of subplans that need to be stored by the
optimization algorithm with complete rank ordering where a query has
user-defined selection predicates but no user-defined join predicates is no
more than 2n~1 1 w/ 2!g.

PROOF. We store a distinct plan corresponding to a join of a distinct set
of relations and a distinct set of user-defined selections. However, user-
defined selections can apply only after the relations over which they apply
have been joined. First, we determine the number of ways in which one or
more of the g relations (with user-defined selections on them) can be joined
and user-defined selections are applied on them. If we pick i of such
relations, then they may be picked in S g

iD ways. With each such join of i
relations there can be ~1 1 w! i tags (by Lemma 6). Therefore, the number
of ways in which we can pick one or more of g relations and user-defined
selections on them is

O
i50

g Sg
iD~1 1 w!i 5 ~2 1 w!g.

Next, we must consider all possible ways in which we can pick one or more
of the relations from the set of remaining ~n 2 g! relations that have no
user-defined selections on them. The latter can be achieved in

O
i50

n2gSn 2 g
i D 5 2n2g

ways. Hence, the upper bound on the total number of plans that need to be
stored is ~2 1 w!g2n2g, which equals ~1 1 w/ 2!g2n. e

Since g # n and w # k, the above formula can be used to derive an
upper-bound of ~2 1 k!n for queries that have user-defined selection pred-
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icates only. This upper bound is polynomial in k but exponential in n, the
number of relations in the query (as in traditional join enumeration).

The above analysis also shows that the complexity is sensitive to the
number of relations that have one or more user-defined predicates, as well
as to the number of predicates that may apply to a single relation. The
complexity grows exponentially with the number of relations over which
user-defined selection predicates occur, since they increase the number of
tags exponentially. In contrast, complexity grows only polynomially as we
increase the number of user-defined predicates for a bounded number of
relations in the query where they occur. For example, when all user-defined
predicates are selections and apply to only one relation, then the number of
plans that need to be stored is at most ~1 1 k/ 2!2n. The next theorem
presents the complexity of the optimization algorithm with complete rank
ordering when a query has user-defined join predicates as well.

THEOREM 6.5 The total number of subplans that need to be stored by the
optimization algorithm with complete rank-ordering where a query has both
user-defined selections and join predicates is no more than 2n~1 1 w!u.

PROOF. The proof is very similar to that of Theorem 6.4. For a given set
of relations, the number of distinct plans that differ on tags are at most
~1 1 w!u. Thus, by replacing ~1 1 w! i with ~1 1 w!u in the corresponding
expression in Theorem 6.4, we get the upper bound

~1 1 w!uO
i50

g Sg
iD 5 ~1 1 w!u2n. e

Since g # n, u # g 1 g~g 2 1!/ 2 # g2 for nonnegative integers of g
and w # k. Therefore, the above formula can be used to derive an upper-
bound of ~1 1 k!n~n11!/ 22n # ~~1 1 k!n2!n. Hence, the upper-bound is a
polynomial in k for a given n.

6.2 Number of Enumerations

The complexities of enumeration for left-deep join space and bushy join
space by a traditional system R style optimizer are known to be O~n2n21!
and O~3n!, respectively, where n is the number of relations in the query.
We now study the complexities of enumeration for the naive optimization
algorithm and the optimization algorithm with complete rank-ordering for
linear as well as bushy join trees. The proofs of theorems presented in this
section can be found in the appendix.

Linear Join Trees
THEOREM 6.6 The total number of enumerations for the space of uncon-

strained linear join trees by the naive optimization algorithm is no more
than 3k2n21~n 2 g 1 g2w! 1 ~n 2 g 1 g2w11!2n2g21.
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The above theorem reflects the fact that while we restrict the execution
space to linear join trees, we do consider placement of user-defined predi-
cates on base relations as well as on intermediate relations. This explains
why the dependence on k is O~3k! while the dependence on n is O~n2n21!
(see Section 3.1).

We now turn to the optimization algorithm with complete rank-ordering
and show that unlike the naive optimization algorithm, the complexity of
optimization algorithm with complete rank-ordering is polynomial in the
number of user-defined predicates (for a given bound on the number of
relations). We begin by providing an estimate on the number of enumera-
tions in a crude but intuitive way. By multiplying maximum values of the
following four factors, we can obtain a rough estimate of the multiplier M
for the number of enumerations T of the traditional algorithm such that
the total number of enumerations by our algorithm is approximately M*T.
In the following description, the maximum value for each factor is specified
inside of the parentheses.

—number of tags for outer relation (~1 1 w!u);

—number of tags for inner relation (one for linear join trees and ~1 1 w!u

for bushy join trees);

—number of evaluable predicates for outer relation (1 1 k);

—number of evaluable predicates for inner relation (1 1 w for linear join
trees and 1 1 k for bushy join trees).

Thus the complexity of the optimization algorithm with complete rank-
ordering for the space of unconstrained linear join trees is approximately
~k 1 1!~1 1 w!u11 (i.e., ~1 1 w!up1p~1 1 k!p~1 1 w!) times the tradi-
tional algorithm. A similar crude estimate for bushy join space results in a
multiplier of ~1 1 k!2~1 1 w!2u. The following theorems provide enumera-
tion complexities for the optimization algorithm with complete rank-order-
ing.

THEOREM 6.7 The total number of enumerations for the space of uncon-
strained linear join trees by the optimization algorithm with complete
rank-ordering, where there are only user-defined selections, is no more than
n2n21~1 1 k!~1 1 w/ 2!g21~1 1 ~w/ 2!~1 1 ~g/n!~2w 1 3!!!.

For a given n with user-defined selections only, since we have w # k, the
upper bound is a polynomial in k. In particular, if all user-defined selec-
tions apply to the same relation, this complexity is n2n21~1 1 k!~1 1 k/ 2
1 k~2k 1 3!/~2n!!. So the extension of our technique to the optimization
algorithm for unconstrained linear join trees still guarantees that the
complexity of enumeration is polynomial in k for a given n.

THEOREM 6.8 The total number of enumerations for the space of uncon-
strained linear join trees by the optimization algorithm with complete
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rank-ordering, where there may be user-defined selections and join predi-
cates, is no more than n2n21~1 1 k!~1 1 w!u~1 1 gw/n!.

Since in many applications we expect the number of expensive user-
defined predicates in the query to be only a few (and often fewer than the
number of joins), it is desirable to ensure that the cost of join enumeration
does not increase sharply due to presence of a few user-defined predicates.
Unlike the predicate migration algorithm, our approach is able to ensure
the above property.

Bushy Join Trees
We now analyze the complexity of the execution space of unconstrained

bushy execution trees. The idea of using tags is general enough and is not
restricted to unconstrained linear trees. Let us consider the step of joining
two unconstrained bushy-join trees P1 and P2. Assume that ~p1, . . . , pm!
and ~q1, . . . , qs! are the predicates applicable on P1 and P2, respectively,
in the order of increasing rank. From the same arguments for uncon-
strained linear trees, there can be at most ~m 1 1! and ~s 1 1! possibili-
ties for pushing down selections on P1 and P2, respectively, resulting in at
most ~m 1 1!~s 1 1! plans for joining the trees P1 and P2. Thus, enumer-
ating the application of user-defined predicates for a join of two relations
for unconstrained bushy execution trees is similar to that for unconstrained
linear execution trees.

We now turn to the complexities of the optimization algorithm with
complete rank-ordering for space of unconstrained bushy join trees. We
show that for a given n, the upper bound is still polynomial in k.

THEOREM 6.9 The total number of enumerations for unconstrained bushy
join trees by the optimization algorithm with complete rank-ordering where
there are user-defined selections only is no more than 3n~1 1 k!2~1 1 w/3!g.

THEOREM 6.10 The total number of enumerations for searching the space
of unconstrained bushy join trees by the optimization algorithm with
complete rank-ordering, where there may be user-defined selections and join
predicates, is no more than 3n~1 1 k!2~1 1 w!u.

7. OPTIMIZATION ALGORITHM WITH PRUNING

The naive optimization algorithm, as well as the algorithm with rank
ordering, compare plans that have the same tags only. In this section we
present two pruning techniques that allow us to compare and prune plans
that have different tags. These pruning techniques are sound, i.e., guaran-
teed not to compromise the optimality of the chosen plan. The results in
this section assume that the queries are SPJ queries. We show how these
pruning techniques can be integrated with the optimization algorithm with
complete rank ordering (or with the naive optimization algorithm). Key
observations that drive the soundness of these strategies are: (a) no
application of a user-defined predicate has the effect of increasing the size
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of the input relation; (b) no application of a user-defined predicate alters
any other physical properties of the input data stream; and (c) if deferring
evaluation of a user-defined predicate is locally no worse, then the choice of
globally optimal plan will not be compromised by choosing to defer the
evaluation of the user-defined predicate.

7.1 Udp-Pushdown Rule

This rule says that if the cost of evaluating the selections (prior to the join),
together with the cost of the join after the selections are applied, is less
than the cost of the join without having applied the selections, then we
should push down the selections.3 For example, in Figure 4, if the cost of P6

is less than the cost of P9, we can prune P9. In the optimization algorithm
with complete rank-ordering, we had to keep both P6 and P9 since they had
different tags, i.e., different numbers of expensive predicates were applied.

Definition 7.1 A plan Q for a query q is an extension of a plan P if P
occurs as a subtree of Q.

Definition 7.2 A plan Q is equivalent to another plan Q9 if they
represent the plans for the same expression.

LEMMA 7.3 Let R and S represent two subplans of a conjunctive query q.
Let P9 be a plan for R”“S. Let P be the plan se~R!”“S. If Cost~P! #

Cost~P9!, then for every plan for q that is an extension of plan P9, there
exists an equivalent plan that extends P, and is no more expensive.

PROOF. For unconstrained linear join trees, we prove the result by
contradiction. The same proof technique extends when the plans are
unconstrained bushy join trees.

Let Q9 be an extension of plan P9 for which the above lemma is violated.
In particular, let the sequence of operators that extend P9 be a1, . . . , an,
se, b1, . . . bk, where each of ai and bj is an operator. Let 5P9 denote the
cost of additional operators in Q9 that are not present in P9. Therefore, the
following equality holds: Cost~Q9! 5 Cost~P9! 1 5P9. Let us consider a
plan Q for q that extends P by the sequence of operators a1, . . . , an, b1,
. . . bk. Let 53 denote the cost of additional operators in Q that are not
present in P. Because the queries are conjunctive, the size of output of P is
no more than the size of output of P9. Thus, it follows that for each ai,
where i 5 1, . . . , n, the cost of ai in Q is no more than that in Q9 since
the size of the input relation in Q is no larger and the cost of selection,
projection, or join is monotonic in the sizes of the input relations. In the
case of each operator bi, the cost is the same for both execution trees.
Hence, it follows that 5P # 5P9. Hence, cost~Q! # cost~Q9!. This completes
the proof. e

3Strictly speaking, the lemma can be used to compare plans P and P9 that have the same
interesting order.
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We refer to the above lemma as the udp-pushdown rule, where we use
udp as an abbreviation for user-defined predicate. A corollary of this rule is
that if P9 has a set S9 of expensive predicates applied, then it can be pruned
by another plan P over the same set of relations, where (a) Cost~P! #

Cost~P9! and (b) P has a set S of expensive predicates applied prior to a join
where S is a superset of S9. Given two plans over the same set of relations,
we can easily check (b) by examining the tags of P and P9. The following
corollary states this conclusion formally.

Corollary 7.4 Let q be a conjunctive query. If P and P9 are two partial
plans of q over the same set of relations with the tags T and T9 such that T
is a subset of T9, and Cost~P! # Cost~P9!, then for every plan for q that is
an extension of plan P9, there exists an equivalent plan that extends P that
is no more expensive.

PROOF. We use an argument similar to that used in Lemma 7.3. The key
observations are that the size of the output of P is less than or equal to that
of P9, cost~P! # Cost~P9!, the cost of a plan for a conjunctive query is
monotonic in the size of input relations, and the number of operators in any
extension of P9 is strictly more than the number of operators in P. e

For a given plan P, the set of plans (e.g., P9) that the above corollary
allows us to prune is denoted by pushdownexpensive~P!.

Example 7.5 Consider the plans that represent the join among $R1, R2,
R3%. Assume that e1 and e3 are applicable on R1 and e2 and e4 are
applicable on R2. Furthermore, assume that the rank order of these
predicates are e1, e2, e3 and e4. If the cost of the plan with the tag ,e4. is
lower than that with the tag ,e2, e3, e4., we can use the udp-pushdown
rule to prune the latter plan.

7.2 Udp-Pullover Rule

This rule says that if locally deferring evaluation of a predicate leads to a
cheaper plan than the plan that evaluates the user-defined predicate before
the join, then we can defer the evaluation of the predicate without compro-
mising the optimality of the plan. For example, if the cost of the plan
extending P7 with evaluation of e2 (i.e., se2~se1~R1!”“R2!) is less than the
cost of P6 in Figure 4, we can prune P6. In the naive optimization algorithm
and optimization algorithm with complete rank-ordering, we had to keep
both P6 and P7 since they have different tags, i.e., different numbers of
predicates were applied to each of the plans.

LEMMA 7.6 Let R and S represent two subplans of a conjunctive query q.
Let P, P9, and P99 represent plans for R”“S, se~R!”“S, se~R”“S!, respec-
tively. If Cost~P99! # Cost~P9!, then for every plan for q that is an extension
of plan P9, there exists an equivalent plan that extends P that is no more
expensive.
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PROOF. Consider a plan Q9 that extends a plan P9 with a sequence of
operators a1, .., an. We can construct a new plan Q by extending P with
the sequence of operators se, a1, .., an, which is equivalent to extending
P99 by a1, .., an. Since Cost~P99! # Cost~P9!, it follows that Cost~Q! #

Cost~Q9!. e

We refer to the above as the udp-pullover rule, since the plan P in the
lemma corresponds to the case where the predicate is pulled up. We can
generalize the consequences of the above rule. Let us consider plans P and
P9 over the same set of relations but with different tags T and T9. If the tag
T9 is a subset of T, then all predicates that are evaluated in P are also
evaluated in P9. Let Diff~T, T9! represent the set of predicates that are
evaluated in T9 but not in T. We can use the same proof technique as in
Lemma 7.6 to conclude:

Corollary 7.7 Let q be a conjunctive query. Let P and P9 be two partial
plans with tags T and T9 over the same set of relations and T a superset of
T9. Let P99 be the plan obtained by applying the predicates in Diff~T, T9! to
P. If cost~P99! # cost~P9!, then for every plan for q that is an extension of
plan P9, there exists an equivalent plan that extends P that is no more
expensive.

For a given P, we can construct a set of plans (e.g., P9) each of which may
be used to prune P. We can refer to the above set as pullovercheaper~P!.
The following example illustrates the corollary. Consider Example 5 with
the following change: the cost of the plan P with the tag T 5 ,e4. is
higher than the cost of the plan P9 with the tag T9 5 ,e2, e3, e4.. Notice
that the tag T is a subset of the tag T9. The set Diff~T, T9! 5 $e2, e3%. In
such a case, the above lemma allows us to prune the plan P if the cost of
the plan P9 with the added cost of evaluating the set of predicates $e2, e3%
after the join is no more than the cost of P. Finally, note that the pruning
strategies of both udp-pushdown rule and udp-pullover rule are still
applicable for execution trees that are bushy.

7.3 An Algorithm that Exploits Pruning Strategies

We can use the udp-pushdown rule to conclude that if the optimal plan P
for se~R!”“S is no more expensive than the optimal plan P9 for R”“S, then
for any extension to plan P9, we will find an extension to P that is no more
expensive. In other words, the udp-pushdown rule provides a sufficient
condition for the predicate e to be pushed down, i.e., we do not need to
consider plans where e is pulled up past future joins. This results in
reducing the number of plans over the same set of relations, but with
distinct tags that need to be considered in the future iterations of the
dynamic programming-based optimization algorithm without sacrificing
the optimality. A scenario where the udp-pushdown rule is extremely
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effective is when the user-defined predicates are relatively cheap, much
like built-in predicates in SQL. In such cases, the udp-pushdown rule is
effective, since it can be used to pin the selections as soon as they are
evaluable and helps avoid constructing plans where the predicates are
pulled up.

Similar comments apply to the effectiveness of the udp-pullover rule. The
udp-pullover rule allows us to conclude that if the optimal plan for
se~R!”“S that evaluates e prior to the join is no less expensive than a plan
where e is evaluated immediately after the join, then we do not need to
consider extensions to the former plan. Thus, this pruning rule helps us
avoid generating alternative plans that push down user-defined predicates
and are suboptimal. For example, consider the case where user-defined
predicates are expensive and join operations decrease the cardinality of the
relation. In such a case, the optimal plan corresponds to the case where all
user-defined predicates follow evaluation of all joins. In such a case, the use
of udp-pullover rule can help avoid unnecessary enumeration of many
plans that push down predicates.

Figure 9 describes an optimization algorithm that augments the naive
optimization algorithm with complete rank-ordering and pruning strate-
gies. Given choices of u and v, rank ordering uniquely determines the tag

Fig. 9. Optimization algorithm with pruning for linear join trees.
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for plan p in Figure 9. Plan p will be compared against plans over the same
set of relations that have already been stored. Plan p is pruned and the
iteration steps to the next ~u, v! combination if one of the following two
conditions holds: (1) if p is more expensive than the plan in the bestPlan
with the same tag, if any; (2) if the set of plans pullovercheaper~p! is
empty, i.e., the udp-pullover rule cannot be used to prune p. Otherwise, the
predicate addtotable~p! becomes true and plan p is added to bestPlan.
Next, this new plan p is used to prune plans that are currently in bestPlan.
In the algorithm, we have designated this set of pruned plans by
pruneset~p!. They may be: (1) the stored plan with the same tag, if it exists
in the Plantable and is more expensive; (2) the set of plans in
pushdownexpensive~p!, i.e., plans that may be pruned with p using the
udp-pushdown rule.

8. CONSERVATIVE LOCAL HEURISTIC

The optimization algorithms that we propose require tags to be maintained
with plans. Potentially, for every subset of relations in the query, an
optimal subplan may need to be stored for every distinct tag. In this section
we present the conservative local heuristic, which provides a simpler
alternative for implementation. First, this technique does not require tags
to be maintained. So incorporating the heuristic in an existing System-R
style optimizer is easier. Next, incorporating the heuristic increases the
number of subplans that need to be optimized for a query by no more than
a factor of 2 compared to the traditional optimization, independent of the
number of user-defined predicates in the query. Finally, there are a
number of important cases where the algorithm guarantees generation of
an optimal execution plan.

The conservative local heuristic is best described by explaining the
Pull-Rank heuristic that has been proposed but was found inadequate for
generating plans of acceptable quality [Hellerstein 1994]. Pull-Rank main-
tains at most one plan over the same set of relations. At each join step, for
every choice of the set of predicates that are pushed down, the Pull-Rank
algorithm estimates the sum of the costs (we will call it completion cost) of
the following three components (i) Cost of evaluating expensive predicates
that are pushed down at this step (ii) Cost of the join (iii) Cost of evaluating
the remainder of the user-defined functions that are evaluable before the
join but are deferred past the join. Pull-Rank chooses the plan that has the
minimum completion cost. Thus, the algorithm greedily pushes down
predicates. For example, if Pull-Rank decides that evaluating a predicate u
before a join j is cheaper than evaluating the predicate u immediately
following j, then evaluation of u will precede j in the final plan, i.e.,
Pull-Rank will not consider any plans where u is evaluated after j. Thus,
Pull-Rank fails to explore such plans where deferring evaluation of predi-
cates past more than one joins is significantly better than choosing to
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greedily push down predicates based on local comparison of completion
costs.

The conservative local heuristic guards against the above shortcoming of
the pull-rank heuristic by retaining at most two intermediate plans with
different tags over the same set of relations. In contrast, the pull-rank
heuristic keeps at most one plan over the same set of relations. One of the
two plans picked by the conservative local heuristic is the same as that of
pull-rank. The additional plan over the same set of relations considered by
the conservative local heuristic is where evaluation of all remaining appli-
cable user-defined predicates is deferred. The latter plan is compared with
variants of itself where the push-down rule is applied and the plan with the
cheaper cost is retained. Therefore, the conservative local heuristic can
choose among plans that result from application of a sequence of udp-
pushdown and udp-pullover rules. The two plans picked by the conserva-
tive local heuristic complement each other, and the heuristic can guard
against the choice of a poor plan resulting from greedily pushing down a
predicate by the Pull-Rank algorithm. Thus, conservative local heuristic
can find optimal plans that Pull-Rank and other global heuristics fail to

Fig. 10. Optimization algorithm with conservative local heuristic for linear join trees.
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find due to their greedy approach, but incurs only low computational
overhead. This is illustrated by the following example.

Example 8.1 Consider the query Q 5 se~R1!”“R2”“R3”“R4. Assume
that the plan se~R1”“R2”“R3!”“R4 is optimal. Note that nothing in the
global heuristic that either pushes down or pulls up all the selections can
find the optimal plan. If the plan for se~R1!”“R2 is cheaper than
se~R1”“R2!, then the pull-rank greedily pushes down P and fails to obtain
the optimal. However, our algorithm with a conservative local heuristic
uses the plan R1”“R2 in the next join step to obtain the optimal. This is an
example where a pullup followed by a pushdown is optimal, and therefore
only our algorithm is able to find it.

Example 8.2 Another example of search space explored by a conserva-
tive local heuristic is shown in Figure 11. It illustrates those parts of the
execution plans that need to be considered for a query of three relations
and two expensive selection predicates e1 and e2 on R1. Plan P2 is the
additional plan stored by the conservative local heuristic for ~R1, R2!. By
storing the plan, P4 and P5 are additionally enumerated for ~R1, R2, R3!.

To implement the conservative local heuristic with a traditional system R
algorithm, we pick one additional plan, in addition to the plan picked by
pull-rank at each join step based on sum of the costs of the following two
components: (1) cost of evaluating expensive predicates that are pushed
down at this step; (2) cost of the join. Let us refer to the sum of these two
costs as the pushdown-join cost. This is the same as assuming that deferred

Fig. 11. Search space with rank-ordering and conservative local heuristic.
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predicates are evaluated for “free” (i.e., the cost of evaluating all remaining
evaluable predicates is zero). In other words, the plans chosen using such a
metric favor deferring predicates, unless the evaluation of predicates helps
reduce the cost of the current join. Since conservative local heuristic picks
two plans, one for completion cost and the other for pushdown-join cost, it
is possible to consider the plan where the predicate u is deferred past j as
well as the plan where u is pushed down prior to j (chosen by pull-rank) as
possible candidates for the optimal plan.

The optimization algorithm with complete rank-ordering and the conser-
vative local heuristic for the space of unconstrained linear join trees is
shown in Figure 10. The algorithm works similarly to traditional optimiza-
tion algorithms, except that we keep two plans for S rather than one.
Unlike the optimization algorithm with complete rank-ordering where we
keep a plan for each distinct tag of S, the conservative local heuristic
retains at most two plans for S, i.e., the plans with the minimum pushdown
join cost and the minimum completion cost, respectively (represented by
the variables bestPlan push and bestPlan complete in the algorithm). At
the end of the final join, we consider two plans stored for the relations
$R1, . . . Rn%. As in the case of the optimization algorithm with complete
rank-ordering, one plan may need to be completed by adding the step to
evaluate the remainder of the predicates. Finally, the cheapest one between
the plans is chosen.

Since, for the join of every subset of relations, at most two plans are
stored by a conservative local heuristic, we never need to consider storing
more than 2n11 plans. Thus, unlike the algorithm in Figure 9, the number
of subplans that need to be optimized does not grow with the increasing
number of user-defined predicates. However, a conservative local heuristic
may miss an optimal plan since, unlike the optimization algorithm with
complete rank-ordering, distinctions among the tags are not made in this
algorithm. Nevertheless, the experimental results of Section 9 indicate that
the quality of the plan is very close to the optimal plan. Furthermore, as
the following lemma states, the conservative local heuristic produces an
optimal plan in several important special cases.

LEMMA 8.3 The conservative local heuristic produces an optimal execu-
tion plan if any one or more of the following conditions are true: (1) the
query has a single join; (2) the query has a single user-defined predicate; (3)
the optimal plan corresponds to the case where all the user-defined predi-
cates are evaluated as soon as possible.

PROOF. Since the heuristic is a strict extension of pull-rank, (1) and (3)
follow from the property of pull-rank. When there is only one predicate, at
each step the heuristic considers the plans that defer as well as push down
the selection. This guarantees optimality for case (2). Another way to view
the same result is that, in this case, only two values of tags are possible,
and therefore the heuristic is able to guarantee optimality. e
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THEOREM 8.4 The total number of plans enumerated by the optimization
algorithm with conservative local heuristic for the space of unconstrained
linear join trees, where there may be user-defined selections and join
predicates, is no more than n2n212~1 1 k!~1 1 gw/n!.

9. PERFORMANCE EVALUATION

To assess the effectiveness of our optimization algorithms, we implemented
the algorithms proposed in this paper by extending a System R style
optimizer. In this section we present the results of doing performance
evaluations on our implementations. In particular, we establish:

(1) the pruning strategies that we proposed significantly improve the
performance of the optimization algorithm with complete rank-order-
ing;

(2) the plans generated by the traditional optimization algorithm suffer
from poor quality;

(3) the plans generated by the pull-rank algorithm are better (less expen-
sive) than the plans generated by the traditional optimizer, but are still
significantly worse than the optimal;

(4) the conservative local heuristic reduces the optimization overhead
significantly, and generates plans that are very close to optimal.

9.1 Experimental Framework

We used an experimental framework similar to that in Ioannidis and Kang
[1990] and Chaudhuri and Shim [1994]. We performed experiments using a
Sun Ultra-2/200 machine with 512 MB of RAM and running Solaris 2.5.

The algorithms were run on queries consisting of equijoins. The experi-
ments were over a randomly generated relation catalog where relation
cardinalities ranged from a thousand to one million tuples, and the num-
bers of unique values in join columns varied from 10% to 100% of the
corresponding relation cardinality. The selectivities of expensive predicates
were randomly chosen from 1026 to 1.0 and the cost per tuple of expensive
predicates was represented by the number of I/O (page) accesses and
selected randomly from 1 to 1000. Each query was generated to have two
projection attributes. Each page of a relation was assumed to contain 32
tuples. Each relation had four attributes, and was clustered on one of them.
If a relation was not physically sorted on the clustered attribute, there was
a B1-tree or hashing primary index on that attribute. These three alterna-
tives were equally likely. For each of the other attributes, the probability
that it had a secondary index was 1/2, and the choice between a B1-tree
and hashing secondary index was again uniformly random. We considered
nested-loop, merge-scan, and simple and hybrid hash joins as join methods
[Shapiro 1986]. In our experiments, only the cost for number of I/O (page)
accesses was accounted for. For our experiments, we generated 4 join (i.e.,
join among five relations) queries, 6 join queries, and 10 join queries.
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We performed two sets of experiments. In the first set, we varied the
number of user-defined selection predicates that apply on one relation. In
the second set, we varied the distribution of the user-defined selection
predicates among multiple relations in the query, i.e., we kept the number
of selection predicates fixed, but varied how these predicates are distrib-
uted among the relations in a query. At one extreme, all the user-defined
selections were applied on the same relation, and at the other extreme,
they were equally distributed among the relations in the query. These two
sets of experiments are described in Section 9.3 and Section 9.4, respec-
tively.

9.2 Candidate Algorithms

For each query instance, we ran the following five optimization algorithms.
The plans that needed to be stored/enumerated due to interesting orders
were taken into consideration in reporting the results.

—Traditional algorithm: The system R style optimization algorithm that
evaluates all expensive (or otherwise) predicates as early as possible.

—Pull-rank algorithm: This algorithm, introduced in Hellerstein [1994],
considers all possible placement of expensive predicates locally either
immediately preceding or immediately after join, and picks the cheapest
plan among them.

—Opt-rank algorithm: This is an optimization algorithm in Section 5 that
uses rank-ordering. It compares plans that have the same tag over the
same set of relations.

—Opt-rank-pruning algorithm: This is an extension of the Opt-rank algo-
rithm that incorporates the pruning strategies described in Section 7.

—Opt-rank-conservative algorithm: This algorithm uses our conservative
local heuristic with complete rank-ordering illustrated in Section 8.

9.3 Experiment 1: Effect of Number of User-Defined Predicates

We experimented to see how the optimization algorithms behave as we
increased the number of user-defined selection predicates. In this set of
experiments, the number of user-defined predicates was varied from 1 to 6.
Figure 12 shows the number of enumerated plans and the quality of plans
generated by each algorithm. The results presented here for each data
point represents an average over 100 queries. These queries were gener-
ated by randomly choosing one relation on which all the user-defined
predicates apply and then randomly picking the cost and selectivities of the
predicates as well.

Number of enumerations. Figure 12 shows that the average number of
enumerated plans for the opt-rank algorithm is approximately linear, and
this number grows at a rate slower than the worst-case complexity,
determined in Section 6. For 10 join queries (i.e., 11 relations), Table III
shows the factor by which the worst-case complexity of enumeration grows,
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compared to the number of enumerations in the traditional optimizer. The
enumerations necessary in the latter case is independent of the number of
user-defined predicates. The results obtained for queries with fewer joins
show a similar trend.

A comparison of the performances of the opt-rank algorithm and opt-
rank-pruning algorithm shows that our proposed pruning techniques are
extremely effective. While both algorithms are guaranteed to generate
optimal plans, the gap in the number of enumerated plans between the
opt-rank algorithm and opt-rank-pruning algorithm increases significantly
as the number of user-defined predicates grows. When six user-defined
predicates are applied, the opt-rank algorithm generated about three times
more plans than the opt-rank-pruning algorithm. The pull-rank algorithm
considers locally all possible cases of applying user-defined predicates.
Thus, the number of enumerated plans is slightly more than that of the
traditional optimizer. As expected, the number of enumerations for the
pull-rank algorithm was smaller than for the opt-rank-conservative algo-
rithm. However, as discussed below, the quality of plans generated by the
pull-rank algorithm was significantly worse.

Quality of plans. We compare the relative costs of the plans generated
by each algorithm. The cost of the plan generated by the opt-rank-pruning
algorithm scaled as 1.0 and the relative cost was plotted in the log scale.
Since the opt-rank and opt-rank-pruning algorithms always generate opti-
mal plans, 1.0 represents the cost of plans generated by either of these
algorithms.

The results show that the quality of plan generated by a traditional
optimizer suffers significantly across the board. The quality of plans
generated by the pull-rank algorithm gets worse as the number of expen-
sive predicates increases. As noted in Section 8, pull-rank fails to explore
plans where deferring evaluation of predicates past more than one joins is
significantly better than choosing to greedily push down predicates based
on a local comparison of completion costs. We examined the plans consid-
ered by the pull-rank algorithm and discovered that the number of plans
generated, in which user-defined predicates were applied earlier compared
to their placement in the corresponding optimal plans, increased gradually
as we increased the number of applicable user-defined predicates.

On the other hand, the opt-rank-conservative algorithm chooses plans
that are identical or are very close (less than 0.4% difference) to the
optimal. This is borne out by the fact that the graphs for the heuristic and
the algorithms producing the optimal plans are practically indistinguish-
able. Note that the opt-rank-pruning algorithm is the same as the opt-rank-
conservative algorithm when the number of expensive predicates is one.

Table III. Worst-Case Estimates for Enumerated Plans

Number of user-defined predicates 1 2 3 4 5 6
Multiplicative factor for opt-rank 3.5 7.9 14.9 25.0 38.7 56.6
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Thus, the algorithms pick the same plan when we have only one user-
defined predicate.

Fig. 12. Performance on a varying number of user-defined predicates.
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9.4 Experiment 2: Effect of Distribution of Predicates

In this experiment we varied the distribution of predicates. Quantitatively,
we define distribution as the fraction of the relations in a query with
applicable user-defined predicates. For the experiment in this section, we
assumed that six predicates are evenly distributed among relations with
applicable user-defined predicates. The results of these experiments are
shown in Figure 13.

Number of enumerations. Compared to the traditional algorithm, the
number of plans enumerated by the opt-rank-conservative algorithm is
only modestly higher. This is because the opt-rank-conservative algorithm
stores at most two plans for any subquery in the plan table for each
interesting order. The graphs clearly demonstrate that the savings made by
the opt-rank-conservative algorithm, with respect to the opt-rank algo-
rithm, are significant across all distributions.

This set of experiments also indicates that the number of plans enumer-
ated by the opt-rank algorithm increases up to a value of g (number of
relations with user-defined predicates), after which a downward trend
begins. Moreover, the value of g at which this occurs is nearly independent
of the number of relations present in the query. We now explain each of
these observations, based on the complexity analysis in Section 6.

Theorem 6.7 provides us with an upper bound on the number of plans
enumerated by opt-rank. The upper bound stated in the theorem (using the
notation in Section 6) is a function of n, k, g and w. Table IV shows the
worst-case estimate for the number of enumerated plans for ten join
queries with six user-defined predicates (n 5 11, k 5 6) when the user-
defined predicates are distributed among multiple relations (up to six).
When g is 1, 2, 3, and 6, every relation having user-defined predicates has
the same number of user-defined predicates, which is w 5 k/g. This results
in a unique upper bound based on Theorem 6.7 and represented in Table
IV. Thus, from the table, we observe that if all of six expensive predicates
(i.e. g 5 1, w 5 6) are applied to one relation in ten join queries, we can
have at most 56.6 times more enumerated plans than the traditional
optimizer. When we distribute six expensive predicates among two rela-
tions (i.e., g 5 2, w 5 3), at most 86.7 times more enumerations are
generated than the traditional optimizer. However, when g 5 4 and g
5 5, w can be either one or two. Table IV records the worst-case upper
bound for each of these cases. From the table, it is apparent that the
worst-case upper bound on the number of enumerated plan peaks and then
takes a downward turn. Since the graphs shown in Figure 13 is the average
number of enumerations out of 100 random queries, the above complexity
cannot be used directly to explain our experiment. However, the experi-

Table IV. Worst-Case Estimates for Enumerated Plans

Number of relations with UDF 1 2 3 4 5 6
Multiplicative factor for opt-rank 56.6 86.7 109.5 254.6 580.4 152.2
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mental results do show a trend similar to that in Table IV. The trend can
also be explained analytically. The leading dependence on g in Theorem 6.7
is the factor ~1 1 w/ 2!g21. However, for this set of experiments, we have

Fig. 13. Performance on varying distributions of user-defined predicates.
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w 5 k/g. The effect of this factor can be intuitively grasped by analyzing
the expression ~k/g!g (assuming w $ 2), an upper bound on the above
factor. The latter expression, when viewed as a continuous function of g,
has a maxima g 5 k/e and decreases as g is increased further. The
experimental result demonstrates such a variation with respect to g.

Quality of plans. As expected, the results show that the quality of plans
generated by the traditional optimizer continues to suffer significantly for
various distributions of user-defined predicates, in comparison to the
quality of plans generated by the opt-rank-pruning and opt-rank-conserva-
tive algorithms. Across different distributions, opt-rank-conservative pro-
duced plans with cost at most 3% worse than that of opt-rank, and thus
demonstrates its robustness as a heuristic. In contrast, the pull-rank
algorithm generated plans that are about 80% more expensive than those
generated by the opt-rank-conservative algorithm. This further justifies the
algorithmic changes to pull-rank incorporated in opt-rank-conservative.

The graphs in Figure 13 indicate that as we distribute the user-defined
predicates to more relations, the relative cost of plans generated by the
pull-rank algorithm decreases slightly. When we examined the plans
obtained by the pull-rank algorithm in our experiment, we observed that
the number of plans generated, in which the user-defined predicates are
applied earlier in the execution plan in comparison to their application in
optimal plans, is reduced as we increase the number of relations with
user-defined predicates. The effect of increasing the number of relations
with user-defined predicates is to effectively reduce the number of user-
defined selections applicable to every relation. This resulted in a fewer
number of alternative plans not considered by pull-rank. So the probability
that pull-rank picks a plan that is optimal or near-optimal is increased.

10. CONCLUSION

With the growing popularity of object-relational database systems, the
problem of optimizing queries with user-defined predicates has become
increasingly important. The user-defined predicates in the query may be
join or selection predicates. In this paper we presented algorithms that find
the optimal plans for conjunctive queries with user-defined predicates.
These algorithms extend the traditional System R style optimization algo-
rithms used by many commercial optimizers. The naive optimization algo-
rithm that we present guarantees the optimal plan. The optimization
algorithm with complete rank-ordering demonstrates that by exploiting the
special structure of cost-models, we can find the optimal plan in time
polynomial in the number of user-defined predicates in the query (for a
given bound on the number of relations). This result depends on a novel
and nontrivial proof that shows that placement of user-defined predicates
in a linear sequence of joins must respect rank-ordering. We presented
pruning techniques that significantly reduce the cost of searching execution
space without compromising the optimality for both naive algorithms and
the optimization algorithm with complete rank-ordering. We also described
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the efficient conservative local heuristic-based algorithm. Although this
heuristic cannot guarantee generation of an optimal plan in all cases, it can
guarantee the optimal in many important cases, and the experimental
results show that the plans generated are either indistinguishable from or
very close to the optimal. Overall, the optimization algorithm with com-
plete rank-ordering is the natural choice wherever the guarantee of opti-
mality is desirable and where the cost formulas respect the conditions of
regular joins. Our results indicate that the conservative local heuristic is
very efficient, and is therefore an excellent choice where suboptimality may
be tolerated. The naive optimization algorithm should be used only where
(a) suboptimality cannot be tolerated and (b) assumptions on the cost model
made by the optimization algorithm with complete rank-ordering are not
acceptable. Finally, note that the pruning techniques described in Section 7
should be used under all circumstances, since they simply speed up the
search for a plan without sacrificing optimality.

Although in this paper we described algorithms for conjunctive queries,
these algorithms need to be extended to the cases where the SPJ query has
a more complex boolean expression in the Where clause. While a prepro-
cessing step can convert the Where clause into a conjunctive normal form
A1 ∧ . . . ∧ Ak, each Ai no longer needs to be atomic and independent. It is
necessary to derive costs and selectivities for each Ai and take into account
their dependence. Finally, while we showed that the optimization algo-
rithm with complete rank-ordering guarantees the optimal for common join
implementations, it is still an open problem if the same result extends to
more general cost models.

APPENDIX

A. Proofs of Theorems.

PROOF. (Theorem 6.6). Let us consider the number of plan enumerations
needed when the outer relation is a join of ~i 1 j! relations, where i of the
relations have user-defined predicates defined on them and the remaining j
relations do not have any user-defined predicates on them. Note that, using
the notation in Table II, i # g, j # n 2 g. Prior to joining the outer
relation with the inner, one or more of the user-defined predicates that are
evaluable can be executed. Since there are k user-defined predicates, the
number of tags of size p is S k

pD , where 0 # p # k. Furthermore, for each
tag of size p, there are 2p enumerations where each enumertion corre-
sponds to evaluating a subset of the evaluable user-defined predicates.
Finally, for each choice of the outer and for each choice of the set of
user-defined predicates applied on the outer, we must choose an inner
reltion and a set of user-defined predicates to be applied on the inner
relation prior to the join. If the inner relation is chosen among g 2 i
relations (i.e., a relation that has user-defined predicates), we must con-
sider the application of predicates in inner relations. Since the maximum
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number of user-defined predicates applicable per relation is w, the number
of enumerations due to evaluation of user-defined selections on inner
relation 2w. If an inner relation is chosen from among n- g- j relations that
do not have any user-defined predicates, then no predicates may apply on
the inner relation. Thus, for each outer relation of distinct i and j, the
number of enumerations for the join with an inner relation is

O
p50

k Sk
pD2p~~n 2 g 2 j! 1 ~g 2 i!2w!.

We can now determine an upper bound on the total number of enumera-
tions by summing over i and j, as below. The first term considers the case
where the expression for the outer relation has at least one relation with a
user-defined predicate on it. The second term considers the case where the
outer relation has no user-defined predicate defined on it.

EG 5 O
i51

g Sg
iD O

j50

n2gSn 2 g
j D O

p50

k Sk
pD2p~~n 2 g 2 j! 1 ~g 2 i!2w!

1 O
j51

n2gSn 2 g
j D~~n 2 g 2 j! 1 g2w!

5 O
0#i#g

Sg
iD O

0#j#n2g
Sn 2 g

j D3k~~n 2 g 2 j! 1 ~g 2 i!2w!

1 O
0#j#n2g

Sn 2 g
j D~~n 2 g 2 j! 1 g2w!

2 O
0#j#n2g

Sn 2 g
j D3k~~n 2 g 2 j! 1 g2w! 2 ~~n 2 g! 1 g2w!

5 3k2n21~n 2 g 1 g2w11 2 g2w!

1 ~~n 2 g 1 g2w!2n2g 2 ~n 2 g!2n2g21!

2 3k~~n 2 g 1 g2w!2n2g 2 ~n 2 g!2n2g21! 2 ~~n 2 g! 1 g2w!

# 3k2n21~n 2 g 1 g2w! 1 ~n 2 g 1 g2w11!2n2g21 e

PROOF. (Theorem 6.7). The idea of this proof is similar to that of
Theorem 6.6. For each distinct set of relations of size i 1 j, in which i
relations are chosen from the designated g relations with one or more
user-defined selections defined on them, j relations are selected from the
remaining n 2 g relations with no user-defined predicates on them, at
most ~1 1 w! i distinct tags are possible because of complete rank-ordering.
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Furthermore, evaluable predicates on the outer relations must also be
applied in the rank order. Therefore, for each outer relation with at least
one evaluable user-defined predicate (i.e., i . 0), and for each distinct tag
we need to have only 1 1 k enumerations, since the number of evaluable
predicates is at most k. If the inner relation is chosen among g 2 i
relations, we have to consider the application of predicates on the inner
relation prior to the join. There can be at most ~1 1 w! enumerations due
to evaluation of user-defined predicates prior to the join. Note that when
there is no relation in the expression for an outer relation chosen from g
relations that have any user-defined predicate, we cannot apply any
user-defined predicate on the outer relation. Similarly, we cannot apply
any user-defined selection predicate on the inner relation if the inner
relation is chosen among n 2 g 2 j relations that do not have any user-
defined predicate. The first factor of the first expression below corresponds
to the latter case. So the number of enumerations is upper-bounded by

EL 5 O
i51

g Sg
iD~1 1 w!u O

j50

n2gSn 2 g
j D~~n 2 g 2 j!~1 1 k! 1 ~g 2 i!~1 1 k!~1 1 w!!~g 2 i!

1 O
j51

n2gSn 2 g
j D~~n 2 g 2 j! 1 g~1 1 w!!

5 O
i50

g Sg
iD~1 1 w!u O

j50

n2gSn 2 g
j D~~n 2 g 2 j!~1 1 k! 1 ~g 2 i!~1 1 k!~1 1 w!!

1 O
j50

n2gSn 2 g
j D~~n 2 g 2 j! 1 g~1 1 w!!

2 O
j50

n2gSn 2 g
j D~~n 2 g 2 j!~1 1 k! 1 g~1 1 k!~1 1 w!!

2 ~~n 2 g! 1 g~1 1 w!!

5 ~1 1 k!n2n21~1 1 w/2!g21~1 1 ~w/2!~1 1 ~g/n!~2w 1 3!!!

2 k~n 1 2gw 1 g!2n2g21 2 ~n 1 gw!

# ~1 1 k!n2n21~1 1 w/2!g21~1 1 ~w/2!~1 1 ~g/n!~2w 1 3!!! e

PROOF. (Theorem 6.8). The proof is similar to that of Theorem 6.7.
However, since there are user-defined join predicates, the computation for
the number of distinct tags needs to be modified. From Table II, we observe
that u is the number of relations having selection predicates and the
number of pairs of relations having user-defined join predicates. Therefore,
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an upper bound on the number of distinct tags associated with any plan
during optimization is ~1 1 w!u. Therefore, we obtain an upper bound on
the number of enumerations by replacing ~1 1 w! i with ~1 1 w!u in the
earlier proof:

EL 5 O
i51

g Sg
iD~1 1 w!u O

j50

n2gSn 2 g
j D~~n 2 g 2 j!~1 1 k! 1 ~g 2 i!~1 1 k!~1 1 w!!

1 O
j51

n2gSn 2 g
j D~~n 2 g 2 j! 1 g~1 1 w!!

5 ~1 1 w!u~1 1 k!n2n21~1 1 gw/n! 2 k~n 1 2gw 1 g!)2n2g21 2 ~n 1 gw!

# ~1 1 w!u~1 1 k!n2n21~1 1 gw/n! e

PROOF. (Theorem 6.9). The formulation is similar to the proof for the
unconstrained linear join trees. However, since the inner relation in a
bushy join may itself consist of joins of multiple relations, the number of
enumerations due to application of user-defined predicates on the inner
relation prior to the join is no longer bounded by ~1 1 w!, but is bounded
by ~1 1 k! (as in the case of the outer relation). Thus, when each of outer
and inner relations has at least one relation with a user-defined predicate,
the number of enumerations due to application of user-defined predicates
prior to the join between the outer and inner becomes ~1 1 k!2. Let us
index each subplan by two parameters ~i, j! where i is the relation chosen
among g relations and j is the relation chosen among n 2 g relations in
which user-defined predicates cannot be applied. The number of possible
plans for inner relations in which no user-defined predicates are applicable
is 2n2g2j 2 1. This corresponds to the case in which all relations that
contribute to the inner relation are chosen from n 2 g relations. Thus, the
number of plans for inner relations with applicable predicates is 2n2i2j 2
2n2g2j, where ~2n2i2j 2 1! is an upper bound on the total number of
possible plans representing the inner relation. The number of enumera-
tions is therefore upper-bounded as

EB 5 O
i51

g Sg
iD~1 1 w!i O

j50

n2gSn 2 g
j D~~2n2g2j 2 1!~1 1 k! 1 ~2n2i2j 2 2n2g2j!~1 1 k!2!

1 O
j51

n2gSn 2 g
j D~~2n2g2j 2 1! 1 ~2n2j 2 2n2g2j!~1 1 k!!

5 ~1 1 k!2~~1 1 w/3!!g3n 2 k~~1 1 k!2g 1 1!3n2g

2 2n~~1 1 k!~1 1 w/2!g 1 ~1 1 k! 2 k~1/2!g 2 k~1/2!g! 1 1

# ~1 1 k!2~1 1 w/3!g3n e
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PROOF. (Theorem 6.10). The proof is very similar to that for Theorem
6.9. However, since there are user-defined join predicates, the computation
for the number of distinct tags needs to be modified. An upper bound on the
number of distinct tags associated with any plan during optimization is
~1 1 w!u (see Table II). Thus, we are able to obtain an upper bound on the
number of enumerations by replacing ~1 1 w! i with ~1 1 w!u in Theorem
6.9.

EB 5 O
i51

g Sg
iD~1 1 w!u O

j50

n2gSn 2 g
j D~~2n2g2j 2 1!~1 1 k!!

1 ~2n2i2j 2 2n2g2j!~1 1 k!2

1 O
j51

n2gSn 2 g
j D~~2n2g2j 2 1! 1 ~2n2j 2 2n2g2j!~1 1 k!!

5 ~1 1 k!~1 1 w!uO
i50

g Sg
iD~~~1 1 k!2n2i 2 k2n2g!~3/2!n2g 2 2n2g!

2 k O
j50

n2gSn 2 g
j D~~~1 1 k!2n 2 k2n2g!~1/2!j 2 1! 2 ~~1 1 k!2n 2 k2n2g 2 1!

# ~1 1 k!2~1 1 w!u3n e

PROOF. (Theorem 8.4). The proof is similar to the proof for Theorem 6.8,
except that we store at most two plans corresponding to the join of a
distinct set of relations. Therefore, an upper bound on the number of
distinct tags associated with any plan is two. Thus we can replace ~1 1
w!u in the proof for Theorem 6.8 by two. So the number of enumerations is

upper-bounded by

EC 5 O
i51

g Sg
iD2 O

j50

n2gSn 2 g
j D~~n 2 g 2 j!~1 1 k! 1 ~g 2 i!~1 1 k!~1 1 w!!

1 O
j51

n2gSn 2 g
j D~~n 2 g 2 j! 1 g~1 1 w!!

5 2~1 1 k!~1 1 gw/n!n2n21

2 ~1 1 2k!~n 1 g 1 2gw!2n2g21 2 ~n 1 gw!

# 2~1 1 k!~1 1 gw/n!n2n21 e
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