Bounding Consideration Probabilities in Consider-Then-Choose Ranking Models

Ben Aoki-Sherwood^{1,2} · Catherine Bregou² · David Liben-Nowell² · Kiran Tomlinson^{2,3} · Thomas Zeng^{2,4} ¹Johns Hopkins Applied Physics Lab · ²Carleton College · ³Cornell University · ⁴University of Wisconsin

Pr[i ranked first] correction

(Chernoff)

Consider-then-choose model: select $C \subseteq \mathcal{U}$ to consider, then rank k elements from C (common in discrete choice, rarely applied to rankings)

Pr[*i* appears in

top-k rankings]

Can we tell from rankings what items people consider?

We show this is impossible in general. But we provide:

Absolute bounds on consideration probabilities

 $\Pr_{PL+C}(\mathscr{R}_{i\leq k}) \cdot \left[1 - \left(\alpha e^{1-\alpha}\right)^{k}\right] \leq p_{i} \leq \frac{\sum_{j\in\mathscr{U}}\exp(u_{j})}{\exp(u_{i})} \cdot \left(\Pr_{PL+C}(\mathscr{R}_{i=1}) + \frac{k(\alpha e^{1-\alpha})^{k}}{1 - (\alpha e^{1-\alpha})^{k}}\right)$

1 / Pr[i ranked first]

(ignoring consideration)

Theorems 3+4. If $\sum_{i \in \mathcal{U}} p_i \ge \alpha k$ for $\alpha > 1$, then

correction

(Chernoff)

- 1. Relative bounds on consideration probabilities, given known item utilities.
- 2. Absolute bounds on consideration probabilities, given utilities and a lower bound on expected number of items considered.
- 3. An efficient algorithm to tighten our absolute bounds using our relative bounds.

General impossibility of learning consideration

Theorem 1. PL+C consideration probabilities are not identifiable, even if we know item utilities.

Relative bounds on consideration probabilities

Theorem 2. If $u_i > u_i$, but *i* is ranked in the top- $\ell c \leq 1$ times as

Overview

Background