Bounding Consideration Probabilities in Consider-Then-Choose Ranking Models
 Ben Aoki-Sherwood 1,2 • Catherine Bregou ${ }^{2}$ • David Liben-Nowell ${ }^{2}$ • Kiran Tomlinson ${ }^{2,3}$ • Thomas Zeng ${ }^{2,4}$

 ${ }^{1}$ Johns Hopkins Applied Physics Lab $\cdot{ }^{2}$ Carleton College - ${ }^{3}$ Cornell University • ${ }^{4}$ University of Wisconsin
Choice-based ranking

top-k ranking r

Consider-then-choose ranking

consideration set $C \subseteq \mathscr{U}$

C
$C \backslash\left\{r_{1}\right\}$
$C \backslash\left\{r_{1}, r_{2}\right\}$
consideration set model
$\operatorname{Pr}_{C}(C)=0$
if $|C|<k$
$\operatorname{Pr}_{C}(C) \propto\left(\prod_{i \in C} p_{i}\right) \prod_{j \in ひ \backslash \backslash C}\left(1-p_{j}\right)$
Plackett-Luce model [1, 2]
$\operatorname{Pr}_{P L}(r \mid C)=\prod_{i=1}^{k} \frac{\exp \left(u_{r_{i}}\right)}{\sum_{j \in \mathscr{C} \backslash\left\{r_{1 \ldots i-1}\right\}} \exp \left(u_{j}\right)}$

PL with Consideration (PL+C)

1. People consider at least k items
2. Each item i is considered independently w.p. p_{i}
3. Given C, items are ranked by Plackett-Luce
$\operatorname{Pr}_{P L+C}(r)=\sum_{C \subseteq \mathscr{U}} \operatorname{Pr}_{C}(C) \operatorname{Pr}_{P L}(r \mid C)$

Can we tell from rankings what items people consider?
We show this is impossible in general. But we provide:

1. Relative bounds on consideration probabilities, given known item utilities.
2. Absolute bounds on consideration probabilities, given utilities and a lower bound on expected number of items considered.
3. An efficient algorithm to tighten our absolute bounds using our relative bounds.

General impossibility of learning consideration

Theorem 1. PL+C consideration probabilities are not identifiable, even if we know item utilities.

Relative bounds on consideration probabilities

Theorem 2. If $u_{i}>u_{j}$, but i is ranked in the top- $\ell c \leq 1$ times as often, then $\frac{p_{i}}{1-p_{i}} \leq c \cdot \frac{p_{j}}{1-p_{j}}$.
Equivalently, $p_{i} \leq \frac{c p_{j}}{1-p_{j}+c p_{j}}$ and $p_{j} \geq \frac{p_{i}}{c-c p_{i}+p_{i}}$

US history perception dataset [3]
Survey asked ~2900 Americans:

