Consider-Then-Choose

Choice-based ranking
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Plackett-Luce
Plackett-Luce model [1, 2]
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General impossibility of learning consideration

Theorem 1. PL+C consideration probabilities are not identifiable,
even if we know item utilities.

Relative bounds on consideration probabilities

Theorem 2. If u; > u;, but i is ranked in the top-Z ¢ < I times as
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consideration set model PL with Consideration (PL+C)

Pro(C)=0 if |C] <k = 1. People consider at least k items
.. 2. Each item i is considered
Pr (C) « Hpi H (1-py) independently w.p. p;
iec / jeu\c 3. Given C, items are ranked by

Prpsic(r) = 3, Pro(C)Prp(r | C)

Ranking Models
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Consider-then-choose model: select C C % to consider, then rank k elements from C (common in discrete choice, rarely applied to rankings)

Can we tell from rankings what items people consider?
We show this is impossible in general. But we provide:

1. Relative bounds on consideration probabilities, given known item
utilities.

Absolute bounds on consideration probabilities, given utilities and a
lower bound on expected number of items considered.

An efficient algorithm to tighten our absolute bounds using our
relative bounds.

Absolute bounds on consideration probabilities

Theorems 3+4.1f 3. p; > akfora > 1, then
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