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Abstract

Instant runoff voting (IRV) has recently gained popularity as
an alternative to plurality voting for political elections, with
advocates claiming a range of advantages, including that it
produces more moderate winners than plurality and could
thus help address polarization. However, there is little theo-
retical backing for this claim, with existing evidence focused
on case studies and simulations. In this work, we prove that
IRV has a moderating effect relative to plurality voting in a
precise sense, developed in a 1-dimensional Euclidean model
of voter preferences. We develop a theory of exclusion zones,
derived from properties of the voter distribution, which serve
to show how moderate and extreme candidates interact dur-
ing IRV vote tabulation. The theory allows us to prove that
if voters are symmetrically distributed and not too concen-
trated at the extremes, IRV cannot elect an extreme candidate
over a moderate. In contrast, we show plurality can and val-
idate our results computationally. Our methods provide new
frameworks for the analysis of voting systems, deriving exact
winner distributions geometrically and establishing a connec-
tion between plurality voting and stick-breaking processes.

Introduction
Instant runoff voting (IRV) elections ask voters to rank can-
didates in order of preference and use a sequence of “instant
runoffs” to determine a winner.1 IRV selects a winner by re-
peatedly eliminating the candidate with the fewest first-place
votes, redistributing those votes to the next-ranked candi-
date on each ballot, and removing the eliminated candidate
from all ballots. The final remaining candidate is declared
the winner (equivalently, one can terminate when a majority
of the remaining ballots list the winner first). By compari-
son, in a plurality election the winner is simply the candi-
date with the most first-place votes. While plurality has his-
torically been the predominant single-winner voting system,
IRV is among the most popular alternatives; for instance,
Australia and Ireland have used IRV since the early 20th
century. In the United States, IRV has recently been gaining
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1IRV is also called ranked choice voting in the United States.
Other names for IRV include alternative vote, preferential voting,
and the Hare method. Multi-winner IRV is also called single trans-
ferrable vote. Plurality is also called first-past-the-post.

traction to address issues with plurality voting (Wang et al.
2021), with three states (Maine, Alaska, and Nevada) vot-
ing to adopt IRV for federal elections in the last decade. IRV
has also seen increasing adoption in local elections and/or
primaries, for instance in San Francisco (since 2004), Min-
neapolis (since 2009), and New York City (since 2021).

Proponents of IRV claim that it encourages moderation,
compromise, and civility, since candidates are incentivized
to be ranked highly by as many voters as possible, including
by those who do not rank them first (Dean 2016; Diamond
2016). Analyses of campaign communication materials and
voter surveys have supported the theory that IRV increases
campaign civility (Donovan, Tolbert, and Gracey 2016; John
and Douglas 2017; Kropf 2021), with extensive debate about
whether this greater civility translates into winners who are
also more moderate in their positions (Fraenkel and Grof-
man 2006a,b; Horowitz 2006, 2007). Analyses of potential
moderating effects of IRV have primarily been based on case
studies (Fraenkel and Grofman 2004; Mitchell 2014; Reilly
2018) and simulation (Chamberlin and Cohen 1978; Mer-
rill 1984; McGann, Grofman, and Koetzle 2002), as well
as empirical evidence for a moderating effect in a related
voting system, two-round runoff (Bordignon, Nannicini, and
Tabellini 2016). In contrast, there has been almost no theo-
retical work on the subject; most social choice theory has
focused on problems other than moderation, such as min-
imizing metric distortion and ensuring fairness or repre-
sentation (Halpern et al. 2023; Aziz et al. 2017; Boutilier
et al. 2012; Brill et al. 2022; Ebadian et al. 2022; Gkatzelis,
Halpern, and Shah 2020; Kahng, Latifian, and Shah 2023).
Two interesting specific exceptions can be found in the
works of Grofman and Feld (2004) and Dellis, Gauthier-
Belzile, and Oak (2017). Grofman and Feld (2004) show that
for single-peaked preferences and four or fewer candidates,
IRV is at least as likely as plurality to elect the median candi-
date. Dellis, Gauthier-Belzile, and Oak (2017) show that in
a citizen-candidate model, if the voter distribution is asym-
metric then two-party equilibria under plurality can be more
extreme than under IRV.

There is clear value in mathematical analyses that identify
more general moderating tendencies. At present—beyond
the noted exceptions—the arguments for IRV’s moderating
effects summarized above have tended to point to institu-
tional or behavioral properties of the way candidates run
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their campaigns in IRV elections. A natural question, there-
fore, is whether this picture is complete, or whether there
might be something in the definition of IRV itself that leads
to outcomes with more moderate winners. Such questions
are fundamental to the mathematical theory of voting more
generally, where we frequently seek explanations that are
rooted in the formal properties of the voting systems them-
selves, rather than simply the empirical regularities of how
candidates and voters tend to behave in these systems. In the
case of IRV, what would it mean to formalize a tendency
toward moderation in the underlying structure of the voting
system? To begin, we must first identify a natural set of def-
initions under which we can isolate such a property.

Formalizing the moderating effect of IRV. In this paper,
we propose such definitions and use them to articulate a pre-
cise sense in which IRV produces moderate winners in a
way that plurality does not. We work within a standard one-
dimensional model of voters and candidates: the positions
of voters and candidates correspond to points drawn from
distributions on the unit interval [0, 1] of the real line (rep-
resenting left–right ideology), and voters form preferences
over candidates by ranking them in order of proximity. That
is, voters favor candidates who are closer to them on the
line; this is often called the 1-Euclidean model, a common
model in social choice theory (Coombs 1964; Bogomol-
naia and Laslier 2007; Elkind, Lackner, and Peters 2022).
We typically assume the voters and candidates are drawn
from the same distribution F , but some of our results hold
for fixed candidate positions. In addition to its role as one
of the classical mathematical models of voter preferences,
where it is sometimes called the Hotelling model (Hotelling
1929; Downs 1957), 1-Euclidean preferences arise natu-
rally from higher-dimensional opinions under simple mod-
els of opinion updating (DeMarzo, Vayanos, and Zwiebel
2003). There is wide-ranging empirical evidence suggesting
that political opinions in the United States are remarkably
one-dimensional (Poole and Rosenthal 1984, 1991; Lay-
man, Carsey, and Horowitz 2006; DellaPosta, Shi, and Macy
2015): from a voter’s views on any one of a set of issues
including tax policy, immigration, climate change, gun con-
trol, and abortion, it is possible to predict the others with
striking levels of confidence.

Let’s consider a voting system applied to a set of k can-
didates and a continuum of voters in this setting: we draw k
candidates independently from a given distribution F on the
unit interval [0, 1], and each candidate gets a vote share cor-
responding to the fraction of voters who are closest to them
(see Figure 1 for examples). The use of a one-dimensional
model gives a natural interpretation to the distinction be-
tween moderate and extreme candidates: a candidate is more
extreme if they are closer to the endpoints of the unit inter-
val [0, 1]. We take two approaches to defining a moderating
effect in this model, one probabilistic (in the limit of large k)
and one combinatorial (for all k). We say that a voting sys-
tem has a probabilistic moderating effect if for some interval
I = [a, b] with 0 < a ≤ b < 1, the probability that the win-
ning candidate comes from I converges to 1 as the number
of candidates k goes to infinity (since we focus on symmet-

ric voter distributions, we will typically have I symmetric
about 1/2; i.e. b = 1 − a). We say that a voting system has
a combinatorial moderating effect if for all k, the presence
of a candidate in I prevents any candidate outside of I from
winning; i.e., a moderate candidate (inside I) is guaranteed
to win as long as at least one moderate runs. (Note that a
combinatorial moderating effect implies a probabilistic one,
as long as the candidate distribution F places positive prob-
ability mass on I .) We call such an interval I an exclusion
zone of the voting system, since the presence of a candidate
inside this zone precludes outside candidates from winning.
In this way, a voting system with a moderating effect will
tend to suppress extreme candidates who lie outside a mid-
dle portion of the unit interval, while a voting system that
does not have at moderating effect will allow arbitrarily ex-
treme candidates to win with positive probability even as the
number of candidates becomes large.

Using this terminology, we can state our first main re-
sult succinctly: under a uniform voter distribution, IRV has a
moderating effect and plurality does not—in both the com-
binatorial and probabilistic senses. In particular, we prove a
novel and striking fact about IRV: when voters and candi-
dates both come from the uniform distribution on [0, 1], the
probability that the winning candidate produced by IRV lies
outside the interval [1/6, 5/6] goes to 0 as the number of
candidates k goes to infinity. In sharp contrast, the distribu-
tion of the plurality winner’s position converges to uniform
as the number of candidates goes to infinity, allowing arbi-
trarily extreme candidates to win. As part of our analysis,
we provide a method for deriving the distribution of plural-
ity and IRV winner positions for finite k and perform this
derivation for k = 3 candidates. Surprisingly, our analy-
sis of plurality—the simpler voting system—requires much
more sophisticated machinery: we establish a connection be-
tween plurality voting and a classic model in discrete proba-
bility known as the stick-breaking process and develop new
asymptotic stick-breaking results for use in our analysis.

Our probabilistic result for IRV follows from a companion
fact that is combinatorial in nature and comparably succinct:
given any finite set of candidates in [0, 1], and voters from
the uniform distribution, if any of the candidates belong to
the interval [1/6, 5/6], then the IRV winner must come from
[1/6, 5/6]; that is, [1/6, 5/6] is an exclusion zone for IRV in
the uniform case. Moreover, [1/6, 5/6] is the smallest inter-
val for which this statement is true. Again, the analogue for
plurality voting with any proper sub-interval of the unit in-
terval is false: we show that plurality has no exclusion zones.

This first main result therefore gives a precise sense in
which the structure of the IRV voting system favors moder-
ate candidates: whenever moderate candidates (in the middle
two-thirds of the unit interval) are present as options, IRV
will push out more extreme candidates. We then address the
more challenging case of non-uniform voter distributions,
where we prove that IRV continues to have a moderating ef-
fect (in the sense of our formal definitions) even for voter
distributions that push probability mass out toward the ex-
tremes of the unit interval, up to a specific threshold beyond
which the effects cease to hold. Thus, IRV is even able to
offset a level of polarization built into the underlying distri-
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0 0.2 0.4 0.6 0.8 1
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0.16 0.13 0.40 0.32

0 0.2 0.4 0.6 0.8 1

A B C D
0.25 0.10 0.28 0.38

0 0.2 0.4 0.6 0.8 1

A B C D
0.33 0.07 0.18 0.42

Figure 1: Three example voter distributions in one dimension. Candidates A, B, C, D are placed at 0.2, 0.3, 0.4, and 0.85. The
black line shows the density function of the voter distribution. Regions are colored according to the most preferred candidate of
voters in that region and annotated with the approximate vote share of that candidate. As an example, the preference ordering
of a voter at 0.5 is C, B, A, D. Similarly, a voter at 0.1 has preference ordering A, B, C, D. In the moderate voters example
(left), C is both the plurality and IRV winner. In the uniform voters example (center), D is the plurality winner and C is the IRV
winner. In the polarized voters example (right), D is the plurality winner and A is the IRV winner.

ating effect for any non-pathological voter distribution.
As a final point, it is worth emphasizing what is and is

not a focus of our work here. We examine IRV and plural-
ity because of their widespread use in real-world elections
and the fierce debate surrounding the adoption of IRV over
plurality. We are not trying to characterize all possible vot-
ing systems that give rise to moderation (although we can
show that many voting systems not in widespread use have a
moderating effect, including the Coombs rule and any Con-
dorcet method; for these systems, any symmetric interval
around 0.5 is an exclusion zone). Our interest, instead, is
in the following contribution to the plurality–IRV debate:
there is a precise mathematical sense in which IRV has a
moderating effect and plurality does not. Second, we do not
analyze strategic choices by candidates about where to posi-
tion themselves on the unit interval (Hotelling 1929; Downs
1957; Osborne 1995), but instead derive properties of voting
systems that hold for fixed candidate positions, or candidate
positions drawn from a distribution. This approach produces
results that are robust against the question of whether can-
didates are actually able to make optimal strategic position-
ing decisions in practice (Bendor et al. 2011); it also allows
us to better understand how the voting systems themselves
behave—providing a foundation for future strategic work.

Uniform voters
The previous section describes our complete model, but it is
useful to review it here in the context of some more specific
notation. We assume voters and candidates are both drawn
from a distribution F on the unit interval [0, 1], representing
their ideological position on a left–right spectrum.2 Voters
prefer candidates closer to them (i.e., they have 1-Euclidean
preferences). There are k candidates drawn independently
from F ; suppose that these draws produce candidate posi-
tions x1 < x2 < · · · < xk in order. Some of our results
apply regardless of the candidate distribution, relying only
on the voter distribution; we will make a note of such cases.

2We will generally focus on distributions F that are symmetric
around 1/2 and represented by a density function f .

Since we want to model the case of a large population of
voters, we do not explicitly sample the voters from F , but in-
stead think of a continuum of voters who correspond to the
distribution F itself: that is, under the plurality voting rule,
the fraction of voters who vote for candidate xi is the prob-
ability mass of all voters who are closer to xi than to any
other candidate (or, equivalently, it is the probability that a
voter randomly chosen according to F would be closer to xi

than any other candidate). In this section, we focus on the
case where F is uniform.3 We use v(xi) to denote the vote
share for candidate xi. Under IRV, the candidate i with the
smallest v(xi) is eliminated and vote shares are recomputed
without candidate i. This repeats until only one candidate re-
mains, who is declared the winner (equivalently, elimination
can terminate when a candidate achieves majority). In prac-
tice, voters submit a ranking over the candidates and their
votes are “instantly” redistributed after each elimination.

IRV’s moderating effect: A first result. With uniform 1-
Euclidean voters, we now show that IRV cannot elect ex-
treme candidates over moderates—regardless of the distri-
bution of candidates. That is, IRV exhibits an exclusion zone
in the middle of the unit interval, where the presence of mod-
erate candidates inside the zone precludes outside extreme
candidates fromwinning. The idea behind the proof is that as
moderates get eliminated, the middle part of the interval be-
comes sparser, granting a higher vote share to any remaining
moderates. Consider the moment when only one candidate
x remains in the interval [1/6, 5/6] (see Figure 2); extreme
candidates near 0 and 1 are then too far away to “squeeze
out” x. With uniform voters, the tipping point for squeez-
ing out moderates occurs when extreme candidates are at

3To provide another perspective on the uniform voter assump-
tion, consider the following preference assumption that also pro-
duces uniform 1-Euclidean preferences: voters are arbitrarily dis-
tributed, but rank candidates according to how many voters are be-
tween them and each candidate. That is, voters have 1-Euclidean
preferences in the voter quantile space and are always uniformly
distributed over this space by definition. All of our uniform voter
results hold in that setting as well, although stated in terms of voter
quantiles rather than absolute positions.

Figure 1: Three example voter distributions in one dimension. Candidates A, B, C, D are placed at 0.2, 0.3, 0.4, and 0.85. The
black line shows the density function of the voter distribution. Regions are colored according to the most preferred candidate of
voters in that region and annotated with the approximate vote share of that candidate. As an example, the preference ordering
of a voter at 0.5 is C, B, A, D. Similarly, a voter at 0.1 has preference ordering A, B, C, D. In the moderate voters example
(left), C is both the plurality and IRV winner. In the uniform voters example (center), D is the plurality winner and C is the IRV
winner. In the polarized voters example (right), D is the plurality winner and A is the IRV winner.

bution of voters and candidates, although it can only do so
up until a certain level of polarization is reached. In contrast,
we establish that plurality never has a combinatorial moder-
ating effect for any non-pathological voter distribution.

As a final point, it is worth emphasizing what is and is
not a focus of our work here. We examine IRV and plural-
ity because of their widespread use in real-world elections
and the fierce debate surrounding the adoption of IRV over
plurality. We are not trying to characterize all possible vot-
ing systems that give rise to moderation (although we can
show that many voting systems not in widespread use have a
moderating effect, including the Coombs rule and any Con-
dorcet method; for these systems, any symmetric interval
around 0.5 is an exclusion zone). Our interest, instead, is
in the following contribution to the plurality–IRV debate:
there is a precise mathematical sense in which IRV has a
moderating effect and plurality does not. Second, we do not
analyze strategic choices by candidates about where to posi-
tion themselves on the unit interval (Hotelling 1929; Downs
1957; Osborne 1995), but instead derive properties of voting
systems that hold for fixed candidate positions, or candidate
positions drawn from a distribution. This approach produces
results that are robust against the question of whether can-
didates are actually able to make optimal strategic position-
ing decisions in practice (Bendor et al. 2011); it also allows
us to better understand how the voting systems themselves
behave—providing a foundation for future strategic work.

Uniform Voters
The previous section describes our complete model, but it is
useful to review it here in the context of some more specific
notation. We assume voters and candidates are both drawn
from a distribution F on the unit interval [0, 1], representing
their ideological position on a left–right spectrum.2 Voters
prefer candidates closer to them (i.e., they have 1-Euclidean
preferences). There are k candidates drawn independently
from F ; suppose that these draws produce candidate posi-
tions x1 < x2 < · · · < xk in order. Some of our results
apply regardless of the candidate distribution, relying only

2We will generally focus on distributions F that are symmetric
around 1/2 and represented by a density function f .

on the voter distribution; we will make a note of such cases.
Since we want to model the case of a large population of

voters, we do not explicitly sample the voters from F , but in-
stead think of a continuum of voters who correspond to the
distribution F itself: that is, under the plurality voting rule,
the fraction of voters who vote for candidate xi is the prob-
ability mass of all voters who are closer to xi than to any
other candidate (or, equivalently, it is the probability that a
voter randomly chosen according to F would be closer to xi
than any other candidate). In this section, we focus on the
case where F is uniform.3 We use v(xi) to denote the vote
share for candidate xi. Under IRV, the candidate i with the
smallest v(xi) is eliminated and vote shares are recomputed
without candidate i. This repeats until only one candidate re-
mains, who is declared the winner (equivalently, elimination
can terminate when a candidate achieves majority). In prac-
tice, voters submit a ranking over the candidates and their
votes are “instantly” redistributed after each elimination.

IRV’s moderating effect: A first result. With uniform 1-
Euclidean voters, we now show that IRV cannot elect ex-
treme candidates over moderates—regardless of the distri-
bution of candidates. That is, IRV exhibits an exclusion zone
in the middle of the unit interval, where the presence of mod-
erate candidates inside the zone precludes outside extreme
candidates from winning. The idea behind the proof is that as
moderates get eliminated, the middle part of the interval be-
comes sparser, granting a higher vote share to any remaining
moderates. Consider the moment when only one candidate
x remains in the interval [1/6, 5/6] (see Figure 2); extreme
candidates near 0 and 1 are then too far away to “squeeze
out” x. With uniform voters, the tipping point for squeez-
ing out moderates occurs when extreme candidates are at

3To provide another perspective on the uniform voter assump-
tion, consider the following preference assumption that also pro-
duces uniform 1-Euclidean preferences: voters are arbitrarily dis-
tributed, but rank candidates according to how many voters are be-
tween them and each candidate. That is, voters have 1-Euclidean
preferences in the voter quantile space and are always uniformly
distributed over this space by definition. All of our uniform voter
results hold in that setting as well, although stated in terms of voter
quantiles rather than absolute positions.
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Figure 2: Visual depiction of the proof of Theorem 1. IRV eliminates candidates until a final candidate x remains in the exclusion
zone [1/6, 5/6]. At this point, x gets more than 1/3 of the vote share and cannot be eliminated next (regardless of where they
are in [1/6, 5/6]). Candidates outside of [1/6, 5/6] are thus eliminated until x wins.

1/6 and 5/6. In the next section, we present generalizations
of this result for non-uniform voter distributions. All proofs
can be found in the Technical Appendix.
Theorem 1. (Combinatorial moderation for uniform IRV.)
Under IRV with uniform voters over [0, 1] and k � 3 candi-
dates, if there is a candidate in [1/6, 5/6], then the IRV win-
ner is in [1/6, 5/6]. No smaller interval [c, 1 � c], c > 1/6,
has this property. If there are no candidates in [1/6, 5/6],
then the IRV winner is the one closest to 1/2.
In the language of our analysis, [1/6, 5/6] is then the

smallest possible exclusion zone of IRV under a uniform
voter distribution. See Figure 2 for a visual depiction of the
argument. A corollary of Theorem 1 is that if candidates are
distributed uniformly at random (for instance, if voters inde-
pendently and identically decide whether to run for office),
then IRV elects extreme candidates with probability going
to 0 as the number of candidates grows, since the probabil-
ity of having no moderate candidates in [1/6, 5/6] is (1/3)k.
In the language defined earlier, IRV thus has a probabilistic
moderating effect with uniform voters and candidates.
Corollary 1. (Probabilistic moderation for uniform IRV.)
Let Rk be the position of the IRV winner with k candidates
distributed uniformly at random and uniform voters.

lim
k!1

Pr(Rk /2 [1/6, 5/6]) = 0. (1)

In contrast to IRV, where the presence of candidates with
moderate positions (namely, inside [1/6, 5/6]) precludes ex-
treme candidates from winning, we now show that no such
fact is true for plurality (excluding the extreme points 0 and
1): for any interval I ✓ (0, 1), there is some configuration of
candidates such that the winner is outside of I despite hav-
ing candidates in I . In other words, plurality voting does not
have a combinatorial moderating effect with uniform vot-
ers.4 Later, we generalize this result to non-uniform voter
distributions. The idea behind the proof is relatively straight-
forward: given a set of candidates, keep adding candidates to
reduce the vote share of everyone except the desired winner.
Theorem 2. (No combinatorial moderation for uniform
plurality.) Suppose voters are uniformly distributed over
[0, 1]. Given any set of  � 1 distinct candidate positions
x1, . . . , x with x1 /2 {0, 1}, there exists a configuration of
k �  candidates (including x1, . . . , x) such that the can-
didate at x1 wins under plurality.

4An anonymous reviewer suggested an elegant construction for
symmetric intervals I = [c, 1 � c], which provides counterexam-
ples for every k � 3: place candidates at c� ✏, 1� c� ✏, and any
others at 1 � c + ✏ (for ✏ < c/2). The candidate at c � ✏ wins,
despite having a candidate in I .

In addition, we next prove that plurality with uniform vot-
ers and candidates has strictly positive probability of elect-
ing candidates in every subinterval of [0, 1] as the number of
candidates grows. In other words, plurality does not have a
probabilistic moderating effect: it does not preclude extreme
candidates from winning (in some candidate configuration)
when the voter distribution is uniform and there are many
moderate candidates to choose from. Note that this result
implies plurality also has no combinatorial moderation, but
Theorem 2 is considerably easier to prove.

Theorem 3. (No probabilistic moderation for uniform plu-
rality.) Let Pk be the position of the plurality winner with
k candidates distributed uniformly at random and uniform
voters. For any [`, r] ✓ (0, 1) with � = r � ` > 0,

lim
k!1

Pr(Pk 2 [`, r]) � 1� e�/(e
2 log �)

2e
. (2)

The idea behind the proof of Theorem 3 is to find a lower
bound on the probability that the highest vote share of any
candidate in [`, r] exceeds the highest vote share of any can-
didate outside [`, r]. Conditioned on the number of candi-
dates that lie inside [`, r], these vote shares converge to in-
dependent distributions as k ! 1 (although they are depen-
dent for any fixed k). Intuitively, we can then consider two
independent plurality elections, one with �k candidates on
an interval of size � and one with (1� �)k candidates on an
interval of size (1��). We prove a lower bound on the prob-
ability that the first election has a winning vote share higher
than x and that the second election has a winning vote share
lower than x (for x picked according to Lemma 1 below).
A key step is therefore deriving the asymptotic distribu-

tion of the winning plurality vote share. This vote share dis-
tribution may be useful for other asymptotic analyses of plu-
rality voting, so we describe it here. The winning plurality
vote share is closely related to a category of probabilistic
problems known as stick-breaking problems, which focus on
the properties of a stick of length 1 broken into n pieces uni-
formly at random (Holst 1980). Setting n = k + 1, these
stick pieces can be viewed as the gaps between candidates
(equivalently, candidates are the breakpoints of the stick). A
classic result in stick-breaking is that the biggest piece will
have size Bn almost exactly log n/n as n grows large (Dar-
ling 1953; Holst 1980) and that nBn � log n converges to
a Gumbel(1, 0) distribution as n ! 1. The plurality vote
setting is different, since candidates get vote shares from
half of the gap to their left plus half of the gap to their
right (except the left- and rightmost candidates). We show
that as the number of candidates grows large, the winning
vote share Vk with k = n � 1 candidates is almost exactly

Figure 2: Visual depiction of the proof of Theorem 1. IRV eliminates candidates until a final candidate x remains in the exclusion
zone [1/6, 5/6]. At this point, x gets more than 1/3 of the vote share and cannot be eliminated next (regardless of where they
are in [1/6, 5/6]). Candidates outside of [1/6, 5/6] are thus eliminated until x wins.

1/6 and 5/6. In the next section, we present generalizations
of this result for non-uniform voter distributions. All proofs
can be found in the extended version of the paper (Tomlin-
son, Ugander, and Kleinberg 2023b).
Theorem 1. (Combinatorial moderation for uniform IRV.)
Under IRV with uniform voters over [0, 1] and k ≥ 3 candi-
dates, if there is a candidate in [1/6, 5/6], then the IRV win-
ner is in [1/6, 5/6]. No smaller interval [c, 1 − c], c > 1/6,
has this property. If there are no candidates in [1/6, 5/6],
then the IRV winner is the one closest to 1/2.

In the language of our analysis, [1/6, 5/6] is then the
smallest possible exclusion zone of IRV under a uniform
voter distribution. See Figure 2 for a visual depiction of the
argument. A corollary of Theorem 1 is that if candidates are
distributed uniformly at random (for instance, if voters inde-
pendently and identically decide whether to run for office),
then IRV elects extreme candidates with probability going
to 0 as the number of candidates grows, since the probabil-
ity of having no moderate candidates in [1/6, 5/6] is (1/3)k.
In the language defined earlier, IRV thus has a probabilistic
moderating effect with uniform voters and candidates.
Corollary 1. (Probabilistic moderation for uniform IRV.)
Let Rk be the position of the IRV winner with k candidates
distributed uniformly at random and uniform voters.

lim
k→∞

Pr(Rk /∈ [1/6, 5/6]) = 0. (1)

In contrast to IRV, where the presence of candidates with
moderate positions (namely, inside [1/6, 5/6]) precludes ex-
treme candidates from winning, we now show that no such
fact is true for plurality (excluding the extreme points 0 and
1): for any interval I ⊆ (0, 1), there is some configuration of
candidates such that the winner is outside of I despite hav-
ing candidates in I . In other words, plurality voting does not
have a combinatorial moderating effect with uniform vot-
ers.4 Later, we generalize this result to non-uniform voter
distributions. The idea behind the proof is relatively straight-
forward: given a set of candidates, keep adding candidates to
reduce the vote share of everyone except the desired winner.
Theorem 2. (No combinatorial moderation for uniform
plurality.) Suppose voters are uniformly distributed over
[0, 1]. Given any set of κ ≥ 1 distinct candidate positions
x1, . . . , xκ with x1 /∈ {0, 1}, there exists a configuration of
k ≥ κ candidates (including x1, . . . , xκ) such that the can-
didate at x1 wins under plurality.

4An anonymous reviewer suggested an elegant construction
proving this fact for symmetric intervals I = [c, 1 − c], which
provides counterexamples for every k ≥ 3: place candidates at
c − ε, 1 − c − ε, and any others at 1 − c + ε (for ε < c/2). The
candidate at c− ε wins, despite having a candidate in I .

In addition, we prove that the asymptotic distribution of
the plurality winner’s position is uniform over the unit in-
terval when voters and candidates are positioned uniformly
at random. In other words, plurality does not have a proba-
bilistic moderating effect: it does not preclude extreme can-
didates from winning when there are many moderate candi-
dates to choose from. Note that this result implies plurality
also has no combinatorial moderation, but Theorem 2 is con-
siderably easier to prove.

Theorem 3. (No probabilistic moderation for uniform plu-
rality.) Let Pk be the position of the plurality winner with
k candidates distributed uniformly at random and uni-
form voters. As k → ∞, Pk converges in distribution to
Uniform(0, 1); i.e., limk→∞ Pr(Pk ≤ x) = x for x ∈ [0, 1].

The proof uses a coupling argument between plurality
on the unit interval and plurality on a circle. By rotational
symmetry, the plurality winner on a circle is uniformly dis-
tributed. We show that as k grows, cutting the circle to trans-
form it into the interval does not change the winner with
probability approaching 1, since cutting the circle only af-
fects vote shares of the boundary candidates.

Thus, a key step is deriving the asymptotic distribution of
the winning plurality vote share. This vote share distribu-
tion may be useful for other asymptotic analyses of plurality
voting, so we describe it here. The winning plurality vote
share is closely related to a category of probabilistic prob-
lems known as stick-breaking problems, which focus on the
properties of a stick of length 1 broken into n pieces uni-
formly at random (Holst 1980). Setting n = k + 1, these
stick pieces can be viewed as the gaps between candidates
(equivalently, candidates are the breakpoints of the stick). A
classic result in stick-breaking is that the biggest piece will
have size Bn almost exactly log n/n as n grows large (Dar-
ling 1953; Holst 1980) and that nBn − log n converges to
a Gumbel(1, 0) distribution as n → ∞. The plurality vote
setting is different, since candidates get vote shares from
half of the gap to their left plus half of the gap to their
right (except the left- and rightmost candidates). We show
that as the number of candidates grows large, the winning
vote share Vk with k = n − 1 candidates is almost exactly
(log n+ log log n)/2n and that nVk− (log n+ log log n)/2
also converges to Gumbel(1, 0) as k → ∞. Intuitively,
the largest pair of adjacent gaps have size log n/n and
log log n/n, and the candidate between these gaps gets vote
shares from half of each gap (more correctly, the total size
of the gaps is (log n + log log n)/n). This is formalized in
the following lemma used to prove Theorem 3.

Lemma 1. Let Vk be the winning plurality vote share with
k candidates distributed uniformly at random over [0, 1] and
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Figure 3: The distributions of the winning position with k = 3, 4, 5, and 100 candidates and continuous 1-Euclidean voters
(both uniformly distributed) under plurality and IRV. The histograms are from 1 million simulation trials for k = 3, 4, 5 and
100,000 trials for k = 100, while the curves plotted for k = 3 (shown up to 1/2) are the exact density functions given in
Propositions 1 and 2, with pieces separated by color. Note that the IRV winner is only at a position < 1/6 or > 5/6 when no
candidates fall in [1/6, 5/6] by Theorem 1; the dashed vertical lines outline this exclusion zone.

uniform voters. Setting n = k + 1,

lim
k→∞

Pr

(
Vk ≤

log n+ log log n+ x

2n

)
= e−e

−x

. (2)

Plurality and IRV Winner Distributions
Given these results about the asymptotic distributions of the
plurality and IRV winner positions Pk and Rk, asymptotic
in the number of candidates k, a natural follow-on question
is whether we can say anything about these distributions for
fixed values of k. Indeed, we show that case analysis can in
principle be used to derive the exact density functions of Pk
and Rk and we perform the derivations for k = 3. However,
the number of cases grows exponentially in k for plurality
and super-exponentially for IRV. In the analysis, we consider
a configuration of candidates as a point in k-dimensional
space and integrate over the region where a particular candi-
date wins, which we show is a union of convex polytopes.
Proposition 1.

fP3(x) =





x2/2 + 4x, x ∈ [0, 1/3]

−13x2 + 13x− 3/2, x ∈ (1/3, 1/2]

fP3(1− x), x ∈ (1/2, 1].

(3)

Proposition 2.

fR3(x) =





12x2, x ∈ [0, 1/6]

48x2 − 12x+ 1, x ∈ (1/6, 1/4]

−48x2 + 36x− 5, x ∈ (1/4, 1/3]

−12x2 + 12x− 1, x ∈ (1/3, 1/2]

fR3
(1− x), x ∈ (1/2, 1].

(4)

See Figure 3 for a visualization of P3 and R3. Details of
the derivations can be found in the extended version (Tom-
linson, Ugander, and Kleinberg 2023b). In Proposition 2, the

integral of the density fR3
(x) on [0, 1/6] is exactly equal to

half the probability that the k − 1 losing candidates did not
appear inside [x, 1−x] (scaled by k to account for relabeling
symmetry), since we know by Theorem 1 that a candidate
can only win outside [1/6, 5/6] if they are the most mod-
erate candidate. For general k > 3 we can derive the den-
sity on [0, 1/6] and [5/6, 1] by generalizing this argument:
fRk

(x) = k(2x)k−1 on [0, 1/6] (with the right tail being
mirrored). Note that the integral of fRk

(x) over [0, 1/6] goes
to 0 as k → ∞, a limit that furnishes another way of estab-
lishing a probabilistic moderating effect for IRV.

Connecting our results to related work, while the distri-
bution of the winner’s position is challenging to derive, the
expected plurality vote share at each point is more tractable.
This distribution was discovered in another context: a guess-
ing game where the goal is to be closest to an unknown tar-
get distributed uniformly at random, against k players who
guess uniformly at random (Drinen, Kennedy, and Priestley
2009). The target can be thought of as a random voter and the
guesses as candidate positions. The guessing game and plu-
rality winner position distributions are similar in shape, with
two prominent bumps that move outward as k grows; and
both converge to uniform distributions. However, the point
with the max expected plurality vote share (and max guess-
ing game win probability) is not quite the same as the point
with the maximum plurality win probability, since a candi-
date’s position influences other candidates’ vote shares.

Non-Uniform Voters
Given our understanding of the uniform voter case, we now
broaden our scope and show that IRV exhibits exclusion
zones more generally. We find that the same “squeezing”
argument can be applied to any symmetric voter distribu-
tion. The generalized result hinges on a specific condition
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· · ·

Figure 4: IRV (top) and plurality (bottom) winner positions with Beta(↵,↵)-distributed voters and candidates. The violin plots
show empirical distributions from 100,000 simulation trials with k = 30 candidates at each ↵ value, with whiskers marking
extrema. The dashed lines show the bounds from Theorems 5 to 7 in the annotated ranges. The red PDFs below show the shape
of the voter distribution in each range. As long as voters are not too polarized, IRV prevents extreme candidates from winning.
Plurality, on the other hand, allows arbitrarily extreme candidates to win for ↵ = 1, when the voter distribution is uniform.

tion. The generalized result hinges on a specific condition
on the cumulative distribution function, Equation (6), which
intuitively captures when, no matter where the last moder-
ate candidate is, they cannot be squeezed out by the most
moderate extremists. This condition is not always possible
to satisfy non-trivially. After first giving the general state-
ment, we present special cases where the condition is sim-
ple to state and satisfy—specifically, when the voter density
is monotonic over [0, 1/2]. If the voter distribution is suf-
ficiently highly polarized, the condition becomes impossi-
ble to satisfy. In this hyper-polarized regime, the exclusion
zone of IRV actually flips, and IRV cannot elect moderate
candidates over extreme ones. First, we present the general
moderating effect of IRV for symmetric voter distributions.
Theorem 4. (General combinatorial moderation for IRV.)
Let f be symmetric over [0, 1] with CDF F and let c 2
(0, 1/2). If for all x 2 [c, 1/2],

F

✓
x+ 1� c

2

◆
� F

✓
c+ x

2

◆
> 1/3, (6)

then if there is at least one candidate in [c, 1 � c], the IRV
winner must be in [c, 1� c].

We now consider two cases where Condition (6) can be
greatly simplified: when voter distribution is moderate (f
increases over [0, 1/2]; Theorem 5) and when voters are po-
larized (f decreases over [0, 1/2] but F (1/4) < 1/3; The-
orem 6). The proofs in these cases follow the same struc-
ture, but differ in where moderate candidates are easiest to
squeeze out (nearer or farther from 1/2). As another note,
just as with Corollary 1, we immediately see from Theo-
rem 4 (and the special cases below) that IRV has a proba-
bilistic moderating effect with symmetric voter and candi-
date distributions (as long as they place positive mass on
[c, 1 � c]): as the number of candidates goes to infinity, the
probability that the winner comes from [c, 1� c] goes to 1.

Theorem 5. (Moderate voter distribution.) Let f be sym-
metric over [0, 1] and non-decreasing over [0, 1/2]. For any
c  F�1(1/6), if there is a candidate in [c, 1 � c], then the
IRV winner is in [c, 1� c].

Theorem 6. (Polarized voter distribution.) Let f be sym-
metric over [0, 1], non-increasing over [0, 1/2], and let
F (1/4) < 1/3. For any c  2(F�1(1/3)� 1/4), if there is
a candidate in [c, 1� c], then the IRV winner is in [c, 1� c].

Figure 4: IRV (top) and plurality (bottom) winner positions with Beta(α, α)-distributed voters and candidates. The violin plots
show empirical distributions from 100,000 simulation trials with k = 30 candidates at each α value, with whiskers marking
extrema. The dashed lines show the bounds from Theorems 5 to 7 in the annotated ranges. The red PDFs below show the shape
of the voter distribution in each range. As long as voters are not too polarized, IRV prevents extreme candidates from winning.
Plurality, on the other hand, allows arbitrarily extreme candidates to win for α = 1, when the voter distribution is uniform.

on the cumulative distribution function, Equation (5), which
intuitively captures when, no matter where the last moder-
ate candidate is, they cannot be squeezed out by the most
moderate extremists. This condition is not always possible
to satisfy non-trivially. After first giving the general state-
ment, we present special cases where the condition is sim-
ple to state and satisfy—specifically, when the voter density
is monotonic over [0, 1/2]. If the voter distribution is suf-
ficiently highly polarized, the condition becomes impossi-
ble to satisfy. In this hyper-polarized regime, the exclusion
zone of IRV actually flips, and IRV cannot elect moderate
candidates over extreme ones. First, we present the general
moderating effect of IRV for symmetric voter distributions.

Theorem 4. (General combinatorial moderation for IRV.)
Let f be symmetric over [0, 1] with CDF F and let c ∈
(0, 1/2). If for all x ∈ [c, 1/2],

F

(
x+ 1− c

2

)
− F

(
c+ x

2

)
> 1/3, (5)

then if there is at least one candidate in [c, 1 − c], the IRV
winner must be in [c, 1− c].

We now consider two cases where Condition (5) can be
greatly simplified: when the voter distribution is moderate
(f increases over [0, 1/2]; Theorem 5) and when voters are
polarized (f decreases over [0, 1/2] but F (1/4) < 1/3; The-
orem 6). The proofs in these cases follow the same struc-
ture, but differ in where moderate candidates are easiest to
squeeze out (nearer or farther from 1/2). As another note,
just as with Corollary 1, we immediately see from Theo-
rem 4 (and the special cases below) that IRV has a proba-
bilistic moderating effect with symmetric voter and candi-
date distributions (as long as they place positive mass on
[c, 1 − c]): as the number of candidates goes to infinity, the
probability that the winner comes from [c, 1− c] goes to 1.

Theorem 5. (Moderate voter distribution.) Let f be sym-
metric over [0, 1] and non-decreasing over [0, 1/2]. For any
c ≤ F−1(1/6), if there is a candidate in [c, 1 − c], then the
IRV winner is in [c, 1− c].
Theorem 6. (Polarized voter distribution.) Let f be sym-
metric over [0, 1], non-increasing over [0, 1/2], and let
F (1/4) < 1/3. For any c ≤ 2(F−1(1/3)− 1/4), if there is
a candidate in [c, 1− c], then the IRV winner is in [c, 1− c].
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The uniform distribution is the unique distribution
whose density is both non-increasing and non-decreasing
over [0, 1/2]. Indeed, for uniform F (x) = x, 1/6 =
2(F−1(1/3) − 1/4) = F−1(1/6). Note that for polarized
voter distributions, Theorem 6 requires F (1/4) < 1/3 (i.e.,
less than 1/3 of voters are left of 1/4). If the population is
hyper-polarized (F (1/4) > 1/3), we can prove that IRV
cannot elect moderates if both extremes are represented.
Theorem 7. (Hyper-polarized voter distribution.) Let f be
symmetric over [0, 1] and let F (1/4) > 1/3. For any c ≥
2F−1(1/3), if there is at least one candidate in [0, c] and at
least one candidate in [1 − c, 1], then the IRV winner must
be in [0, c] or [1− c, 1].

Finally, we saw in Theorem 2 that plurality has no exclu-
sion zones for uniform voters. We now show that plurality
has no exclusion zones regardless of the voter distribution
(given mild conditions), except the points 0 and 1.
Theorem 8. (No combinatorial moderation for plurality.)
Let f be continuous and strictly positive over (0, 1). Given
any set of κ ≥ 1 distinct candidate positions x1, . . . , xκ with
x1 /∈ {0, 1}, there exists a configuration of k ≥ κ candi-
dates (including x1, . . . , xκ) such that the candidate at x1
wins under plurality. If x1 ∈ {0, 1}, then there exist voter
distributions f where x1 cannot win under plurality.

Figure 4 illustrates Theorems 5 to 8, showing empiri-
cal IRV and plurality winner positions when voters (and
k = 30 candidates) are distributed according to symmetric
Beta(α, α) distributions. This family of Beta distributions
is polarized for α < 1, uniform for α = 1, and moder-
ate for α > 1. Theorem 5 thus applies for α ≥ 1. The
crossover point between Theorems 6 and 7 (polarized to
hyper-polarized) occurs at α = 1/2 (i.e., for Beta(1/2, 1/2),
F−1(1/3) = 1/4). Figure 4 also shows the positions of plu-
rality winners for these voter distributions, consistent with
our analysis of plurality in Theorem 8. Our code is available
at https://github.com/tomlinsonk/irv-moderation.

Discussion
We began by considering a contrast between IRV and plu-
rality voting when the positions of voters and candidates
are drawn from the uniform distribution on the unit interval:
in this case, IRV (unlike plurality) has a moderating effect,
with the probability that the winner comes from the inter-
val [1/6, 5/6] converging to 1 as the number of candidates
goes to infinity. This moderating effect persists (with differ-
ent sub-intervals) even as the distribution of voters and can-
didates becomes more polarized, with an increasing amount
of probability mass near the endpoints of the interval, until a
specific threshold of hyper-polarization is reached. Our anal-
ysis also provides methods for determining the exact distri-
bution of winner positions in certain cases, enabling more
fine-grained comparisons between IRV and plurality.

It would be interesting to consider extensions of our work
in a number of directions, and here we highlight three of
these. First, we did not consider strategic analyses (e.g.,
of Nash equilibria, as in Dellis, Gauthier-Belzile, and Oak
(2017)), and were instead motivated by bounded rational-
ity (Bendor et al. 2011) and a need to better understand the

underlying voting system, focusing on the non-strategic set-
ting where candidate positions are fixed. For instance, how
might candidates behave strategically given an understand-
ing of IRV exclusion zones or the winner position distri-
bution of IRV? Behavioral evidence for bounded rational-
ity indicates that people tend to operate at a low strategic
depth (Stahl and Wilson 1995; Colman 2003; Ohtsubo and
Rapoport 2006). In this framework, level-0 players act ran-
domly, level-1 players calculate best responses to level-0
players, and so on. Our analysis therefore corresponds to
level-0 strategic reasoning, and can be used as a starting
point for analysis of higher-order strategy.

Second, we modeled voting populations as symmetric
continuous distributions in one dimension, with preferences
arising strictly from distances in this dimension. Consider-
ing higher-dimensional preference spaces would also be a
natural extension of our analysis. Asymmetric voter distri-
butions would also be valuable to consider, although the no-
tion of a moderate may need to be revisited in this case (per-
haps based on the median voter). Using the same squeez-
ing argument, IRV should also exhibit exclusion zones with
asymmetric voter distributions, although their forms may not
be as tidy as the ones we derive. Other possible extensions
include non-linear voter preferences (for instance, where a
voter ranks all candidates on their right before all candidates
on their left, regardless of distance), probabilistic voting, and
voter abstention. Practical considerations of IRV could also
be taken into account; for instance, real-world elections of-
ten ask for top-truncated preferences rather than full rank-
ings, which can then affect the outcome (Tomlinson, Ugan-
der, and Kleinberg 2023a). Does IRV with truncated ballots
still exhibit a moderating effect?

Finally, as we noted earlier, there are voting systems that
always select the most moderate candidate with symmetric
1-Euclidean voters. This is true for any system that satis-
fies the Condorcet criterion, selecting the Condorcet win-
ner whenever one exists (e.g., the minimax, Condorcet-
Hare, Copeland, and Dodgson methods, among many oth-
ers (Black 1958; Richelson 1975; Green-Armytage, Tide-
man, and Cosman 2016)); it is also true for some other vot-
ing systems that do not in general satisfy the Condorcet cri-
terion, like the Coombs rule (Coombs 1964; Grofman and
Feld 2004). There are a variety of practical and historical
reasons why these methods are not widely used for politi-
cal elections. For instance, Dodgson’s method is NP-hard to
compute (Bartholdi, Tovey, and Trick 1989) and the Coombs
rule is sensitive to incomplete ballots, which are common
in practice. As we are motivated by ongoing debates about
IRV and plurality, our attention has been restricted to these
systems. However, a broader understanding of moderating
effects would be valuable. There has been some theoreti-
cal work on moderating effects of score-based voting sys-
tems (like Borda count and approval voting) with strategic
voters and candidates (Dellis 2009). However, it is an open
question, with some computational evidence to support it
(Chamberlin and Cohen 1978), whether other voting sys-
tems like Borda count exert a moderating effect in the setting
we study, with fixed voter and candidate distributions.
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