
J. Vitek (Ed.): ECOOP 2008, LNCS 5142, pp. 463–489, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Programming with Live Distributed Objects

Krzysztof Ostrowski1, Ken Birman1, Danny Dolev2, and Jong Hoon Ahnn1

1 Cornell University, and
2 The Hebrew University of Jerusalem

{krzys, ken, ja275}@cs.cornell.edu, dolev@cs.huji.ac.il

Abstract. A component revolution is underway, bringing developers improved
productivity and opportunities for code reuse. However, whereas existing tools
work well for builders of desktop applications and client-server structured sys-
tems, support for other styles of distributed computing has lagged. In this paper,
we propose a new programming paradigm and a platform, in which instances of
distributed protocols are modeled as “live distributed objects”. Live objects can
represent both protocols and higher-level components. They look and feel much
like ordinary objects, but can maintain shared state and synchronization across
multiple machines within a network. Live objects can be composed in a type-
safe manner to build sophisticated distributed applications using a simple, intui-
tive drag and drop interface, very often without writing any code or having to
understand the intricacies of the underlying distributed algorithms.

1 Motivation

It has become common to build applications in a component-oriented manner, com-
posing reusable building blocks by binding strongly-typed interfaces. At runtime, an
underlying object-oriented managed environment, such as Java/J2EE or .NET pro-
vides further checking and support. The paradigm has numerous benefits: it promotes
clean, modular architectures, facilitates extensions, enables collaborative development
and code reuse, and by making contracts between components explicit and their code
more isolated, reduces the risk of bugs resulting from badly documented or implicit
assumptions such as cross-component behavior or side effects.

Unfortunately, distributed systems developers are only able to exploit these tools in
limited ways, typically wedded to client-server programming styles. Moreover, the
most widely used technologies can be awkward and inflexible. For example, a devel-
oper uses different methods to access a system depending on whether it is hosted on a
single remote server [6], cloned for load-balancing on a cluster [37], or using state ma-
chine replication [52]. Yet even as the available tools have standardized on these lim-
ited options, the research community is creating a wave of powerful new technologies
that includes peer-to-peer and gossip protocols, multicast with various levels of consis-
tency, ordering and timing, Byzantine state replication, distributed hash tables, creden-
tial management services, naming services, content distribution networks, etc.

Our goal is to break through this barrier by treating protocols as components in the
same sense as in .NET or COM. We propose a technology in which application com-
ponents and protocols are unified within a single object-oriented paradigm. Our “live

464 K. Ostrowski et al.

distributed objects” represent running instances of distributed protocols, but they have
types and support composition, much like “ordinary” objects. While ours is certainly
not the first approach to unify distributed protocols with object-oriented environ-
ments, we innovate in ways that make the solution uniquely powerful:

• We leverage the type system without being language-specific. Our platform offers
mechanisms such as reflection and dynamic type checking, previously seen only in
systems closely tied to an underlying language, such as Smalltalk, Java, ML or IOA.
In our interactive GUI, type-checking prevents users from dropping objects in inap-
propriately. Down the road, we’ll use type checking to ensure that replicated applica-
tion objects use a protocol with sufficiently strong properties.

• It can be incrementally deployed, and supports legacy applications, including Ex-
cel spreadsheets, Oracle databases, and web services. For example, we can import data
from a database, multicast it, and export it back into a set of desktop spreadsheets.

• Our object-oriented embedding can support any distributed protocol as a reus-
able component. Existing systems are protocol-agnostic only in the limited sense that
users can choose among several different protocols to implement communication. For
us, protocols are objects; a small shift in perspective with broad implications.

• The approach extends from the UI to the hardware level, whereas prior systems
focused on one class of application objects, e.g. shared data structures or UI compo-
nents1. Jini has a vision similar to ours, but is tightly bound to the client-server para-
digm, whereas our model is focused on distributed multi-party protocols.

• We support composition of behavioral protocol types. Prior composition toolkits
either lacked types, or used a limited form of typing, where the protocol type was the
type of the implementing class, and composition was achieved via inheritance.

• Our model is replication-centric. Although many live objects don’t replicate
state, the handling of replication and scalability sets our solution apart from prior
ones. We’re able to support various replication (multicast) models, and to express this
in a type system.

• Our system may be the first drag and drop tool for type-safe protocol composi-
tion. Drag and drop mechanisms are easy to use and yet can support sophisticated
applications. For many applications, no new code is needed at all. Prior systems (in-
cluding some from which we took inspiration, such as Ensemble [33], BAST [20], x-
Kernel [45], and I/O automata [36]) were programmer-intensive.

Although the current system is quite usable, live objects raise a number of ques-
tions, only some of which have been addressed. The technology requires a scalable
multicast layer capable of supporting very large groups, and in which a single node can
join large numbers of object-groups. In work reported elsewhere, we describe Quick-
silver, a high-performance, scalable communication layer that achieves these goals
[46,47,48]. We’re also collaborating with a group at INRIA/IRISA on a gossip-based
infrastructure compatible with live objects; we expect this to be useful for discovering
and tracking system configuration information. Looking further out, we’re extending
Quicksilver to support a range of reliability models (expressed in a new protocol script-
ing language [47]), and are implementing a new security architecture based on reflec-
tion. We also have ideas for WAN and mobile applications, debugging, performance
tuning, system management, and object state persistence. However, all of these ques-
tions lie beyond the scope of the present paper.

1 Demos of this functionality and a prototype of our platform are available on our website [34].

 Programming with Live Distributed Objects 465

2 Prior Work

While we believe our work to be innovative in the ways just described, we’re not the
first to integrate the object-oriented and distributed programming models.

There are many language abstractions for distributed protocols, including remote
objects [25, 32], fault-tolerant objects [37], multicast objects [29], asynchronous col-
lections [17], tuple spaces [10, 58], and replicated objects driven by multicast [38, 56]
or two-phase commit [53]. None matches the requirements described above. First,
these abstractions are all specialized to support specific protocols. For example, asyn-
chronous collections cannot easily be used to express two-phase commit or leader elec-
tion. Second, most lack the notion of a distributed type, and in those that do, this notion
is shallow, e.g. the type of a multicast object [29] is determined by the type of transmit-
ted events, and the type of an asynchronous collection [17] is the type of the imple-
menting class. The former definition can’t convey information about subtle behaviors
of protocols such as virtual synchrony [5], while the latter severely restricts reusability.
Finally, most lack support for composition.

The idea of defining object types in terms of their behaviors is not new [55]. CSP
[24] and π-calculus [41] were some of the first protocol specifications, and these early
process calculi serve as a basis for recent specification efforts, such as BPEL [3],
SSDL [49], and WSCL [4]. As recently noted [19], the weakness of process calculi,
and specifications based on them, is that they can’t express the semantics of replication
or the behavior of protocols such as consensus in a clean way. For example, while
BPEL is clearly strong enough to express business processes, the language defines
protocols in terms of sets of participants fixed at the outset, and can’t model dynamic
join or leave events. It would be very hard to express replication properties, such as
“once any group member does X, eventually all operational members do too” [12].

On the other hand, while state-based approaches such as I/O automata [36], CFSM
[7], interface automata [1], and others [18] are very expressive, they combine func-
tional descriptions of protocol behaviors with the specifics of their implementations
expressed through state transitions. This is useful in correctness proofs, but it may be
a weakness in the context of a type system. Two protocols implemented using differ-
ent data structures and states can exhibit the same external behavior, e.g. “messages
are totally ordered and delivered atomically with respect to failures”. We believe that
protocols that behave equivalently should be considered to have the same distributed
type; state transition representations can easily obscure such relationships [27].

Live objects support an extensible style of formal behavioral specifications for
group and multicast protocols [2, 12, 22, 26]. As one composes protocols, a construc-
tive distributed type system is obtained. The type checking mechanism is itself com-
ponentized, and can be extended by developers.

The idea of building protocols from simpler components dates to the x-Kernel [45]
and to systems like Ensemble [33], which constructed replication protocols from mi-
croprotocols. Among such systems, BAST [20] is closest to ours in terms of the di-
versity of protocols it can express, but lacks a behavioral notion of a protocol type:
protocol types in BAST are determined by the types of the implementing classes, and
composition is achieved by inheritance. The creators of BAST observed that in retro-
spect, inheritance wasn’t the right mechanism for this task. We’ve drawn lessons from
these experiences and created a model in which inheritance isn’t used at all: we treat

466 K. Ostrowski et al.

protocols as black boxes and connect them with typed event channels in a visual de-
signer. Our protocol objects interact via events, much as in Smalltalk [21].

Jini [58], the widely used Java-based platform in which clients access services by
dynamically loading proxy code, is highly relevant prior work. The strongest contrast
is that Jini has a pervasive client-server bias, making it very hard to express object
replication, particularly in applications that use strong consistency or (at the other
extreme) peer-to-peer protocols.

This client-server bias is visible in many ways. First, Jini lacks a rigorous notion
of a group [43], and it is hard to implement consistency across a set of group mem-
bers, state replication within the group, coordination, leader-election, etc. Jini's
lookup, join, and discovery specifications lack membership views (needed to assign
tasks to group members) and synchronized state transfer (used to initialize new group
members). Moreover, Jini doesn’t guarantee consistent failure detection. Thus, while
services in Jini can be grouped, the mechanism lacks expressive power to facilitate
building systems that use stronger forms of replication. Additionally, abstractions
such as notification and transactional protocols can’t be directly modeled as objects in
Jini. Finally, Jini lacks distributed types and protocol composition mechanisms.

Live objects are replication-centric, with a strong notion of protocol types and
composition. This makes live objects particularly appropriate for building applications
in which users collaborate, share content, or engage in other kinds of peer-to-peer
behaviors, (obviously we can also support traditional non-replicated and client-server
behaviors). Complex protocols can be modeled as objects, in a manner that separates
behavior of the protocol from its implementation.

Many of these same issues distinguish our work from WS-* standards. Elsewhere
[48], we discuss issues that arise if one tries to use WS-Notification or WS-Eventing
to implement live objects. We concluded that the relevant WS-* standards are tightly
bound to specific protocol implementations; as written, they cannot accommodate
commercially important protocols such as peer-to-peer video streaming, BitTorrent,
or Byzantine replication. We’ve proposed an extended WS-based eventing standard
matched to the work described here, and able to overcome this problem [48].

JXTA [57] is probably the most sophisticated existing collaboration technology for
peer-to-peer systems, but it doesn’t support stronger replication and consistency mod-
els. While JXTA does have notions such as a group and a membership view, members
can have inconsistent views. Researchers have struggled to layer reliable multicast on
these mechanisms [35]. Groupware toolkits, such as Croquet [53], Groove [39], and
group communication [5] toolkits all support replication, and some support strong
forms of consistency. However, unlike Jini, JXTA and our work, none of these is po-
sitioned as a general-purpose interoperability platform.

3 Model

3.1 Objects and Their Interactions

A live distributed object (or live object) is an instance of a distributed protocol: pro-
gramming logic executed by a set of components that may reside on different nodes
and communicate by sending messages over the network. For flexibility, we won’t
assume that the machines running the protocol “know” about one-another or that they

 Programming with Live Distributed Objects 467

share any common state. Thus, a live object could be a Byzantine fault-tolerant repli-
cated state machine, but it could also be an entity with purely local state, one that uses
gossip to share data, or an IP multicast channel.

Live objects have behavioral types. Suppose that object A logs messages on the
nodes where it runs, using a reliable, totally ordered multicast to ensure consistency
between replicas. Object B might offer the same functionality, but be implemented
differently, perhaps using a gossip protocol. As long as A and B offer the same inter-
faces and equivalent properties (consistency, reliability, etc), we consider A and B to
be implementations of the same type. The concept of behavioral equivalence is the
key here; we define it more carefully in section 3.2.

When node Y executes live object X, we’ll say that a proxy of live object X is run-
ning on Y. Thus, a live object is executed by the group of its proxies (Figure 1). A
proxy is a functional part of the object running on a node. When two objects have
proxies on overlapping sets of nodes, their respective proxies may interact. We can
think of the live objects as interacting through their proxies.

A reference to a live object X is a complete set of instructions for constructing and
configuring a proxy of X on a node. Thus, when node Y wants to access live object X,
node Y uses a reference to X as a recipe with which it can create a new proxy for X
that will run locally on Y. The proxy then executes the protocol associated with X.
For example, it might seek out other proxies for X, transfer the current distributed
state from them, and connect itself to a multicast channel to receive updates. Unlike
proxies, which can have state, references are just passive, stateless, portable recipes.

The instructions in a reference must be complete, but need not be self-contained.
Some of their parts can be stored inside online repositories, from which they need to
be downloaded. These repositories are themselves live objects, referenced by the ob-
jects that use them. Thus, given a reference, a node can dereference it without prior
“knowledge” of the protocol. An exception is thrown if dereferencing fails (for exam-
ple, if a repository containing a part of the reference is unavailable).

We model proxies in a manner reminiscent of I/O automata. A proxy runs in a vir-
tual context consisting of a set of endpoints: strongly-typed bidirectional event chan-
nels, through which the proxy can communicate with other software on the same node
(Figure 1). Unlike in I/O automata, a proxy can use external resources, such as local
network connections, clocks, or the CPU. These interactions are not expressed in our

proxy1 proxy2

node1 node2

proxy3

node3

live
object

proxy

A: 1 B: 2

C: 3 D: 4

typed
events

E: 1

typed
endpoints

network
messages

: 2

Fig. 1. To access a live object (protocol), a node starts a proxy: a software component that runs the
protocol on the node, and may communicate with proxies on other nodes by sending messages
over the network. On a given node, proxies for different objects communicate via endpoints:
strongly-typed, bidirectional event channels.

468 K. Ostrowski et al.

model and they are not limited in any way. However, interactions of a live object’s
proxy with any other component of the distributed system must be channeled through
the proxy’s endpoints.

All proxies of the same live object run that live object’s code. Unlike in state ma-
chines [37, 52], we need not assume that proxies run in synchrony, in a deterministic
manner, or that their internal states are identical. We do assume that each proxy of a
live object X interacts with other components of the distributed system using the same
set of endpoints, which must be specified as part of X’s type. To avoid ambiguity, we
sometimes use the term instance of endpoint E at proxy P to explicitly refer to a run-
ning event channel E, physically connected to and used by P.

Because our model is designed to facilitate component integration, we shall adopt a
somewhat radical perspective, in which the entire system, all applications and infra-
structure are composed of live objects. Accordingly, endpoints of a live object’s proxy
will be connected to endpoints exposed by proxies of other live objects running on the
same node (Figure 2). When proxies of two different objects X and Y are connected
through their endpoints on a certain node Z, we’ll say that X and Y are connected on Z.

Example (a). Consider a distributed collaboration tool that uses reliable multicast to
propagate updates between users (Figure 2). Let a be an application object in this sys-
tem that represents a collaboratively edited document. Proxies of a have a graphical
user interface, through which users can see the document and submit updates. Updates
are disseminated to other users over a reliable multicast protocol, so that everyone can
see the same contents. The system is designed in a modular way, so instead of linking
the UI code with a proprietary multicast library, the document object a defines a typed
endpoint reliable_channel_client, with which its proxies can submit updates to a reli-
able multicast protocol (event send) and receive updates submitted by other proxies
and propagated using multicast (event receive). Multicasting can then be implemented
by a separate object r, which has a matching endpoint reliable channel. Proxies of a
and r on all nodes are connected through their matching endpoints.

membership
object (m)

replicated
state

machine
object (s)

application
object (a)

m1 m2

m3 m4

r1 r2

u1 u2

s1 s2

a1 a2

reliable
multicast
object (r)

unreliable
multicast
object (u)

p1 p2 persistent
storage
object (p)

Fig. 2. Applications in our model are composed of interconnected live objects. Objects are
“connected” if endpoints of a pair of their proxies are connected. Connected objects can affect
one-another by having their proxies exchange events through endpoints. A single object can be
connected to multiple other objects. Here, a reliable multicast object r is simultaneously con-
nected to an unreliable multicast object u, a membership object m, and an application object a.
The same object can be accessed by different machines in different ways. For example, m is
used in two contexts: by the multicast object r, and by replicas of a membership service. The
latter employs a replicated state machine s, which persists its state through a storage object p.

 Programming with Live Distributed Objects 469

Similarly, object r may be structured in a modular way: rather than being a single
monolithic protocol, r could internally use object u for dissemination and object m for
membership tracking [12]. Additional endpoints unreliable channel and member-
ship would serve as contracts between r and its internal parts u and m.

Figure 2 illustrates several features of our model. First, a pair of endpoints can be
connected multiple times: there are multiple connections between different instances of
the reliable channel endpoint of object r and the reliable_channel_client endpoint of
a, one connection on each node where a runs. Since objects are distributed, so are the
control and data flows that connect them. If different proxies of r were to interact with
proxies of a in an uncoordinated manner, this might be an issue. To prevent this, each
endpoint has a type, which constrains the patterns of events that can pass through dif-
ferent instances of the endpoint. These types could specify ordering, security, fault-
tolerance or other properties. The live objects runtime won’t permit connections be-
tween a and r, unless their endpoint types declare the needed properties.

A single object could also define multiple endpoints. One case when this occurs is
when the protocol involves different roles. For example, the membership object m has
two endpoints, for clients and for service replicas. The role of the proxy in the proto-
col depends on which endpoint is connected. In this sense, endpoints are like inter-
faces in object-oriented languages, giving access to a subset of the object’s functional-
ity. Another similarity between endpoints and interfaces is that both serve as contracts
and isolate the object’s implementation details from the applications using it. We also
use multiple endpoints in object r, proxies of which require two kinds of external
functionality: an unreliable multicast, and a membership service. Both are obligatory:
r cannot be activated on a platform unless both endpoints can be connected.

Earlier, we commented that not all live objects replicate their state. We see the lat-
ter in the case of the persistent store p. Its proxies present the same type of endpoint to
the state machine s, but each uses a different log file and has its own state.

Our model promotes reusability by isolating objects from other parts of the system
via endpoints that represent strongly typed contracts. If an object relies upon external
functionality, it defines a separate endpoint by which it gains access to that functional-
ity, and specifies any assumptions about the entity it may be connected to by encoding
them in the endpoint type. This allows substantial flexibility. For example, object u in
our example could use IP multicast, an overlay, or BitTorrent, and as long as the end-
point that u exposes to r is the same, r should work correctly with all these implemen-
tations. Of course this is conditional upon the fact that the endpoint type describes all
the relevant assumptions r makes about u, and that u does implement all of the de-
clared properties.

3.2 Defining Distributed Types

The preceding section introduced endpoint types, as a way to define contracts between
objects. We now define them formally and give examples of how typing can be used to
express reliability, security, fault-tolerance, and real time properties of objects.

Formally, the type Θ of a live object is a tuple of the form Θ = (E, C, C'). E in this
definition is a set of named endpoints, E = {(n1, τ1), (n2, τ2), …, (nk, τk)}, where ni is
the name and τi is the type of the ith endpoint. C and C' represent sets of constraints
describing security, reliability, and other characteristics of the object (C), and of its

470 K. Ostrowski et al.

environment (C'). C models constraints provided by the object, such as semantics of
the protocol: guarantees that the object’s code delivers to other objects connected to it.
C' models constraints required, which are prerequisites for correct operation of the
object’s code. Constraints can be described in any formalism that captures aspects of
object and environment behavior in terms of endpoints and event patterns. Rather than
trying to invent a new, powerful formalism that subsumes all the existing ones, we
build on the concepts of aspect-oriented programming [28], and we define C to be a
finite function from some set A of aspects to predicates in the corresponding formal-
isms. For example, constraints C = {(a1, φ1), (a2, φ2), …, (am, φm)} would state that in
formalism a1 the object’s behavior satisfies formula φ1, and so on. We’ll give exam-
ples of various practically useful formalisms and constraints later in this section.

Type τ of an endpoint is a tuple of the form τ = (I, O, C, C'). I is a set of incoming
events that a proxy owning the endpoint can receive from some other proxy, O is a set
of outgoing events that the proxy can send over this endpoint, and C and C' represent
constraints provided and required by this endpoint, defined similarly to constraints of
the object, but expressed in terms of event patterns, not in terms of endpoints (for ex-
ample, an endpoint could have an event of type time, and with a constraint that time
advances monotonically in successive events). Each of the sets I and O is a collection
of named events of the form E = {(n1, ε1), (n2, ε2), …, (nk, εk)}, where ni is event name
and εi is its type. Event types can be value types of the underlying type system, such as
.NET or Java primitive types and structures, or types described by WSDL [13] etc., but
not arbitrary object references or addresses in memory. We assume that events are se-
rializable and can be transmitted across the network or process boundaries. References
to live objects are also serializable, hence they can also be passed inside events. The
subtyping relation on the event types is inherited from the underlying type system.

The purpose of creating endpoints is to connect them to other, matching endpoints,
as described in Section 3.1 and illustrated on Figure 2. Connect is the only operation
possible on endpoints. We say that endpoint types τ1 and τ2 match, denoted τ1 ∝ τ2,
when the following two conditions hold.

1. For each output event n of type ε of either endpoint, its counterpart must have an
input event with the same name n, and with either type ε, or some supertype of ε.
This guarantees that all events can be delivered between the two connected proxies.

2. The provided constraints of each of the endpoints must imply (be no weaker than)
the required constraints of the other. This ensures that the endpoints mutually sat-
isfy each other’s requirements.

Formally, for τ1 = (I1, O1, C1, C1') and τ2 = (I2, O2, C2, C2') we define:

τ1 ∝ τ2 ⇔ O1 →* I2 ∧ O2 →* I1 ∧ C1 ⇒* C2' ∧ C2 ⇒* C1'. (1)

Relation →* between two sets of named events expresses the fact that events from the
first can be understood as events from the second. Formally, we express it as follows:

E →* E' ⇔ ∀ (n, ε)∈E ∃ (n, ε′)∈E' such that ε ≤ ε′. (2)

Operator “≤” on types always represents the relation of subtyping in this paper.
Relation ⇒* between two sets of constraints expresses the fact that the constraints

in the first set are no weaker than constraints in the second. Formally, we write this as:

 Programming with Live Distributed Objects 471

C ⇒* C' ⇔ ∀ (a, φ′)∈C′ ∃ (a, φ)∈C such that φ ⇒a φ'. (3)

Relation ⇒a is simply a logical consequence in formalism a. Intuitively, this defini-
tion states that if C' defines a constraint defined in some formalism, then C must de-
fine a constraint that is no weaker than that, in the same formalism. For example, if C'
defines some reliability constraint expressed in temporal logic, then C must define an
equivalent or stronger constraint, also in temporal logic, in order for C ⇒* C' to hold.

For a pair of endpoint types τ1 and τ2, the former is a subtype of the latter if it can
be used in any context in which the latter can be used. Since the only possible opera-
tion on an endpoint is connecting it to another, matching one, hence τ1 ≤ τ2 holds iff
τ1 matches every endpoint that τ2 matches, i.e. τ1 ≤ τ2 iff ∀τ′ (τ2 ∝ τ′) ⇒ (τ1 ∝ τ′),
which after expanding the definition of “∝” can be formally expressed as follows:

τ1 ≤ τ2 ⇔ O1 →* O2 ∧ I2 →* I1 ∧ C1 ⇒* C2 ∧ C2′ ⇒* C1′. (4)

Intuitively, τ1 ≤ τ2 if (a) τ1 defines no more output events and no fewer input events
than τ2, (b) the types of output events of τ1 are subtypes and the types of input events
of τ1 are supertypes of the corresponding events of τ2, and (c) the provided con-
straints of τ1 are no weaker and the required constraints of τ1 are no stronger than
those of τ2.

Subtyping for live object types is defined in a similar manner. Type Θ1 is a sub-
type of Θ2, denoted Θ1 ≤ Θ2, when Θ1 can replace Θ2. Since the only thing that one
can do with a live object is connect it to another object through its endpoints, this
boils down to whether Θ1 defines all the endpoints that Θ2 defines, and whether the
types of these endpoints are no less specific, and whether Θ1 guarantees no less and
expects no more than Θ2. Formally, for two types Θ1 = (E1, C1, C1′) and Θ2 = (E2,
C2, C2′), we define:

Θ1 ≤ Θ2 ⇔ E1 ≤* E2 ∧ C1 ⇒* C2 ∧ C2′ ⇒* C1′. (5)

Relation ≤* between sets of named endpoints used above is defined as follows:

E ≤* E' ⇔ ∀ (n, τ′)∈E′ ∃ (n, τ)∈E such that τ ≤ τ′. (6)

The use of types in our platform is limited to checking whether the declared object
contracts are compatible, to ensure that the use of objects corresponds to the devel-
oper’s intentions. The live objects platform performs the following checks at runtime:

1. When a reference to an object of type Θ is passed as a value of a parameter that is
expected to be a reference to an object of type Θ', the platform verifies that Θ ≤
Θ'.

2. When an endpoint of type τ is to be connected to an endpoint of type τ', either pro-
grammatically or during the construction of composite objects described in Section
4.2, the platform verifies that the two endpoints are compatible i.e. that τ ∝ τ'.

We believe that in practice, this limited form of type safety is sufficient for most uses.
For provable security, the runtime could be made to verify that live object’s code im-
plements the declared type prior to execution. Techniques such as proof-carrying code
[44] and domain-specific languages with limited expressive power could facilitate this.

472 K. Ostrowski et al.

3.3 Constraint Formalisms

We conclude this section with a discussion of different formalisms that can be used to
express the constraints in the definition of objects and endpoints. The issue is subtle
because on the one hand, a type system won’t be very helpful if it has nothing to
check, but on the other hand, there are a great variety of ways to specify protocol
properties. It isn’t much of an exaggeration to suggest that every protocol of interest
brings its own descriptive formalism to the table! As noted earlier, many prior sys-
tems have effectively selected a single formalism, perhaps by defining types through
inheritance. Yet when we consider protocols that might include time-critical multi-
cast, IPTV, atomic broadcast, Byzantine agreement, transactions, secure key replica-
tion, and many others, it becomes clear that no existing formalism could possibly cov-
er the full range of options.

A further issue is the incompleteness of many specifications, in a purely formal
sense. For example, one popular formalism is temporal logic [22,12]. Here, we as-
sume a global time and a set of locations, and a function that maps from time to
events that occur at those locations. In the context of endpoint constraints, we can
think of instances of the endpoint as locations, and the endpoint’s incoming and out-
going events, and explicit connect/disconnect events, as the events of the temporal
logic. Constraints would be expressed as formulas over these events, identifying the
legal event sequences within the (infinite) set of possible system histories.

Example (b). Consider the reliable channel endpoint, exposed by the reliable chan-
nel r in the example in Section 3.1. The endpoint’s type might define one incoming
event send(m) and one outgoing event receive(m), parameterized by message body
m. Constraints provided by the channel object r might include a temporal logic for-
mula stating that if event receive(m) is delivered by r through some of the instances
of the endpoint sooner than receive(m′), then for any other instance of the endpoint, if
both events are delivered, they are delivered in the same sequence.

Example (b) illustrates a safety property of a type for which temporal logic is espe-
cially convenient. Chockler et. al. use temporal logic to specify a range of reliable
multicast protocols in [12]. However, the FLP impossibility result establishes that
these protocols cannot guarantee liveness in traditional networks. Thus, while we can
express a liveness constraint in such a logic, no protocol could achieve it – in effect,
such a protocol type would be useless in real systems!

Temporal logic is just one of many useful formalisms. In our work on a security
architecture, still underway, we’re looking into using a variant of the BAN logic [9] to
define security properties provided by live objects or expected from their environ-
ment. Real-time and performance guarantees are conveniently expressed as probabil-
istic guarantees on event occurrences, e.g. in terms of predicates such as “at least p %
of the time, receive(m) occurs at all endpoint instances at most t seconds following
send(m),” or “at least p % of the time, receive(m) occurs at all different endpoint
instances in a time window of at most t seconds”.

Yet another useful formalism would be a version of temporal logic that talks about
the number of instances of different endpoints in time. For example, constraints of the
sort “at most one instance of the publisher endpoint may be connected at any given
time” could describe single-writer semantics or similar assumptions made by the

 Programming with Live Distributed Objects 473

protocol designer. Constraints of this sort could also express fault-tolerance properties,
e.g. define the minimum number of proxies to maintain a certain replication level etc.

In general, with formalisms like those listed above, type-checking might involve a
theorem prover, and hence may not always be practical. In practice, however, the ma-
jority of object and endpoint types would choose from a relatively small set of stan-
dard constraints, such as best-effort, virtually-synchronous, transactional, or atomic
dissemination, total ordering of events etc. Predicates that represent common con-
straints could be indexed, and stored as macros in a standard library of such predi-
cates, and the object and endpoint types would simply list such macros. The runtime
would perform type-checking by comparing such lists, and using cached known facts,
such as that a virtually synchronous channel is also best-effort reliable etc. By taking
advantage of late binding and reflection, features of .NET and of most Java platforms,
it is easy to make these mechanisms extensible in a “plug and play” manner. This will
allow developers to introduce additional formalisms down the road.

3.4 Group Types

Readers familiar with group communication [5,11] may be concerned that although our
model is fundamentally about creating and working with groups of entities (live object
proxies), the type system itself lacks a rigorous notion of a group. This actually makes
our model simpler and more generic, without preventing us from expressing group
properties. For example, to model a virtually synchronous group, we can define a pair
of endpoints channel and membership, and specify constraints on the occurrences of
events on the two endpoints, as in group communication specifications [12]. Within
groups of endpoints, one can use temporal logic formulas with operators such as eve-
rywhere and everywhere within a membership view, much as in [2,12,22]. To bind to
such a group an object would define two matching endpoints. This approach has the
advantage of generality: we can potentially express a range of group semantics.

4 Language Embeddings and Support for Composition

4.1 Language Embeddings

Our model has a good fit with modern object-oriented programming languages. There
are two aspects of this embedding. On one hand, live object code can be written in a
language like Java and C# (we will demonstrate this in Section 4.2). On the other
hand, live objects, proxies, endpoints, and connections between them are first-class
entities that can be used within C# or Java code. Their distributed types build upon
and extend the set of non-distributed types in the underlying managed environment. In
this section, we’ll discuss each of the new programming language entities we intro-
duce: references to live objects, references to proxies, references to endpoint in-
stances, and references to connections between endpoints. An example of their use is
shown in Code 1. We will conclude this section with a discussion of two more ad-
vanced mechanisms, template object references and casting operator extensions.

474 K. Ostrowski et al.

Code 1. An example piece of code in a language similar to C#, but with a simplified syntax for
legibility. Here, “ReceiveObject” is a handler of an incoming event of a live object proxy. The
event is parameterized by a live object reference “ref_object”. If the reference is to a shared
folder, the code launches a new proxy to connect to the folder’s protocol and attaches a handler
to event “AddedElement” generated by this protocol, in order to monitor this folder’s contents.

01 void ReceiveObject(ref<liveobject> ref_object) // code of an event handler
02 {
03 if (referenced_type(ref_object) is SharedFolder)
04 {
05 ref<SharedFolder> ref_folder := (ref<SharedFolder>) ref_object;
06 SharedFolder folder := dereference(ref_folder); // creates a proxy
07 external<FolderClient> folder_ep := endpoint
08 internal<FolderClient> my_ep := new_endpoint<FolderClient>();
09 my_ep.AddedElement += ...;
10 connection my_connection := connect(folder_ep, my_ep);
11 // some code to store the newly created proxy and endpoint connection references
12 }
13 }

A. References to Live Objects. Operations that can be performed on these references
include reflection (inspecting the referenced object’s type), casting, and dereferencing
(the example uses are shown in Code 1, in lines 03, 05, and 06 accordingly). Derefer-
encing results in the local runtime launching a new proxy of the referenced object
(recall from Section 3.1 that references include complete instructions for how to do
this). The proxy starts executing immediately, but its endpoints are disconnected A
reference to the new proxy is returned to the caller (in our example it is assigned to a
local variable folder). This reference controls the proxy’s lifetime. When it is dis-
carded and garbage collected, the runtime disconnects all of the proxy’s endpoints and
terminates it. To prevent this from happening, in our example code we must store the
proxy reference before exiting (we would do so in line 11).

Whereas a proxy must have a reference to it to remain active, a reference to a live
object is just a pointer to a recipe for constructing a proxy for that object, and can be
discarded at any time. An important property of object references is that they are seri-
alizable, and may be passed across the network or process boundaries between prox-
ies of the same or even different live objects, as well as stored on in a file etc. The
reference can be dereferenced anywhere in the network, always producing a function-
ally equivalent proxy – assuming, of course, that the node on which this occurs is ca-
pable of running the proxy. In an ideal world, the environmental constraints would
permit us to determine whether a proxy actually can be instantiated in a given setting,
but the world is obviously not ideal. Determining whether a live object can be derefe-
renced in a given setting, without actually doing so, is probably not possible.

The types of live object references are based on the types of live objects, which we
will define formally below. To avoid ambiguity, if Θ is a live object type, and x is a
reference to an object of type Θ, we will write ref<Θ> to refer to the type of entity x.

The semantics of casting live object references is similar to that for regular objects.
Recall that if a regular reference of type IFoo points to an object that implement IBar,
we can cast the reference to IBar even if IFoo is not a subtype of IBar, and while as a

 Programming with Live Distributed Objects 475

result the type of the reference will change, the actual referenced object will not. In a
similar manner, casting a live object reference of type ref<Θ> to some ref<Θ′> pro-
duces a reference that has a different type, and yet dereferencing either of these refer-
ences, the original one or the one obtained by casting, result in the local runtime creat-
ing the same proxy, running the same code, with the same endpoints. A reference can
be cast to ref<Θ> for as long as the actual type of the live object is a subtype of Θ.

B. References to Proxies. The type of a proxy reference is simply the type of the
object it runs, i.e. if the object is of type Θ, references to its proxies are of type Θ.
Proxy references can be type cast just like live object references. One difference be-
tween the two constructs is that proxy references are local and can’t be serialized,
sent, or stored. Another difference is that they have the notion of a lifetime, and can
be disposed or garbage collected. Discarding a proxy reference destroys the locally
running proxy, as explained earlier, and is like assigning null to a regular object refer-
ence in a language like Java. The live object is not actually destroyed, since other
proxies may still be running, but if all proxy references are discarded (and proxies
destroyed), the protocol ceases to run, as if it were automatically garbage collected.

Besides disposing, the only operation that can be performed on a proxy reference is
accessing the proxy endpoints for the purpose of connecting to the proxy. An example
of this is seen in line 07, where we request the proxy of the shared folder object to
return a reference to its local instance of the endpoint named “folder”.

C. References to Endpoint Instances. There are two types of references to endpoint
instances, external and internal. An external endpoint reference is obtained by enu-
merating endpoints of a proxy through the proxy reference, as shown in line 07. The
only operation that can be performed with an external reference is to connect it to a
single other, matching endpoint (line 10). After connecting successfully, the runtime
returns a connection reference that controls the connection’s lifetime. If this reference
is disposed, the two connected endpoints are disconnected, and the proxies that own
both endpoints are notified by sending explicit disconnect events.

An internal endpoint reference is returned when a new endpoint is programmati-
cally created using operator new (line 08). This is typically done in the constructor
code of a proxy. Each proxy must create an instance of each of the object’s endpoints
in order to be able to communicate with its environment. The proxy stores the internal
references of each of its endpoints for private use, and provides external references to
the external code per request, when its endpoints are being enumerated. Internal refer-
ences are also created when a proxy needs to dynamically create a new endpoint, e.g.
to interact with a proxy of some subordinate object that it has dynamically
instantiated.

An internal reference is a subtype of an external reference. Besides connecting it to
other endpoints, it also provides a “portal” through which a proxy that created it can
send or receive events to other connected proxies. Sending is done simply by method
calls, and receiving by registering event callbacks (line 09).

An important difference between external and internal endpoint references is that
the former could be serialized, passed across the network and process boundaries, and
then connected to a matching endpoint in the target location. The runtime can imple-
ment this e.g. by establishing a TCP connection to pass events back and forth between
proxies communicating this way. This is possible because events are serializable.

476 K. Ostrowski et al.

Internal endpoint references are not serializable. This is crucial, for it provides iso-
lation. Since any interaction between objects must pass through endpoints, and events
exchanged over endpoints must be serializable, this ensures that an internal endpoint
reference created by a proxy cannot be passed to other objects or even to other proxies
of the same object. Only the proxy that created an endpoint has access to its portal
functionality of an endpoint, and can send or receive events with it.

D. References to Connections. Connection references control the lifetime of connec-
tions. Besides disposing, the only functionality they offer is to register callbacks, to be
invoked upon disconnection. These references are not strongly typed. They may be
created either programmatically (as in line 10 in Code 1), or by the runtime during the
construction of a composite proxy. The latter is discussed in detail in Section 4.2.

E. Template Object References. Template references are similar to generics in C# or
templates in C++. Templates are parameterized descriptions of proxies; when derefer-
encing them, their parameters must be assigned values. Template types do not support
subtyping, i.e. references of template types cannot be cast or assigned to references of
other types. The only operation allowed on such references is conversion to non-
template references by assigning their parameters, as described in Section 4.2.

Template object references can be parameterized by other types and by values. The
types used as parameters can be object, endpoint, or event types. Values used as pa-
rameters must be of serializable types, just like events, but otherwise can be anything,
including string and int values, live object references, external endpoint references etc.

Example (c). A channel object template can be parameterized by the type of mes-
sages that can be transmitted over the channel. Hence, one can e.g. define a template
of a reliable multicast stream and instantiate it to a reliable multicast stream of video
frames. Similarly, one can define a template dissemination protocol based on IP mul-
ticast, parameterized with the actual IP multicast address to use. A template shared
folder containing live objects could be parameterized by the type of objects that can
be stored in the folder and the reference to the replication object it uses internally.

F. Casting Operator Extensions. This is a programmable reflection mechanism.
Recall that in C# and C++, one can often cast values to types they don’t derive from.
For example, one can assign an integer value to a floating-point type. Conversion
code is then automatically generated by the runtime, and injected into this assignment.
One can define custom casting operators for the runtime to use in such situations. Our
model also supports this feature. If an external endpoint or an object reference is cast
to a mismatching reference type, the runtime can try to generate a suitable wrapper.

Example (d). Consider an application designed to use encrypted communication. The
application has a user interface object u exposing a channel endpoint, which it would
like to connect to a matching endpoint of an encrypted channel object. But, suppose
that the application has a reference to a channel object c that is not encrypted, and that
exposes a channel endpoint of type lacking the required security constraints. When
the application tries to connect the endpoints of u and c, normally the operation would
fail with a type mismatch exception. However, if the channel endpoint of c can be
made compatible with the endpoint of u by injecting encryption code into the connec-
tion, the compiler or the runtime might generate such wrapper code instead. Notice

 Programming with Live Distributed Objects 477

that proxies for this wrapper would run on all nodes where the channel proxy runs,
and hence could implement fairly sophisticated functionality. In particular, they could
implement an algorithm for secure group key replication. In effect, we are able to
wrap the entire distributed object: an elegant example of the power of the model.

The same can be done for object references. While casting a reference, the runtime
may return a description of a composite reference that consists of the old proxy code,
plus the extra wrapper, to run side by side (we discuss composite references in Sec-
tion 4.2). In addition to encryption or decryption, this technique could be used to auto-
matically inject buffering code, code that translates between push and pull interface,
code that persists or orders events, automatically converts event data types, and so on.

Currently, our platform uses casting only to address certain kinds of binary incom-
patibilities, as explained in Section 5.2. In future work, we plan to extend the platform
to support more sophisticated uses of casting, e.g. as in the example above, and define
rules for choosing casting operators when more that one is available.

4.2 Construction and Composition

As noted in Section 4.1, a live object exists if references to it exist, and it runs if any
proxies constructed from these references are active. Creating new objects thus boils
down to creating references, which are then passed around and dereferenced to create

Code 2. An example live object reference, based on a shared document template, parameterized
by a reliable communication channel. The channel is composed of a dissemination object and a
reliability object, connected to each other via their “UnreliableChannel” endpoints, much like r
and u in Figure 2. The “ReliableChannel” endpoint of the reliability object is exposed by the
channel. The dissemination object reference is to be found as an object named “MyChannel”, of
type “Channel”, in an online repository (“Id” and “Channel” are predefined types). The refer-
ence to the repository is to be found, as an object named “QuickSilver”, of type “Folder”, i.e.
containing channels, in another online repository, the “registry” object (see Section 0).

01 parameterized object // an object based on a parameterized template
02 using template primitive object 3
03 {
04 parameter "Channel" :
05 composite object // a complex object built from multiple component objects
06 {
07 component "DisseminationObject" :
08 external object "MyChannel" as Channel
09 from external object "QuickSilver" as Folder<Id, Channel>
10 from primitive object 2 // the registry ect
11 component "ReliabilityObject" :
12 // specification of some loss recovery object, omitted for brevity
13 connection // an internal connection between a pair of component endpoints
14 endpoint "UnreliableChannel" of "DisseminationObject"
15 endpoint "UnreliableChannel" of "ReliabilityObject"
16 export // endpoints of the components to be exposed by the composite object
17 endpoint "ReliableChannel" of "ReliabilityObject"
18 }
19 }

478 K. Ostrowski et al.

running applications. Object references are hierarchical: references to complex objects
are constructed from references to simpler objects, plus logic to “glue” them together.
The construction can use four patterns, for constructing composite, external, param-
eterized, and primitive objects. We shall now discuss these, illustrating them with an
example object reference that uses each of these patterns, shown in Code 2.

A. Composite References. A composite object consists of multiple internal objects,
running side by side. When such an object is instantiated, the proxies of the internal
objects run on the same nodes (like objects r and u in Figure 2). A composite proxy
thus consists of multiple embedded proxies, one for each of the internal objects. A
composite reference contains embedded references for each of the internal proxies,
plus the logic that glues them together. In the example reference shown in lines 05 to
18 in Code 2, there is a separate section “component name : reference” for each of
the embedded objects, specifying its internal name and reference. This is followed by
a section of the form “connection endpoint1 endpoint2”, for each internal connection.
Finally, for every endpoint of some embedded internal object that is to be exposed by
the composite object as its own, there is a separate section “export endpoint”.

When a proxy is constructed from a composite reference, the references to any in-
ternal proxies and connections are kept by the composite proxy, and discarded when
the composite proxy is disposed of (Figure 3). The lifetimes of all internal proxies are
thus connected to the lifetime of the composite. Embedded objects and their proxies
thus play the role analogous to member fields of a regular object.

B. External References. An external reference is one that has not been embedded
and must be downloaded from somewhere. It is of the form “external object name as
type from reference”, where reference is a reference to the live object that represents
some online repository containing live object references, and name is the name of the
object, the reference to which is to be retrieved from this repository. The type Θ of the
retrieved object is expected to be a subtype of type, and the type of the external refer-
ence is ref<type>. One example of such a reference is shown in lines 08 to 10, and
another (embedded in the first one) in lines 09 to 10.

The repository could be any object of type Θ ≤ folder, where type folder is a built-
in type of objects with a simple dictionary-like interface. Objects of this type have an
endpoint with input event get(n) and with output events item(n, r) and missing(n).
To retrieve an external reference, the runtime creates a repository object proxy from
the embedded reference, runs it, connects to its folder endpoint, submits the get event,
and awaits response. Once the response arrives, the repository proxy can be discarded.

The “as type” clause allows the runtime to statically determine the type of the ref-
erence without having to engage in any protocol. In case of composite, parameterized,
or primitive references, the runtime can derive the type right from the description. The
“as type” clause can still be used in the other categories of references as an explicit
type cast, in case it is necessary e.g. to hide some of the object’s endpoints.

The types in the reference (such as Channel in line 08 or Folder<Id, Channel> in
line 09) could either refer to the standard, built-in types, or they could be described

 Programming with Live Distributed Objects 479

explicitly using a language based on the formalisms in Section 3.2. To keep our ex-
ample simple, we assume that all types are built-in, and we refer to them by names.

C. Parameterized References. These references are based on template objects intro-
duced in Section 4.1. They include a section “using template reference”, where
reference is an embedded template object reference, and a list of assignments to pa-
rameter values, each in a separate section of the form “parameter name : argument”,
where the argument could be a type description or a primitive value, e.g. an embed-
ded object reference. For example, the reference in Code 2 is parameterized with a
single parameter, Channel. The type of the parameter needn’t be explicitly specified,
for it is determined by the template. In our example, the template expects a live object
reference to a reliable communication channel. The specific reference used here to
instantiate this template is the composite reference in lines 05 to 18.

D. Primitive References. The types of references mentioned so far provide a means
for recursively constructing complex objects from simple ones, but the recursion
needs to terminate somewhere. Hence, the runtime provides a certain number of built-
in protocols that can be selected by a known 128-bit identifier (lines 02 and 10 in
Code 2). Of course even a 128-bit namespace is finite, and many implementations of
the live objects runtime could exist, each offering different built-in protocols. To
avoid chaos, we reserve primitive references only for objects that either cannot be
referenced using other methods, or where doing so would be too inefficient. We will
discuss two such objects: the library template and the registry object.

reliability object dissemination object

composite

internal proxies

exposed endpoint references to
internal proxies
and connection
maintained
automatically
by the runtime

composite object

1 1

0..0..

Fig. 3. A live object class diagram for the composite object in Code 2 (left) and the structure of
the composite proxy (right). When constructing a composite proxy, the runtime automatically
constructs all the internal proxies and the internal connections between them, and stores their
references in the composite proxy. Embedded proxies and connections are destroyed together
with the composite proxy. The latter can expose some of the internal endpoints as its own.

Code 3. An example live object reference for a custom protocol, implemented in a library that
can be downloaded from http://www.mystuff.com/mylibrary.dll. Objects running this protocol
are of type “MyType1”, and can be found in the library under name “MyProtocol1”. The li-
brary template provides the folder abstraction introduced in Section 0.

01 external object "MyProtocol1" as MyType1 // my own, custom implementation
02 from parameterized object // an instance of the library template
03 using template primitive object 1 // an id of a built-in library template
04 {
05 parameter "URL" : http://www.mystuff.com/mylibrary.dll
06 }

480 K. Ostrowski et al.

a1

x1

a2

x2

t1

x3

t2

y1

a3

y2

a4

y3local
multicast
object (x)

composite
multicast
object (m)

application
object (a)

tunnel
object (t)

Fig. 4. An example of a hybrid multicast object m, constructed from two local protocols x, y
that disseminate data in two different regions of the network, e.g. two LANs, combined using a
tunnel object t that acts as a repeater and replicates messages between the two LANs. Different
proxies of the composite object m, running on different nodes, are configured differently, e.g.
some use an embedded proxy of object x, while others use an embedded proxy of object y.

Code 4. A portable reference to the “hybrid” object m from Figure 4 built using the registry.

01 external object "MyChannel" as Channel
02 from external object "MyPlatform" as Folder<Id, Channel>
03 from primitive object 2 // the registry

Code 5. An example of a “proper” use of the registry, to specify a locally configured multicast
platform, which could then be used by external references like the one in Code 4. Here, the
local instance of the communication platform is configured with the address of a node that con-
trols a region of the Internet, from which other objects can be bootstrapped.

01 parameterized object
02 using template external object "MyPlatform" as Folder<Id, Channel>
03 from parameterized object // from a binary downloaded from the url below
04 using template primitive object 1 // the library template
05 { parameter "URL" : http://www.mystuff.com/mylibrary.dll }
06 { parameter "LocalController" : tcp://192.168.0.100:60000 }

D.1 Library. A library is an object of type folder, representing a binary containing
executable code, from which one can retrieve references to live objects implemented
by the binary. The library template is parameterized by URL of the location where the
binary is located (see Code 3, lines 02 to 06). The binary can be in any of the known
formats that allow the runtime to locate proxy code, object and type definitions in it,
either via reflection, or by using an attached manifest (we show one example of this in
Section 5.2). After a proxy of a library is created, the proxy downloads the binary and
loads it. When an object reference retrieved from a library is dereferenced, the library
locates the corresponding constructor in the binary, and invokes it to create the proxy.

D.2 Registry. The registry object is again a live object of type folder, i.e. a mapping
of names to object references. The registry references are stored locally on each node,
can be edited by the user, and in general, the mapping on each node may be different.
Proxies respond to requests by returning the locally stored references.

 Programming with Live Distributed Objects 481

The registry enables construction of complex heterogeneous objects that can use
different internal objects in different parts of the network, as follows

Example (e). Consider a multicast protocol constructed in the following manner:
there are two LANs, each running a local IP multicast based protocol to locally dis-
seminate messages: local multicast objects x and y (Figure 4). A pair of dedicated
machines on these LANs also run proxies of a tunneling object t, connected to proxies
of x and y. Object t acts as a “repeater”, i.e. it copies messages between x and y, so
that proxies running both of these protocols receive the same messages. Now, con-
sider an application object a, deployed on nodes in both LANs, and having some of its
proxies connected to x, and some to y. From the point of view of object a, the entire
infrastructure consisting of x, y, and t could be thought of as a single, composite mul-
ticast object m. Object m is heterogeneous in the sense that its proxies on different
machines have a different internal structure: some have an embedded object x and
some are using y. Logically, however, m is a single protocol and we’d like to be able
to fully express it in our model. The problem stems from the fact that on one hand,
references to m must be complete descriptions of the protocol, so they should have
references to x and y embedded, yet on the other hand, references containing local
configuration details are not portable. The registry object solves this problem by in-
troducing a level of indirection (Code 4).

The reader might be concerned that the portability of live objects is threatened by
use of the registry. References that involve registry now rely on all nodes having
properly configured registry entries. For this reason, we use the registry sparingly, just
to bootstrap the basic infrastructure. Objects placed in the registry would represent the
entire products, e.g. “the communication infrastructure developed by company XYZ”,
and would expose the folder abstraction introduce earlier, whereby specific infra-
structure objects can be loaded. An example of such proper use is shown in Code 5.

5 System

5.1 Embedding Live Objects into the Operating System Via Drag and Drop

Our implementation of the live object runtime runs on Microsoft Windows2 with
.NET Framework 2.0. The system has two major components: an embedding of live
objects into Windows drag and drop technologies, discussed here, and embedding of
the new language constructs into .NET, discussed in Section 5.2.

Our drag and drop embedding is visually similar to Croquet [53] and Kansas [54],
and mimics that employed in Windows Forms, tools such as Visual Studio (or similar
ones for Java), and in the Object Linking and Embedding (OLE) [8], XAML [40], and
ActiveX standards used in Microsoft Windows to support creation of compound doc-
uments with embedded images, spreadsheets, drawings etc. The primary goal is to en-
able non-programmers to create live collaborative applications, live documents, and
business applications that have complex, hierarchical structures and non-trivial internal
logic, just by dragging visual components and content created by others from toolbars,
folders, and other documents, into new documents or design sheets.

2 Porting our system from C#/.NET to Mono, to run under Linux, or building a Java/J2EE ver-

sion of the runtime, shouldn’t be a problem, but we haven’t yet undertaken this task.

482 K. Ostrowski et al.

Our hope is that a developer who understands how to create a web page, and un-
derstands how to use databases and spreadsheets as part of their professional activi-
ties, would use live objects to glue together these kinds of components, sensors cap-
turing real-world data, and other kinds of information to create content-rich applica-
tions, which can then be shared by emailing them to friends, placing them in a shared
repository, or embedding them into standard productivity applications.

Live object references are much like other kinds of visual components that can be
dragged and dropped. References are serialized into XML, and stored in files with a
“.liveobject” extension. These “.liveobject” files can easily be moved about. Thus,
when we talk about emailing a live application, one can understand this to involve
embedding a serialized object reference into an HTML email. On arrival the object
can be activated in place. This involves deserializing the reference (potentially run-
ning online repository protocols to retrieve some of its parts), followed by analysis of
the object’s type. Live objects can also be used directly from the desktop browser
interface. We configured the Windows shell to interpret actions such as doubleclick
on “.liveobject” files by passing the XML content of the file to our subsystem, which
processes it as described above. Note that although our discussion has focused on GUI
objects, the system also supports services that lack user interfaces.

We have created a number of live object templates based on reliable multicast pro-
tocols, including 2-dimensional and 3-dimensional desktops, text notes, video streams,
live maps, and 3-dimensional objects such as airplanes and buildings. These can be
mashed up to create live applications such as the ones on our web site (Figure 5).

Although the images in Figure 5 are evocative of multi-user role-playing systems
such as Second Life, Live Objects differ in important ways. In particular, live objects
can run directly on the user nodes, in a peer-to-peer fashion. In contrast, systems such
as Second Life are tightly coupled to the data centers on which the content resides and
is updated in a centralized manner. In Second Life, the state of the system lives in that
data center. Live objects keep state replicated among users. When a new proxy joins,
it must obtain some form of a checkpoint to initialize itself, or starts in a null state.

As noted earlier, live objects support drag and drop. The runtime initiates a drag by
creating an XML to represent the dragged object’s reference, and placing it in a clip-
board. When a drop occurs, the reference is passed on to the application handling the
drop. The application can store it as XML, or it can deserialized it, inspect the type of
the dropped object, and take the corresponding action based on that. For example, the
spatial desktop on Figure 5, only supports objects with a 3-dimensional user interface.
Likewise, the only types of objects that can be dropped onto airplanes are those that
represent textures or streams of 3-dimensional coordinates. The decision in each case
is made by the application logic of the object handling the drop.

Live objects can also be dropped into OLE-compliant containers, such as Microsoft
Word documents, emails, spreadsheets, or presentations. In this case, an OLE compo-
nent is inserted with an embedded XML of the dragged object’s reference. When the
OLE component is activated (e.g. when the user opens the document), it invokes the live
objects runtime to construct a proxy, and attaches to its user interface endpoint (if there
is one). This way, one can create documents and presentations, in which instead of static
drawings, the embedded figures can display content powered by any type of a distrib-
uted protocol. Integration with spreadsheets and databases is also possible, although a

 Programming with Live Distributed Objects 483

little trickier because these need to access the data in the object, and must trigger actions
when a new event occurs.

As mentioned above, one can drag live objects into other live objects. In effect, the
state of one object contains a reference to some other live object. This is visible in the
desktop example on Figure 5. This example illustrates yet another important feature.
When one object contains a reference to another (as is the case for a desktop contain-
ing references to objects dragged onto it), it can dynamically activate it: dereference,
and connect to the proxy of the stored object, and interact with the proxy. For exam-
ple, the desktop object automatically activates references to all visual objects placed
on it, so that when the desktop is displayed, so are all objects, the references of which
have been dragged onto the desktop.

airplane
object

space
object

building
object

map
object

text note
object

image
object

desktop
object

Fig. 5. Screenshots of our platform running live objects with an attached user interface logic.
The 3-dimensional space, the area map embedded in this space, as well as each of the airplanes
and buildings (left) is a separate live object, with its own embedded multicast channel. Simi-
larly, the green desktop, and the text notes and images embedded in it are independent live
objects. Each of these objects can be viewed and accessed from anywhere on the network, and
separately embedded in other objects to create various web-style mash-ups, collaborative edi-
tors, online multiplayer games, and so on. Users create these by simply dragging objects into
one another. Our download site includes a short video demonstrating the ease with which appli-
cations such as these can be created.

By now, the reader will realize that in the proposed model, individual nodes might
end up participating in large numbers of distributed protocol instances. Opening a live
document of the sort shown on Figure 5 can cause the user’s machine to join hundreds
of instances of a reliable, totally ordered multicast protocol with state transfer, which
support the objects embedded in the document. This might lead to scalability con-
cerns. In our prior work we demonstrated that this problem is not a showstopper. Our
Quicksilver Scalable Multicast (QSM) system [46], can support thousands of overlap-
ping multicast groups, communicating at network speeds with low overhead.

5.2 Embedding Live Object Language Constructs into .NET Via Reflection

Extending a platform such as .NET to support the new constructs discussed in Section
4.1 would require extending the underlying type system and runtime, thus precluding
incremental deployment. Instead, we leverage the .NET reflection mechanism to im-
plement dynamic type checking. This technique doesn’t require modifications to the

484 K. Ostrowski et al.

.NET CLR, and it can be used for other managed environments, such as Java. The key
idea is to use ordinary .NET types as “aliases” representing our distributed types.
Whenever such an alias type is used in a .NET code, the live objects runtime “under-
stands” that what is “meant” by the programmer is actually the distributed type. Ali-
ases are defined by decorating.NET types with attributes, as in Code 6 and Code 7.

Example (f). Consider a template object type channel for multicast channels, param-
eterized by the .NET type of the messages that can be transmitted. One defines an alias
type as a .NET interface annotated with ObjectTypeAttribute (Code 6, line 01).
When a library object (of Section 4.2) loads a new binary, the runtime scans the binary
for .NET types annotated this way and registers them on its internal list of aliases.

Code 6. A .NET interface can be associated with a live object type using an “ObjectType” at-
tribute (line 01). The interface may then be used anywhere to represent the represented live
object type. The live objects runtime uses reflection to parse such annotations in binaries it
loads and build a library of built-in objects, object types and templates. Object and type tem-
plates are defined by specifying and annotating generic arguments (line 03).

01 [ObjectTypeAttribute]
02 interface IChannel<
03 [ParameterAttribute(ParameterClass.ValueClass)] MessageType>
04 {
05 [EndpointAttribute("Channel")] EndpointTypes.IDual<
06 Interfaces.IChannel<MessageType>,
07 Interfaces.IChannelClient<MessageType>>
08 ChannelEndpoint { get; }
09 }

Parameters of the represented live object type are modeled as generic parameters of
the alias. Each generic parameter is annotated with Parameter Attribute (line 03), to
specify the kind of parameter it represents. The classes of parameters supported by the
runtime include Value, ValueClass, ObjectClass, EndpointClass, and others we won’t
discuss here. Value parameters are simply serializable values, including .NET types or
references to live objects, The others represent the types of values, types of live ob-
jects and types of endpoints. For example, we could define a live object type template
parameterized by the type of another live object. A practical use of this is a typed
folder template, i.e. a folder that contains only references to live objects of a certain
type. For example, an instance of this template could be a folder that contains reliable
communication channels of a particular type. Another good example is a factory ob-
ject that creates references of a particular type, e.g. an object that configures new reli-
able multicast channels in a multicast platform.

An alias interface for a live object type is expected to specify only .NET properties,
each annotated with EndpointAttribute (line 05). Each property defines one named
endpoint for all live objects of this type. The property can only have a getter (line 08),
which must return a value of a .NET type that is an alias for some endpoint type. The
example in Code 6 uses alias EndpointTypes.IDual<Interface1, Interface2>. This
is an alias template built into the runtime, but parameterized by two .NET interfaces.

 Programming with Live Distributed Objects 485

Code 7. A live object template is defined by decorating a generic class definition (line 01), its
generic class parameters (line 03), and constructor parameters (line 08) with .NET attributes.
To specify the template live object’s type, the class must implement an interface that is anno-
tated to represent a live object type (line 04 referencing the definition shown in Code 6). In the
body of the class, we create endpoints to be exposed by the proxy (created in lines 11-12, ex-
posed in lines 19-25), handle incoming events (line 27) and send events through its endpoints.

01 [ObjectAttribute("89BF6594F5884B6495F5CD78C5372FC6")]
02 sealed class MyChannel<
03 [ParameterAttribute(ParameterClass.ValueClass)] MessageType>
04 : ObjectTypes.IChannel<MessageType>, // specifies the live object type
05 Interfaces.IChannel // we implement handlers to all incoming events, see line 12
06 {
07 public MyChannel(
08 [Parameter(ParameterClass.Value)] // also a parameter of the template
09 ObjectReference<ObjectTypes.IMembership> membership_reference)
10 {
11 this.myendpoint = new Endpoints.Dual<
12 Interfaces.IChannel, Interfaces.IChannelClient>(this);
13 ... // the rest of the constructor would contain code very similar to that in Code 1
14 }
15 // this is our internal reference to the channel endpoint
16 private Endpoints.Dual<
17 Interfaces.IChannel, Interfaces.IChannelClient> myendpoint;
18
19 EndpointTypes.IDual<
20 Interfaces.IChannel<MessageType>,
21 Interfaces.IChannelClient<MessageType>>
22 ObjectTypes.IChannel.ChannelEndpoint
23 {
24 get { return myendpoint; } // returns an external endpoint reference
25 }
26 // this is a handler for one of the incoming events of the channel endpoint
27 Interfaces.IChannel.Send(MessageType message) { ... } // details omitted
28 ... // the rest of the alias definition, containing all the other event handlers etc.
29 }

The methods defined by these interfaces, again accordingly annotated, are used by the
runtime to compile the list of this endpoint’s incoming and outgoing events, and simi-
lar annotations can be used to express its constraints. When the alias defined this way
is used in some context with its generic parameters assigned (lines 05-07), the runtime
treats it as an alias for the specific endpoint type, with the specific events defined by
those interfaces.

Having defined the object’s type, we can define the object itself. This is again done
via annotations. An example definition of a live object template is shown in Code 7.

A live object template is defined as a .NET class, the instances of which represent
the object’s proxies. The class is annotated with ObjectAttribute (line 01) to instruct
the runtime to build a live object definition from it. This template has two parameters:
the type parameter representing the type of messages carried by the channel (line 03),
and a “value” parameter - the reference to the membership object that this channel

486 K. Ostrowski et al.

should use (lines 08-09). To specify the type of the live object, line 03 inherits from
an alias. This forces our class to implement properties returning the appropriate end-
points (lines 19-25). The actual endpoints are created in the constructor (lines 11-12).
While creating endpoints, we connect event handlers for incoming events (hooking
itself up, in line 12, and implementing these handlers, as in line 27).

While the use of aliases is convenient as a way of specifying distributed types, alias
types are, of course, not distributed, and the .NET runtime doesn’t understand subtyp-
ing rules we defined in Section 3.2. The actual type checking is done dynamically.
When the programmer invokes a method of a .NET alias to request a type cast, or to
create a connection between endpoints, the runtime uses its internal list of aliases to
identify the distributed types involved and performs type checking by itself. The
physical .NET types of aliases are irrelevant. Indeed, if the runtime determines that
two different .NET types are actually aliases for the same distributed type, it will in-
ject a wrapper code, as demonstrated below.

Example (g). Suppose that binary Foo.dll defines an object type alias IChannel as in
Code example 6, and an object template alias MyChannel as in Code example 7.
Now, suppose that a different, unrelated binary Bar.dll also defines an alias IChannel
in exactly the same way, as in Code 6, and then uses this alias, e.g. in the definition of
an application object that could use channels of the corresponding distributed type. If
both binaries are loaded by the live objects runtime, we will end up with two distinct,
binary-incompatible .NET aliases IChannel, representing the same distributed type.
Whenever the programmer makes an assignment between these two types, the runtime
dynamically creates, compiles, and injects the appropriate wrapper to forward method
calls between the incompatible interfaces, to make the assignment legal in .NET.

6 Conclusions

Our paper described the architecture and implementation of a system supporting live
distributed objects, a strongly typed, object-oriented platform in which distributed
protocols are treated as first-class objects. The platform is working and quite versatile,
but is still a work in progress. Future challenges include implementing our security
and WAN architectures (designed but not yet operational), providing runtime moni-
toring and debugging tools, and automated self-configuration and tuning.

Acknowledgements. Our work was funded by AFRL/IF, AFOSR, NSF, I3P and In-
tel. We’d like to thank Mahesh Balakrishnan, Kathleen Fisher, Paul Francis, Lakshmi
Ganesh, Rachid Guerraoui, Chi Ho, Maya Haridasan, Annie Liu, Tudor Marian, Greg
Morrisett, Andrew Myers, Anil Nerode, Robbert van Renesse, Yee Jiun Song, Einar
Vollset, and Hakim Weatherspoon for the feedback they provided.

References

1. de Alfaro, L., Henzinger, T.: Interface automata. SIGSOFT Softw. Eng. Notes 26, 5 (2001)
2. Anceaume, E., Charron-Bost, B., Minet, P., Toueg, S.: On the Formal Specification of

Group Membership Services. Cornell University Tech. Report TR95-1534 (August 1995)

 Programming with Live Distributed Objects 487

3. Andrews, T., et al.: Business Process Execution Language for Web Services v1.1. May
(2003), http://download.boulder.ibm.com/ibmdl/pub/software/dw/
specs/ws-bpel/ws-bpel.pdf

4. Banerji, A., et al.: Web Services Conversation Language (WSCL),
http://www.w3.org/TR/wsc110

5. Birman, K.: The Process Group Approach to Reliable Distributed Computing. Communi-
cations of the ACM 36(12), 37–53 (1993)

6. Birrell, A., Nelson, G., Owicki, S., Wobber, W.: Network Objects. In: SOSP 1993
7. Brand, D., Zafiropulo, P.: On communicating finite-state machines. JACM, 30(2) (1983)
8. Brockschmidt, K.: Inside OLE. Microsoft Press (1995)
9. Burrows, M., Abadi, M., Needham, R.: A Logic of Authentication. TOCS 8(1), 18–36

(1990)
10. Carriero, N., Gelernter, D.: Linda in Context. CACM 32(4), 444–458 (1989)
11. Cheriton, D., Zwaenepoel, W.: Distributed Process Groups in the V Kernel. ACM Trans-

actions on Computer Systems 3(2), 77–107 (1985)
12. Chockler, G., Keidar, I., Vitenberg, W.: Group Communication Specifications: A Com-

prehensive Study. ACM Computer Surveys 33(4):1, 43 (2001)
13. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Description

Lan-guage (WSDL). W3C Note 15 March (2001), http://www.w3.org/TR/wsdl
14. Eugster, P., Guerraoui, R.: On Objects and Events. In: OOPSLA 2001, pp. 254–269 (2001)
15. Eugster, P., Guerraoui, R.: Distributed Programming with Typed Events. IEEE Soft-

ware 21(2), 56–64 (2004)
16. Eugster, P., Damm, H., Guerraoui, R.: Towards Safe Distributed Application Develop-

ment. In: ICSE 2004, pp. 347–356 (2004)
17. Eugster, P., Guerraoui, R., Sventek, J.: Distributed Asynchronous Collections: Abstrac-

tions for Publish/Subscribe Interaction. In: Bertino, E. (ed.) ECOOP 2000. LNCS,
vol. 1850, pp. 252–276. Springer, Heidelberg (2000)

18. Fu, X., Bultan, T., Su, J.: Conversation Specification: A New Approach to Design and
Anal-ysis of E-Service Composition. In: WWW 2003, Budapest, Hungary, May 20-24
(2003)

19. Fuzzati, R., Nestmann, U.: Much Ado About Nothing. In: Algebraic Process Calculi, the
First Twenty Five Years and Beyond. Process algebra,
http://www.brics.dk/NS/05/3/

20. Garbinato, B., Guerraoui, R.: Using the Strategy Pattern to Compose Reliable Distributed
Protocols. In: Proceedings of 3rd USENIX COOTS, Portland, Oregon (June 1997)

21. Goldberg, A., Robson, D.: Smalltalk-80: the language and its implementation. Addison-
Wesley Longman Publishing Co., Inc., Boston (1983)

22. Halpern, J., Fagin, R., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press,
Cambridge (1995)

23. Hickey, J., Lynch, N., van Renesse, R.: Specifications and proofs for Ensemble layers. In:
Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579, Springer, Hei-
delberg (1999)

24. Hoare, C.: Communicating sequential processes. CACM 21(8), 666–677 (1978)
25. Jul, E., Levy, H., Hutchinson, N., Black, A.: Fine-Grained Mobility in the Emerald Sys-

tem. ACM TOCS 6(1), 109–133
26. Karr, D.: Specification, Composition, and Automated Verification of Layered Communi-

cation Protocols. Ph.D. Thesis. Cornell University (1997)

488 K. Ostrowski et al.

27. Keidar, I., Khazan, R., Lynch, N., Shvartsman, A.: An inheritance-based technique for
building simulation proofs incrementally. ACM Trans. Soft. Eng. Methodol. 11(1), 63–91
(2002)

28. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin,
J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997.
LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

29. Krumvieda, C.: Distributed ML: Abstractions for Efficient and Fault-Tolerant Prgram-
ming. Technical Report, TR93-1376, Cornell University (1993)

30. Lamport, L.: The Temporal Logic of Actions. ACM Toplas 16(3), 872–923 (1994)
31. Liskov, B.: Distributed Programming in Argus. CACM 31(3), 300–312 (1988)
32. Liskov, B., Schieffler, R.: Guardians and Actions: Linguistic Support for Robust, Distrib-

uted Programs. ACM TOPLAS 5, 3 (1983)
33. Liu, X., Kreitz, C., van Renesse, R., Hickey, J., Hayden, M., Birman, K., Constable, R.:

Building Reliable, High-Performance Communication Systems from Components. In:
SOSP (1999)

34. Live Objects at Cornell, http://liveobjects.cs.cornell.edu/
35. Loesing, K., Wirtz, G.: An Implementation of Reliable Group Communication Based on

the Peer-to-Peer Network JXTA. In: AICCSA 2005 (2005)
36. Lynch, N., Tuttle, M.: Hierarchical correctness proofs for dist.ributed algorithms. In:

PODC 1987 (1987)
37. Maffeis, S., Schmidt, D.: Constructing Reliable Distributed Communication Systems with

CORBA. IEEE Communications Magazine 14 (February 1997)
38. Makpangou, M., Gourhant, Y., Le Narzul, J.-P., Shapiro, M.: Fragmented Objects for Dis-

tri-buted Abstractions, pp. 170–186. IEEE Computer Society Press, Los Alamitos (1994)
39. Microsoft. Microsoft Office Groove, http://office.microsoft.com/en-us/groove/
40. Microsoft. XAML Overview, http://msdn2.microsoft.com/en-us/library/ms752059.aspx
41. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, parts I and II. LFCS

Report 89-85. University of Edinburgh (June 1989)
42. Miranda, H., Pinto, A., Rodrigues, L.: Appia, a Flexible Protocol Kernel Supporting Mul-

tiple Coordinated Channels. In: Proc. of 21st ICDCS, Phoenix, Arizona, pp. 707–710
(2001)

43. Montresor, A., Davoli, R., Babaoglu, O.: Enhancing Jini with group communication. In:
ICDCS Workshop, April 2001, pp. 69–74 (2001)

44. Necula, G.: Proof-Carrying Code. ACM SIGPLAN-SIGACT POPL 1997 (1997)
45. O’Malley, S., Peterson, L.: A Dynamic Network Architecture. TOCS 10(2), 110–143

(1992)
46. Ostrowski, K., Birman, K., Dolev, D.: Quicksilver Scalable Multicast. In: 7th IEEE Inter-

national Symposium on Network Computing and Applications (IEEE NCA 2008) (to ap-
pear, 2008)

47. Ostrowski, K., Birman, K., Dolev, D.: Declarative Reliable Multi-Party Protocols. Cornell
University Technical Report, TR2007-2088 (March 2007)

48. Ostrowski, K., Birman, K., Dolev, D.: Extensible Architecture for High-Performance,
Scalable, Reliable Publish-Subscribe Eventing and Notification. JWSR v. 4, no 4 (Octo-
ber- December 2007)

49. Parastatidis, S., Webber, J., Woodman, S., Kuo, D., Greenfield, P.: SOAP Service Descrip-
tion Language (SSDL). Technical Report, University of Newcastle, CS-TR-899 (2005)

50. Reiter, M., Birman, K.: How to securely replicate services. In: TOPLAS, vol. 16(3), pp.
986–1009 (1994)

 Programming with Live Distributed Objects 489

51. van Renesse, R., Birman, K., Hayden, M., Vaysburd, A., Karr, D.: Building Adaptive Sys-
tems Using Ensemble. Software Practice and Experience. 28(9), pp. 963-979 (August
1998)

52. Schneider, F.: Implementing Fault-Tolerant Services Using the State Machine Approach: a
Tutorial. ACM Computng Surveys 22(4), 299–319 (1990)

53. Smith, D., Kay, A., Raab, A., Reed, D.: Croquet: a collaboration system architecture. Cre-
ating, Connecting and Collaborating Through Computing, C5 2003, p. 2–9 (2003)

54. Smith, R., Wolczko, M., Ungar, D.: From Kansas to Oz: Collaborative Debugging When a
Shared World Breaks. CACM, 72–78 (1997)

55. Snyder, A.: Encapsulation and Inheritance in Object-Oriented Programming Languages.
In: OOPLSA 1986

56. van Steen, M., Homburg, P., Tanenbaum, A.: Globe: A Wide Area Distributed System.
IEEE Concurrency 7(1), 70–78 (1999)

57. Sun Microsystems, Inc. JXTA v2.0 Protocols Specification, http://www.jxta.org
58. Waldo, J.: The Jini architecture for network-centric computing. CACM 42(7), 76–82

(1999)

	Programming with Live Distributed Objects
	Motivation
	Prior Work
	Model
	Objects and Their Interactions
	Defining Distributed Types
	Constraint Formalisms
	Group Types

	Language Embeddings and Support for Composition
	Language Embeddings
	Construction and Composition

	System
	Embedding Live Objects into the Operating System Via Drag and Drop
	Embedding Live Object Language Constructs into .NET Via Reflection

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

