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Abstract. Let f = gt + ht be the optimal decomposition for calculating the
exact value of the K-functional K(t, f ; X) of an element f with respect to a

couple X = (X0, X1) of Banach lattices of measurable functions. It is shown
that this decomposition has a rather simple form in many cases where one of
the spaces X0 and X1 is either L∞ or L1. Many examples are given of couples
of lattices X for which |gt| increases monotonically a.e. with respect to t . It
is shown that this property implies a sharpened estimate from above for the
Brudnyi-Krugljak K-divisibility constant γ(X) for the couple. But it is also

shown that certain couples X do not have this property. These also provide
examples of couples of lattices for which γ(X) > 1.

1. Introduction

Let X0 and X1 be Banach lattices of (equivalence classes of) real valued mea-
surable functions on the same measure space (Ω,Σ, µ). It is well known (see e.g.
[13] pp. 40-42 or Remark 1.41 of [10]) that that X0 and X1 form a Banach couple
X = (X0, X1) in the sense of interpolation theory ([4] p. 24, [5] p. 91).

A basic notion in the study of interpolation spaces with respect to any Banach
couple A = (A0, A1) is the Peetre K-functional, defined for each f ∈ A0 + A1 and
each t > 0 by:

K(t, f ;A) = inf {‖g‖A0 + t‖h‖A1 : g ∈ A0, h ∈ A1, g + h = f} .(1)

The norms of many interpolation spaces are obtained by composing the K-
functional with suitable lattice norms defined on functions on (0,∞). For many
couples A, all interpolation space norms with respect to A can be obtained in this
way.

There is a rather extensive literature devoted to the calculation of K-functionals
for particular couples. In many cases there are concrete formulæ for functionals
which are equivalent to K(t, f ;A), i.e. the constants of equivalence are independent
of f and t. Furthermore, for a number of specific couples, an explicit and exact
formula has been obtained for the K-functional for each element f ∈ A0 + A1 and
it is also possible to describe elements gt and ht for which the infimum in (1) is
attained, i.e.

f = gt + ht, gt ∈ A0, ht ∈ A1 and K(t, f ;A) = ‖gt‖A0 + t‖ht‖A1 .(2)

See e.g. [1], [2], [11] Lemma 4.1, [16] and [19]. It will be convenient to refer to any
pair of families {gt}t>0 and {ht}t>0 satisfying f = gt + ht, gt ∈ A0 and ht ∈ A1 for
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some fixed f ∈ A0 + A1 and for each t > 0 as a decomposition of f . We shall also
use the notation {f = gt + ht}t>0. Such a decomposition will be called an optimal
decomposition of f if it satisfies (2) for each t > 0.

Every optimal decomposition {f = gt + ht}t>0 of any given element f has the
property that

t �→ ‖gt‖A0
is non decreasing and t �→ ‖ht‖A1

is non increasing on (0,∞).(3)

Let us describe a slightly more general result which implies (3) and which holds
also if f does not have an optimal decomposition: For each fixed t > 0 there
always exist sequences of functions {gn.t}n∈N

and {hn.t}n∈N
, in A0 and A1 re-

spectively such that f = gn,t + hn,t and K(t, f ;A) ≤ ‖gn,t‖A0
+ t ‖hn,t‖A1

≤(
1 + 1

n

)
K(t, f ;A). By passing if necessary to subsequences, we can suppose that

the limits x(t) = limn→∞ ‖gn,t‖A0
and y(t) = limn→∞ ‖hn,t‖A1

both exist. Then
x(t) + ty(t) = K(t, f ;A). Every pair of functions x(t) and y(t) obtained for each
t > 0 in this way satisfies

x(t) is non decreasing and y(t) is non increasing on (0,∞).(4)

The validity of the condition (4) and so also of (3) is rather well known. It can
be deduced from an examination of the Gagliardo diagram (cf. e.g. [4] p. 39). For
the reader’s convenience, we also provide an explicit proof at the end of this section.
(See Remark 1.9.)

For quite a number of previously studied particular Banach couples which are
couples of lattices, there always exist optimal decompositions which have a certain
monotonicity property, which is in some sense a “refinement” of (3). This property,
which will be our main object of study here, is described precisely in the following
definition:

Definition 1.1. Let X = (X0, X1) be a couple of Banach lattices of measurable
functions on the measure space (Ω,Σ, µ). A decomposition {f = gt + ht}t>0 of an
element f ∈ X0 + X1 is said to be monotone if, for a.e. ω ∈ Ω, it satisfies

|gs(ω)| ≤ |gt(ω)| whenever 0 < s < t.

The couple X is said to be exactly monotone if every f ∈ X0 +X1 has a monotone
optimal decomposition.

In this paper we shall identify a number of exactly monotone couples. These
include couples of Lp spaces (in Sections 2 and 6), and of certain Lorentz spaces,
and also couples of the form (B,L∞) for “most” Banach lattices B. (Section 2).
They also include the couple (L1, X) for “most” rearrangement invariant spaces X.
(Section 5). We also show (Section 3) that (X0, X1) is exactly monotone whenever
the dimension of X0 +X1 is no greater than 2. On the other hand we give examples
(Section 4) of couples (X0, X1) which are not exactly monotone. These, too, can
be finite dimensional. In fact, in our examples, the dimension of X0 + X1 is 3.

In some of our examples in Sections 2 and 6 we will also consider weighted
Banach lattices:

Definition 1.2. Given any measure space (Ω,Σ, µ), we shall use the usual termi-
nology weight function for any measurable u : Ω → (0,∞). For each Banach lattice
X of measurable functions on (Ω,Σ, µ) and each weight function u, we shall use
the usual notation Xu for the weighted Banach lattice consisting of all measurable
functions f on Ω such that fu ∈ X. It is normed by ‖f‖Xu

= ‖fu‖X .
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Remark 1.3. If p, q ∈ [1,∞] with p 
= q, then many results about the couple of
weighted Lp spaces (Lpu, L

q
v) on a given measure space (Ω,Σ, µ) can be deduced

from corresponding results for the “unweighted” couple (Lp(ν), Lq(ν)) on the same
measurable space (Ω,Σ) equipped with a suitably chosen different measure ν. This
can be done using a positive one to one linear mapping introduced by Stein and
Weiss (See [21] pp. 162-163, Lemma 2.6.) which is simultaneously an isometry of
Lpu(µ) onto Lp(ν) and of Lqv(µ) onto Lq(ν). (Cf. also [7] Corollary 2, p. 234.)

The exact monotonicity of a couple implies that it has other special properties.
We give one explicit illustration of this in Section 7, where we investigate the
relationship between exact monotonicity and the size of the K-divisibility constant.
This is the constant γ = γ(X) which is the infimum of all values of the constant
appearing in the important “K-divisibility theorem” of Brudnyi and Krugljak (see
[5] p. 325 or the beginning of Section 7 below). Moreover γ(X) is also the infimum of
all values of the constant appearing in the strong form of the “fundamental lemma
of interpolation theory” (see [9] and also Remarks 1.34 and 1.36 and Proposition
1.40 of [10]). We show that γ(X) ≤ 4 whenever X is exactly monotone. This is an
improvement (for such couples) of the sharpest result obtained thus far for general
couples, namely that γ(X) ≤ 3 + 2

√
2 (see [9]). It is relevant to note that, on p.

492 of [5], Brudnyi and Krugljak claim that there are sound reasons to believe that
γ(X) ≤ 4 for all couples X.

In some cases, rather than using exact monotonicity to obtain better estimates
for the constant γ(X), we can, conversely, use information about γ(X) to deduce
that X has a property related to exact monotonicity. In particular, if γ(X) = 1 for
some couple X of Banach lattices, then X is “almost exactly monotone” in a sense
which we will define now, via a slight generalization of the notion of an exactly
monotone couple.

Definition 1.4. A couple X of Banach lattices of measurable functions on a mea-
sure space (Ω,Σ, µ) is λ-monotone for some number λ ≥ 1 if, for each f ∈ X0 +X1,
there exists a decomposition {f = gt + ht}t>0 such that, at almost every ω ∈ Ω,
the function t �→ |gt(ω)| is non decreasing and

‖gt‖X0 + t‖ht‖X1 ≤ λK(t, f ;X)(5)

for all t ∈ (0,∞).
The couple X is almost exactly monotone if it is λ-monotone for every λ > 1.

Remark 1.5. It is very easy to see that a couple (X0, X1) is λ-monotone if and only
if the corresponding weighted couple (X0,u, X1,u) is λ-monotone for any, or every,
weight function u.

The property of λ-monotonicity is also related (see Proposition 7.5 below) to an-
other property of the K-functional for arbitrary couples of Banach lattices, namely
that:

(*) For some constant C = C(X) and each f ∈ X0 + X1, there exists an
increasing family {Et}t>0 of measurable subsets of Ω (depending on f) such that

K(t, f ;X) ≤ ‖fχEt‖X0 + t‖f(1 − χEt)‖X1 ≤ CK(t, f ;X) for each t > 0.(6)

This property is established in Theorem 4.1 of [10] and plays an important rôle in
the general results of [10]. It has also been obtained independently by Brudnyi and
Krugljak. ([5] p. 599 Lemma 4.4.30 pp. 603-605).
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Remark 1.6. If f is a non-negative function in X0 + X1 and it has a decompo-
sition {f = gt + ht}t>0, then the new decomposition {f = Gt + Ht}t>0 obtained
by setting Gt = min {f, |gt|} and Ht = f − Gt satisfies ‖Gt‖X0

≤ ‖gt‖X0
and

‖Ht‖X1
≤ ‖ht‖X1

and also 0 ≤ Gt ≤ f . Using this and other obvious facts, it is
easy to see that a couple X of Banach lattices is λ-monotone if and only if for each
non-negative function f ∈ X0 + X1 and each t > 0 there exist non-negative func-
tions gt and ht such that f = gt + ht and, at almost every point of the underlying
measure space, gt is non decreasing with respect to t and (5) holds.

For such a decomposition we also of course have that ht is non increasing with
respect to t at almost every point of the underlying measure space. This observation
enables us to immediately see that the couple (X0, X1) is λ-monotone if and only
if the “reversed” couple (X1, X0) is λ-monotone.

It follows almost immediately from the definition that γ(X) ≥ 1 for all couples X.
It is also known that γ(X) = 1 for certain special couples. In particular the couples
(Lpu, L

q
v), where u and v denote arbitrary weight functions and the exponents p and

q are each either 1 or ∞, satisfy γ (Lpu, L
q
v) = 1. (We refer to [5] p. 335, Proposition

3.2.13 for the proof in the cases where p = q. The case where p 
= q and both u
and v are identically 1 is proved in [12] or by (an obvious generalization of) the
proof of Lemma 5.2 of [10] p. 44. To extend this case to general u and v we use the
mapping of Stein-Weiss. (Remark 1.3).)

It is also easy to show (see Section 2 for details) that these same couples (Lpu, L
q
v),

for p and q as above, are all exactly monotone. We shall extend this latter result
(in Section 6) by showing that (Lpu, L

q
v) is exactly monotone for all values of p, q in

[1,∞].

Remark 1.7. It is known that γ(A) > 1 for certain couples A = (A0, A1) of Banach
spaces (which apparently cannot be represented as couples of Banach lattices on
a measure space). This was first shown in [14] for the couple A = (C,C1) and it
was subsequently shown in [17] that this same couple satisfies γ(A) ≥ 3+2

√
2

1+2
√

2
. A

different approach in [20] produced a couple A = (A0, A1) for which γ(A) = 3+2
√

2
1+2

√
2
.

Here A0 is R2 equipped with the �∞ norm and A1 is a one dimensional subspace
of R2 whose unit ball is a line segment which makes an angle of π

8 with one of
the coordinate axes. Furthermore it was shown in [20] that γ(A) ≤ 3+2

√
2

1+2
√

2
for

all couples A such that A0 ⊂ R2 and A1 ⊂ R2. Our results here enable us to
produce the apparently first known examples of couples of lattices X which satisfy
γ(X) > 1. (See Corollary 7.3.)

Let us recall one more notion which will be needed later:

Definition 1.8. Let A = (A0, A1) be a Banach couple. For j = 0, 1 the Gagliardo
completion of Aj , which we denote by A∼

j is the set of elements a ∈ A0 +A1 which
are limits in A0 + A1 norm of bounded sequences in Aj or, equivalently, for which
‖a‖A∼

j
= supt>0 K(t)/tj is finite.

We refer e.g. to [11] and also [10] for examples and more details concerning
Gagliardo completions.

Remark 1.9. As promised above, we close this section with a proof of (4) and (3):
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For each t > 0 let Pt be the point (x(t), y(t)) ∈ R2 and let Lt be the line{
(x, y) ∈ R2 : x + ty = K(t, f ;A)

}
which passes through Pt. Now let us make an

arbitrary choice of s and t such that 0 < s < t and show that

x(t) ≥ x(s) and y(t) ≤ y(s).(7)

We first claim that

Pt lies on or above Ls, and Ps lies on or above Lt.(8)

If, on the contrary, Pt lies strictly below Ls then

K(s, f) ≤ lim
n→∞

(
‖gn,t‖A0

+ s ‖hn,t‖A1

)
= x(t) + sy(t) < x(s) + sy(s) = K(s, f)

which is of course impossible. Similarly, if Ps lies strictly below Lt, then

K(t, f) ≤ lim
n→∞

(
‖gn,s‖A0

+ t ‖hn,s‖A1

)
= x(s) + ty(s) < x(t) + ty(t) = K(t, f)

which is again impossible, and we have established (8).
Since Lt passes through the points (K(t, f), 0) and (0, 1

tK(t, f)) and since K(s, f)
≤ K(t, f) and 1

sK(s, f) ≥ 1
tK(t, f), we see that the lines Ls and Lt must intersect

at some point (x, y) with x ≥ 0 and y ≥ 0. In view of the slopes of these two lines
and (8), we obtain that Ps cannot lie strictly to the right of (x, y) and Pt cannot
lie strictly to the left of (x, y). Consequently x(s) ≤ x ≤ x(t) and (again using the
slopes) y(t) ≤ y ≤ y(s). This establishes (7) and so also (4) and (3).

2. Some previously known examples of exactly monotone couples

In many, but not all, of the couples X which we shall show to be exactly mono-
tone, this is a consequence of the fact that each non negative f ∈ X0 + X1 has an
optimal decomposition {f = gt + ht}t>0 where for each t > 0 the function ht is of
the form ht = min {f, λt}for some constant λt ∈ [0,∞]. The most obvious instance
of this phenomenon is the next theorem.

Theorem 2.1. Let B be any Banach lattice of real valued measurable functions on
a measure space (Ω,Σ, µ) and let L∞ denote the space L∞(µ) of essentially bounded
measurable functions on Ω. Then the couple (B,L∞) is almost exactly monotone.
Furthermore, this couple is exactly monotone if

(i) B has the Fatou property, or
(ii) B coincides isometrically with its Gagliardo completion B∼ with respect to

the couple (B,L∞).

Remark 2.2. In fact, condition (i) implies condition (ii). (See [10] Corollary 1.17.)

Proof. Let f be a non negative function in B + L∞. If we know that every such
f has some optimal decomposition {f = gt + ht}t>0 into non negative functions,
then it is simple and immediate to show that (B,L∞) is exactly monotone: We
use the decomposition {f = Gt + Ht}t>0, where Ht = min {f, ‖ht‖L∞}. Clearly
this decomposition must also be optimal, and Gt = f −Ht must be pointwise non
decreasing as a function of t because, by (3), ‖ht‖L∞ is a non increasing function
of t. The general proof uses an elaboration of the same simple idea. For each
t > 0 and n ∈ N, we can (cf. Remark 1.6) express the above function f as the sum
of two non negative functions f = gn,t + hn,t such that gn,t ∈ B and hn,t ∈ L∞

and K(t, f) ≤ ‖gn,t‖B + t ‖hn,t‖L∞ ≤
(
1 + 1

n

)
K(t, f). As in the formulation of

(4), we can suppose that limn→∞ ‖gn,t‖B = x(t) and limn→∞ ‖hn,t‖L∞ = y(t),
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where, by (4), y(t) is a non increasing function of t. Given any λ > 1, we define
Ht = min

{
f, y(t) + λ−1

4t K(t, f)
}

and we choose n ∈ N sufficiently large so that(
1 + 1

n

)
≤ 1 + λ−1

2 and also

y(t) − λ− 1
4t

K(t, f) ≤ ‖hn,t‖L∞ ≤ y(t) +
λ− 1

4t
K(t, f).

Then, since 0 ≤ hn,t ≤ f , we have that hn,t ≤ Ht. Consequently, 0 ≤ f − Ht ≤
f − hn,t = gn,t and so

‖f −Ht‖B + t ‖Ht‖L∞ ≤ ‖gn,t‖B + t

(
y(t) +

λ− 1
4t

K(t, f)
)

≤ ‖gn,t‖B + t

(
y(t) − λ− 1

4t
K(t, f)

)
+

λ− 1
2

K(t, f)

≤ ‖gn,t‖B + t ‖hn,t‖L∞ +
λ− 1

2
K(t, f)

≤
((

1 +
λ− 1

2

)
+

λ− 1
2

)
K(t, f) = λK(t, f).(9)

Since y(t)+ λ−1
4t K(t, f) is a non increasing function of t, this shows that (B,L∞) is

λ-monotone. Now suppose that B satisfies condition (i) or (ii). For any fixed t > 0,
consider the sequence of functions Hn,t = min

{
f, y(t) + 1

ntK(t, f)
}
. It follows from

(9) that

‖f −Hn,t‖B + t ‖Hn,t‖L∞ ≤
(

1 +
4
n

)
K(t, f).(10)

Obviously this converges pointwise and in L∞ norm to H∗,t = min {f, y(t)}. So the
sequence Gn,t = f −Hn,t is pointwise non decreasing and converges pointwise and
also in B + L∞ to G∗,t = f −min {f, y(t)}. Thus, using either the Fatou property,
or the condition B∼ = B we deduce that G∗,t ∈ B and ‖G∗,t‖B ≤ limn→∞ ‖Gn,t‖B .
(The reverse inequality is of course obviously true also.) These remarks, together
with (10), show that {f = G∗,t + H∗,t}t>0 is an optimal decomposition. So, since
y(t) is non increasing, we have shown that (B,L∞) is exactly monotone.

In the rest of this section we list some other couples which can readily be seen
to be exactly monotone.

Example 2.3. The result of the previous theorem can be immediately generalized to
show that the couple (B,L∞

u ) is exactly monotone for all choices of weight functions
u, since this is equivalent to the exact monotonicity of (B1/u, L

∞). (Cf. Remark
1.5.)

Example 2.4. The couple (L1
u, L

1
v) of weighted L1 spaces on some arbitrary measure

space is exactly monotone. This follows since for each element f we can choose
gt = fχ{u≤tv}.

Example 2.5. The couples of Lorentz spaces (Λ(φ0),Λ(φ1)) studied by Sharpley [19]
are also all exactly monotone in view of the exact formula obtained in [19] for the
K-functional.

It is interesting to note that the optimal decompositions of a function f for Sharp-
ley’s couples, obtained by dividing the graph of |f | into two separate sequences of
horizontal “slices” are of a radically different nature to the optimal decompositions
obtained in the other examples mentioned here.
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Example 2.6. The couple (L1, Lp) for any p ∈ (1,∞] is exactly monotone in view of
the exact formula for its K-functional which is given in [16]. (In fact some further
small steps are needed to extend the formula given in [16] to the cases of more
general functions f and more general measure spaces.) The papers [1] and [2] give
more details and various generalizations of the results of [16]. With the help of
the mapping of Stein-Weiss (Remark 1.3), this result also extends to all weighted
couples (L1

u, L
p
v).

In Section 5 we shall prove a theorem which includes the exact monotonicity of
(L1, Lp) as a special case. In fact the couple (Lpu, L

q
v) is also exactly monotone for

all choices of p, q ∈ [1,∞] and all choices of weight functions u and v. For the proof
of this in the remaining cases which are not covered by the preceding material of
this section, we refer to Section 6.

3. Exactly monotone couples of finite dimensional lattices

Let (Y0, Y1) be a couple of Banach lattices of measurable functions on the measure
space (Ω,Σ, µ) and suppose that dimY0 and dimY1are both finite. Then of course
Y = Y0 + Y1 also satisfies n = dimY < ∞. Let {fk}1≤k≤n be a basis of Y and let
Ω∗ = {ω ∈ Ω :

∑n
k=1 |fk(ω)| > 0}. Then, of course, each f ∈ Y must vanish a.e.

on Ω\Ω∗. Furthermore, Ω∗ must be the union of n atoms, Ω∗ =
⋃n
k=1 Ek. Similar

reasoning shows that there are also two subsets Ω∗
0 and Ω∗

1 of Ω∗, either or both of
which may coincide with Ω∗ or be empty, such that for every measurable function
f on Ω, we have that f ∈ Yj if and only if f = 0 a.e. on Ω\Ω∗

j .
The map

∑n
k=1 αkχEk

�→ (α1, α2, ...., αn) enables us to naturally identify the
couple (Y0, Y1) with the couple of lattices (X0, X1) where

Xj = {(α1, α2, ...., αn) ∈ Rn : αk = 0 for all k /∈ Ij}(11)

and Ij =
{
k ∈ {1, 2, ..., n} : Ek ⊂ Ω∗

j

}
. The lattice norm on Xj is naturally induced

by ‖·‖Yj
. I.e., here we are considering Rn as the space of all real valued functions

on a set of n points, and so the notation x ≤ y means that x = (x1, x2, . . . xn) and
y = (y1, y2, . . . yn) satisfy yk ≤ xk for all k = 1, 2, ..n.

Theorem 3.1. Let X = (X0, X1) be a couple of Banach lattices on some measure
space, such that dim(X0 + X1) ≤ 2 for j = 0, 1. Then X is exactly monotone.

Remark 3.2. As we shall see in the next section, this result is false if we weaken
the hypotheses to dim(X0 + X1) ≤ 3.

Proof. By the remarks preceding the statement of the theorem, we may suppose
without loss of generality that the spaces Xj are each of the form (11) for n =
2 and for index subsets Ij each containing at most two elements. We fix some
element f = (α, β) ∈ X0 + X1 = R2 and will show that it has a monotone optimal
decomposition. It suffices to do this for the case when α ≥ 0 and β ≥ 0 (cf. Remark
1.6). An obvious compactness argument guarantees the existence of an optimal
decomposition {f = gt + ht}t>0. We can assume (cf. again Remark 1.6) that

0 ≤ gt ≤ f and 0 ≤ ht ≤ f for all t > 0.(12)

If dimXj = 0 for either j = 0 or 1 then the result is trivial and obvious. If
dimX0 = 1 then I0 is either {1} or {2} and gt is of the form gt = φ(t)e where
φ : (0,∞) → [0,∞) and the fixed element e ∈ R2 is either (1, 0) or (0, 1). Now
φ(t) = ‖gt‖X0

/ ‖e‖X0
and, in view of (3), this must be a non decreasing function of
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t and so the proof is complete. A slight variation of this argument takes care of the
case dimX1 = 1. Thus we can suppose from here on that dimX0 = dimX1 = 2,
i.e. X0 = X1 = R2. Let us use the simpler notation ‖·‖0 or ‖·‖1 for ‖·‖X0

or
‖·‖X1

respectively. For j = 0, 1 and each u ∈ R2 and each r > 0, let Bj(u, r) denote
the closed ball

{
v ∈ R2 : ‖u− v‖j ≤ r

}
. We denote its interior by B◦

j (u, r) and its
boundary by ∂Bj(u, r). I.e.,

B◦
j (u, r) =

{
v ∈ R2 : ‖u− v‖j < r

}
and ∂Bj(u, r) =

{
v ∈ R2 : ‖u− v‖j = r

}
.

We shall make a temporary auxiliary assumption: (A) For j = 0, 1, the boundary
∂Bj(0, 1) of the unit ball of Xj has a unique tangent at each point (x, y) and this
tangent is not parallel to any other such tangent, except of course at the point
(−x,−y). Since Xj is a lattice, ∂Bj(0, 1) is invariant under the maps (x, y) �→
(−x, y) and (x, y) �→ (x,−y), and the assumption (A) implies that the tangent is
horizontal at the points of intersection with the y axis and vertical at the points
of intersection with the x axis. For each fixed t > 0 the balls B◦

0 (0, ‖gt‖0) and
B1 (f, ‖ht‖1) satisfy

B◦
0 (0, ‖gt‖0) ∩B1 (f, ‖ht‖1) = ∅,(13)

since any g ∈ B◦
0 (0, ‖gt‖0)∩ B1 (f, ‖ht‖1) would satisfy the impossible estimates

K(t, f ;X) ≤ ‖g‖0 + t ‖f − g‖1 < ‖gt‖0 + t ‖ht‖1 = K(t, f ;X).

The same argument shows that

B0 (0, ‖gt‖0) ∩B◦
1 (f, ‖ht‖1) = ∅.(14)

We deduce that the intersection of the corresponding closed balls, namely Jt =
B0 (0, ‖gt‖0)∩B1 (f, ‖ht‖1), must be disjoint from each of the open balls B◦

0 (0, ‖gt‖0)
and B◦

1 (f, ‖ht‖1), and therefore Jt = ∂B0 (0, ‖gt‖0)∩ ∂B1 (f, ‖ht‖1). This set is
non empty since it contains the point gt. It must also be convex. This means it
cannot contain any point other than gt, since our temporary assumption (A) pre-
cludes the possibility of either ∂B0 (0, ‖gt‖0)or ∂B1 (f, ‖ht‖1)containing any line
segments. If gt and ht are both non zero, then, since gt lies on the boundaries
of both of the non empty disjoint open balls B◦

0 (0, ‖gt‖0) and B◦
1 (f, ‖ht‖1)it fol-

lows that the two uniquely determined tangents at gt, to ∂B0 (0, ‖gt‖0) and to
∂B1 (f, ‖ht‖1)respectively, must both be the same line which we shall denote by
Lt. We shall denote the slope of Lt by mt. For j = 0 and j = 1 we can write the
set ∂Bj (0, 1) ∩ {(x, y) : x ≥ 0, y ≥ 0} in the form {(x, φj(x)) : 0 ≤ x ≤ δj} where
φj : [0, δj ] → [0,∞) is a strictly decreasing concave function with φj(δj) = 0 and φ′

j

exists and is strictly decreasing on [0, δj) with φ′
j(0) = 0 and limx→δj

φ′
j(x) = −∞.

Thus, for our purposes here we can and shall unambiguously introduce the no-
tation φ′

j(δj) = −∞ so that now φ′
j is strictly decreasing on all of [0, δj ]. This

representation of ∂Bj (0, 1) ∩ {(x, y) : x ≥ 0, y ≥ 0} immediately implies that, for
each r > 0,

∂Bj (0, r) ∩ {(x, y) : x ≥ 0, y ≥ 0} =
{(

x, rφj

(x

r

))
: 0 ≤ x ≤ rδj

}
,

and also that the slope of the tangent line to ∂Bj (0, r) at the point
(
x, rφj

(
x
r

))
,

equals φ′
j

(
x
r

)
for all x ∈ [0, rδj) and also for x = rδj , in accordance with the

convention adopted above. Let us write gt in terms of its coordinates, i.e. gt =
(x(t), y(t)). By (12) we have 0 ≤ x(t) ≤ α and 0 ≤ y(t) ≤ β for all t > 0 and so
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both gt and ht = (α− x(t), β − y(t)) are in the first quadrant {(x, y) : x ≥ 0, y ≥ 0}.
As a special case of the above formula for slopes of tangents, we obtain that

mt = φ′
0

(
x(t)
‖gt‖0

)
whenever gt 
= 0.

We will need a second formula in terms of φ′
1 for mt. This is easily obtained e.g.

with the help of the affine involution map J defined by

J(x, y) = (α− x, β − y) = f − (x, y).

J maps each straight line in R2 onto another straight line with the same slope.
Since Lt is also the tangent to ∂B1 (f, ‖ht‖1) at gt, its slope mt must equal the
slope of the tangent J(Lt) to J (∂B1 (f, ‖ht‖1)) = ∂B1 (0, ‖ht‖1) at J (gt) = ht.
This gives that

mt = φ′
1

(
α− x(t)
‖ht‖1

)
whenever ht 
= 0.

We have to show that both x(t) and y(t) are non-decreasing functions of t. We
shall now do this for x(t). Thus we fix arbitrary numbers s and t with 0 < s < t
and have to show that x(s) ≤ x(t). This is obviously true if gs = 0 or ht = 0 since
in these cases x(s) = 0 or x(t) = α respectively. So from here on we can assume
that both gs and ht are non zero. We shall show that supposing x(t) < x(s) leads
to a contradiction. On the one hand it implies, since 0 < ‖gs‖0 ≤ ‖gt‖0 (by (3)),
that 0 ≤ x(t)/ ‖gt‖0 < x(s)/ ‖gs‖0 ≤ δ0 and so we have

−∞ ≤ ms = φ′
0

(
x(s)
‖gs‖0

)
< φ′

0

(
x(t)
‖gt‖0

)
= mt ≤ 0.(15)

On the other hand, x(t) < x(s) also implies that α − x(s) < α − x(t) and,
since, again by (3), 0 < ‖ht‖1 ≤ ‖hs‖1, it then follows that (α− x(s)) / ‖hs‖1 <
(α− x(t)) / ‖ht‖1 and so

−∞ ≤ mt = φ′
1

(
α− x(t)
‖ht‖1

)
< φ′

1

(
α− x(s)
‖hs‖1

)
= ms ≤ 0.(16)

This contradicts (15) and so proves that x(t) must be non decreasing. The proof
that y(t) is non decreasing is exactly analogous and we leave it to the reader. The
last step will be to extend our proof to the general case, i.e., where the unit balls of
X0 and X1 do not necessarily satisfy the above-mentioned temporary assumption
(A). It is not difficult to show that, for j = 0, 1 and for each positive integer n,
there exists a two dimensional lattice Xj(n) whose unit ball Bj,n(0, 1) satisfies
assumption (A) and furthermore

Bj(0, 1) ⊂ Bj,n(0, 1) ⊂ Bj

(
0, 1 +

1
n

)
.

Then, by the preceding part of the argument, for each n there exists an optimal
decomposition {f = g(t, n) + h(t, n)}t>0 of f with respect to the couple X(n) =
(X0(n), X1(n)) such that, if g(t, n) = (x(t, n), y(t, n)) , both x(t, n) and y(t, n)
are nondecreasing functions of t. Furthermore, by (12), 0 ≤ x(t, n) ≤ α and
0 ≤ y(t, n) ≤ β for all t > 0 and n ∈ N. By Helly’s selection theorem (see e.g.
[18] Ex. 13, p. 167) there exists a strictly increasing sequence of integers {nk}k∈N

such that x(t, nk) and y(t, nk) converge for each t to nondecreasing functions x(t)
and y(t). Let g(t) = (x(t), y(t)) and h(t) = f − g(t). It is easy to check that
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{f = g(t) + h(t)}t>0 is a monotone optimal decomposition of f for t with respect
to the original couple X. This completes the proof.

4. A counterexample in R3

Theorem 4.1. Let X0 be R3 equipped with the lattice norm

‖(x, y, z)‖0 = max
{
|x|, |y|, 1

4
|y| + |z|, 3

7
|x| + 5

7
|y| + 4

7
|z|

}
and let X1 be the subspace of R3 consisting of elements of the form (x, y, 0) equipped
with the lattice norm

‖(x, y, 0)‖1 = 10−3|x| + |y|.
Then the couple X = (X0, X1) is not exactly monotone.

Proof. We shall establish the result by determining the optimal decomposition f =
gt+ht for the element f = (1, 1, 1) exactly when t = 10−6 and approximately when
t = 10. For the case t = 10−6 it is convenient to use the function

φ(x, y) = ‖(1 − x, y, 1)‖0 + 10−6‖(x, 1 − y, 0)‖1 .

Obviously K(10−6, f ;X) = inf{φ(x, y) : (x, y) ∈ R2}. Note that φ(0, 0) = 1+10−6.
We shall see that this is the infimum, and that it is not attained at any other point
(x, y) 
= (0, 0). Now

φ(x, y) ≥ 1
4
|y| + 1 + 10−6|1 − y| ≥ 1

4
|y| + 1 + 10−6(1 − |y|)

= 1 + 10−6 +
(

1
4
− 10−6

)
|y|.

So if the infimum is attained at (x, y) we must have y = 0. But then

φ(x, 0) = ‖(1 − x, 0, 1)‖0 + 10−6‖(x, 1, 0)‖1 ≥ 1 + 10−9|x| + 10−6,

and so necessarily x = 0. Consequently f = gt + ht, where gt = (1, 0, 1) and
ht = (0, 1, 0) is the unique optimal decomposition of f for t = 10−6. Now to treat
the case t = 10 we shall use the function

ψ(x, y) = ‖(x, 1 − y, 1)‖0 + 10‖(1 − x, y, 0)‖1.

First observe that ψ(0, 0) = 9
7 + 10 · 10−3 = 9

7 + 10−2. We shall not explicitly show
that this is the infimum, but we shall see that the infimum can only be attained in
a very small neighbourhood of (0, 0). Indeed, suppose that

ψ(x, y) ≤ ψ(0, 0).(17)

Then it follows from the estimate

ψ(x, y) ≥ 5
7
|1 − y| + 4

7
+ 10|y| ≥ 5

7
(1 − |y|) +

4
7

+ 10|y| =
9
7

+
65
7
|y|

that

|y| ≤ 7
6500

.(18)

We then also have the estimate ψ(x, y) ≥ 3
7 |x| + 5

7 (1 − |y|) + 4
7 , which, combined

with (17) and (18), yields that 3
7 |x| ≤ 10−2 + 5

7 × 7
6500 and so |x| is considerably

smaller than 1
20 . This shows that any optimal decomposition f = gt+ht for t = 10
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must have gt very close to (0, 1, 1) and ht very close to (1, 0, 0). Thus the first
coordinate of |gt| cannot be an increasing function of t which proves that X is not
exactly monotone.

Remark 4.2. There is nothing special about the fact that X1 in the previous theo-
rem has dimension 2. This choice was made only to simplify the calculations. To
obtain an example of a couple (X0, X1) which is not exactly monotone and where
both spaces have “full” dimension 3, we can simply use a small “perturbation” of
the example of Theorem 4.1. For example, we can define X0 as above and modify
X1 to now be R3 equipped with the lattice norm

‖(x, y, z)‖1 = 10−3|x| + |y| + 107 |z| .
Then a straightforward variant of the above proof shows that here again the optimal
decomposition of f = (1, 1, 1) for t = 10−6 is exactly (1, 0, 1) + (0, 1, 0) and for
t = 10 it is again very close to (0, 1, 1) + (1, 0, 0). Thus we have the required
counterexample.

Remark 4.3. It is easy to see that neither of the couples introduced in Theorem
4.1 and Remark 4.2 can be almost exactly monotone. Otherwise, for f = (1, 1, 1)
and each n ∈ N there would exist a decomposition into non negative monotonic
functions {f = gn,t + hn,t}t>0 such that ‖gn,t‖X0

+t ‖hn,t‖X1
≤

(
1 + 1

n

)
K(t, f ;X).

Then, as in the final step of the proof of Theorem 3.1, we could use Helly’s selection
theorem to pass to subsequences of {gn,t} and {gn,t} which, for each t, converge in
R3, and therefore also in X0 and X1, to give a monotone optimal decomposition of
f , contradicting what we have shown above.

5. The couple (L1, X) for a large class of rearrangement invariant
spaces X.

The “large class” referred to in the title of this section consists of those spaces
X which are exact interpolation spaces with respect to the couple (L1(µ), L∞(µ))
on the same underlying measure space (Ω,Σ, µ). Characterizations of these spaces
have been obtained by Calderón ([6] Theorem 3, p. 280) and also by Mityagin [15].
Such spaces X are necessarily rearrangement invariant. I.e. if f ∈ X and g is a
measurable function on Ω such that the nonincreasing rearrangements of f and
g satisfy g∗(t) ≤ f∗(t) for all t > 0, then g ∈ X and ‖g‖X ≤ ‖f‖X . However
rearrangement invariance alone is not sufficient to imply exact interpolation with
respect to (L1, L∞). Under appropriate conditions on (Ω,Σ, µ) it is sufficient to
have any one of the additional conditions that X has the Fatou property, or it is
separable, or it contains L1 ∩ L∞ densely. We refer to [6] Theorem 4, p. 281, and
Sections 4 and 5 of Chapter II of [13] for details of these matters.

Theorem 5.1. Let (Ω,Σ, µ) be an arbitrary measure space. Let X be a Banach
lattice of measurable functions on Ω which is an exact interpolation space with
respect to

(
L1, L∞)

=
(
L1(µ), L∞(µ)

)
. Suppose also that X has the Fatou property.

Let f : Ω → [0,∞) be an element of L1 + X and, for each λ ∈ [0,∞], define fλ =
min {f, λ} and fλ = f − fλ. Then, for each t > 0, there exists λ = λ(t) ∈ [0,∞]
such that

K
(
t, f ;L1, X

)
= ‖fλ‖L1 + t

∥∥fλ∥∥
X

.(19)

Furthermore, the couple (L1, X) is exactly monotone.
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Remark 5.2. Theorem 5.1 cannot be generalized to the case of all Banach lattices
X on (Ω,Σ, µ). We can see this with the help of the couple (X0, X1) of Remark
4.2. Here X1 = L1(µ) for a suitable measure µ on Ω = {1, 2, 3}, but neither this
couple, nor (X1, X0) (cf. Remark 1.6) is exactly monotone.

Proof. Since f ∈ L1 + X and X ⊂ L1 + L∞, we have f = u + v + w where
u, v ∈ L1 and w ∈ L∞ and of course these three functions can all be taken to
be non-negative. It then follows that fλ ∈ L1 for λ = ‖w‖L∞ . Consequently
λ∗ := inf

{
λ ∈ [0,∞] : fλ ∈ L1

}
satisfies 0 ≤ λ∗ < ∞. Let g be a measurable

function which satisfies 0 ≤ g ≤ f , g ∈ L1 and f − g ∈ X. The main step of
our proof will be to show that for a suitable choice of λ ∈ [λ∗,∞] the function
G = f − min {f, λ} satisfies

G ∈ L1 with ‖G‖L1 ≤ ‖g‖L1(20)

and

f −G ∈ X with ‖f −G‖X ≤ ‖f − g‖X .(21)

Clearly the function λ �→ ‖fλ‖L1 is non increasing on [0,∞]. By dominated conver-
gence it is also continuous on (λ∗,∞). By monotone convergence, we have

lim
λ↘λ∗

‖fλ‖L1 = ‖fλ∗‖L1

whether or not ‖fλ∗‖L1 is finite. Furthermore, by dominated convergence, we also
have limλ↗∞ ‖fλ‖L1 = ‖f∞‖L1 = 0. Using these properties we see that, if ‖g‖L1 <
‖fλ∗‖L1 , then there exists some λ ∈ (λ∗,∞] such that ‖fλ‖L1 = ‖g‖L1 . In the
remaining case, when ‖g‖L1 ≥ ‖fλ∗‖L1 , which of course can only arise if ‖fλ∗‖L1 <
∞, we set λ = λ∗. Obviously the function G = f − min {λ, f} = fλ, obtained by
choosing λ as above, satisfies (20). To show that it also satisfies (21) it will suffice,
in view of the interpolation properties of X, to show that for each n ∈ N there
exists a linear operator S (depending on n) such that

S : Lp → Lp with norm not exceeding 1 for p = 1 and ∞,(22)

and (
1 − 1

n

)
(f −G) ≤ S(f − g).(23)

Our construction of S will use a number of arguments similar to ones which appear
in various papers, such as [6] and [7]. However it seems simpler to give a fairly
self contained explanation rather than patching together miscellaneous components
from those papers. Let us first construct S in the case where ‖g‖L1 ≥ ‖fλ∗‖L1 . We
have that

‖f −G‖L∞ ≤ λ = λ∗.(24)

We can suppose that λ∗ > 0 since if λ∗ = 0 we can of course simply take S = 0.
Thus it follows from the definition of λ∗ that, for each m ∈ N, the set Fm ={
ω ∈ Ω :

(
1 − 1

m

)
λ∗ ≤ f(ω) ≤ λ∗

}
satisfies µ (Fm) = ∞. We now construct a

bounded linear functional φm on L1 + L∞ for each m. We do this in one of two
different ways, corresponding to two separate subcases:

Subcase 1: This occurs if Fm has a measurable subset F ∗
m with the property that

µ(F ∗
m) = ∞ and every measurable subset of F ∗

m has measure which is either 0 or
∞. Then we have h · χF∗

m
= 0 a.e. for each h ∈ L1. In this case we define φm by
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setting φm(h) = ψm(h ·χF∗
m

) where ψm is a norm one linear functional on L∞ such
that ψm(f · χF∗

m
) =

∥∥f · χF∗
m

∥∥
L∞ .

Subcase 2: If Subcase 1 is not applicable then Fm must contain a measurable
subset of finite positive measure. We claim that this implies that the quantity

M := sup {µ(F ) : F ∈ Σ, F ⊂ Fm, µ(F ) < ∞}

must be infinite, since if not there exists a sequence {Ek}k∈N
of measurable subsets

of Fm with M − 1/k ≤ µ(Ek) < ∞, and also, necessarily µ(E1 ∪E2 ∪ ...∪Ek) ≤ M
for all k ∈ N. Then µ

(⋃
k∈N

Ek

)
= M and it is easy to check that the set F ∗

m :=
Fm\

⋃
k∈N

Ek has the property dealt with in Subcase 1. Since M = ∞, there exists
a sequence of measurable sets {Ek}k∈N

such that Ek ⊂ Fm and k < µ(Ek) < ∞.
By passing if necessary to a subsequence, we can suppose that {Ek}k∈N

has the

further property that the bounded sequence
{

1
µ(Ek)

∫
Ek

fdµ
}
k∈N

converges as k

tends to ∞. We can now define φm by setting φm(h) = B− limk→∞
1

µ(Ek)

∫
Ek

hdµ,
where B− limk→∞ denotes a Banach limit on �∞, i.e. a norm one linear functional
which extends the functional ψ ({αk}) = limk→∞ αk, defined on the subspace of
convergent sequences in �∞.

Note that in both of these subcases we have

φm(h) = 0 for all h ∈ L1,(25)

|φm(h)| ≤ ‖h‖L∞ for all h ∈ L∞,(26)

and so, since g ∈ L1, we also have(
1 − 1

m

)
λ∗ ≤ φm(f) = φm(f − g) ≤ λ∗(27)

(25) and (26) show that the operator S defined by

Sh = φm(h)
f −G

‖f −G‖L∞

has the required boundedness property (22) for all choices of n ∈ N. Furthermore,
at all points ω ∈ Ω, we have, using (27) and (24), that

S(f − g) ≥
(

1 − 1
m

)
λ∗

f −G

λ∗
,

i.e., we can obtain the second required property (23) for any given n ∈ N by
choosing m = n. As a preliminary to the next step, we consider another similar
operator which is constructed using the same functional φm, and the set F :=
{ω ∈ Ω : f(ω) ≤ λ∗}. This is the operator Um which is defined by

Umh = φm(hχF )
fχF

‖fχF ‖L∞
(28)

and which clearly has norm not exceeding 1 on L1 and L∞. Furthermore, since
φm(hχFm) = φm(h) for all h ∈ L1 + L∞ and since Fm ⊂ F and so φm(fχFm) =
φm(fχF ) = φm(f), we have from (27)

Um (fχF ) ≥
(

1 − 1
m

)
λ∗

fχF
λ∗

=
(

1 − 1
m

)
fχF at all points of Ω.(29)
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We now turn to constructing S in the remaining case where ‖g‖L1 < ‖fλ∗‖L1 . Let
r be a constant in (0, 1) whose precise value will be specified later. Since in this
case we have λ > λ∗, the sequence {λk}∞k=0 defined by

λk = λ∗ + rk (λ− λ∗)

is strictly decreasing. Note also that

λk
λk+1

≤ 1
r
.(30)

We define a pairwise disjoint sequence of measurable sets {Λk}∞k=0 by setting

Λ0 := {ω ∈ Ω : λ0 ≤ f(ω)}
and

Λk := {ω ∈ Ω : λk ≤ f(ω) < λk−1} for k = 1, 2, ....

For each α > λ∗ it follows easily (e.g. by applying Chebyshev’s inequality to the
function fβ ∈ L1 where β is some number in (λ∗, α)) that the set {ω ∈ Ω : f(ω) > α}
has finite measure. Thus, for each k = 0, 1, .... we have µ(Λk) < ∞. We de-
fine a sequence of disjoint intervals Ik = [αk, αk+1) by setting α0 = 0 and αk =∑k−1

j=0 µ (Λj), i.e. we have |Ik| = µ (Λk) for k = 0, 1, .... Let ũ : [0,∞) → [0,∞) be
the function

ũ =
∑
k∈K

(
1

µ (Λk)

∫
Λk

f −Gdµ

)
χIk

.

where K is the set of non negative integers k such that µ (Λk) > 0. It is clear that
ũ is non increasing. Let U : L1([0,∞), dx) + L∞([0,∞)) → L1(µ) + L∞(µ) be the
operator defined by

Uh =
∑
k∈K

(
1

µ (Λk)

∫
Ik

hdx

)
χΛk

.

Of course U : Lp([0,∞), dx) → Lp(µ) with norm 1 for p = 1,∞. Furthermore,

Uũ =
∑
k∈K

(
1

µ (Λk)

∫
Λk

f −Gdµ

)
χΛk

,

and f − G = min {f, λ} = min {f, λ0}. Consequently f − G = λ = λ0 on Λ0 and
for each k = 1, 2, ...., f(ω) − G(ω) = f(ω) ∈ [λk, λk−1) for all ω ∈ Λk. So, using
also (30), we obtain that

r(f −G) ≤ Uũ at almost every point of
∞⋃
k=0

Λk.

We observe that, by our definition of G,∫
Λ0

gdµ ≤
∫

Ω

gdµ =
∫

Ω

Gdµ =
∫

Λ0

Gdµ(31)

and consequently, ∫
Λ0

f −Gdµ ≤
∫

Λ0

f − gdµ.(32)
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We now define the operator V : L1(µ) + L∞(µ) → L1([0,∞), dx) + L∞([0,∞)) by

V h =
∑
k∈K

(
1
|Ik|

∫
Λk

hdµ

)
χIk

.

It is clear that V : Lp(µ) → Lp([0,∞), dx) with norm 1 for p = 1 and ∞. We
claim that for every t > 0 ∫ t

0

V (f − g)dx ≥
∫ t

0

ũdx.(33)

By (32), V (f − g) assumes a constant value greater than or equal to λ on I0. Since
ũ(x) ≤ λ for all x, we see that (33) holds for all t ∈ I0 = [0, α1). Using once more
the fact that f − G = f on each Λk for k ≥ 1 we see that V (f) and ũ assume the
same constant value on Ik for each k ≥ 1. In other words,

V f(x) = ũ(x) for all x ≥ α1.

So, for all t ≥ α1,∫ t

0

V (f − g)dx =
∫ α1

0

V (f − g)dx +
∫ t

α1

V (f − g)dx

=
∫

Λ0

f − gdµ +
∫ t

α1

V fdx−
∫ t

α1

V gdx

≥
∫

Λ0

f − gdµ +
∫ t

α1

ũdx−
∫ ∞

α1

V gdx

=
∫

Λ0

f − gdµ +
∫ t

α1

ũdx−
∞∑
k=1

∫
Λk

gdµ

≥
∫

Λ0

fdµ +
∫ t

α1

ũdx−
∫

Ω

gdµ.

By (31) this last expression equals∫
Λ0

fdµ +
∫ t

α1

ũdx−
∫

Λ0

Gdµ =
∫

Λ0

f −Gdµ +
∫ t

α1

ũdx

=
∫ α1

0

ũdx +
∫ t

α1

ũdx =
∫ t

0

ũdx,

and so we have established (33) for all t > 0. For each h ∈ L1([0,∞), dx) +
L∞([0,∞), dx), let h∗ denote the non increasing rearrangement of h. Then, for
each t > 0,∫ t

0

h∗dx = sup
{∫

E

|h| dx : E ⊂ [0,∞), E measurable, |E| = t

}
≥

∫ t

0

hdx..(34)

(Cf. e.g. Proposition 3.3 on p. 53 of [3] or Assertion 8◦ on p. 64 of [13].) Since
ũ = (ũ)∗, we obtain from (34) and (33) that∫ t

0

(V (f − g))∗ dx ≥
∫ t

0

(ũ)∗ dx for all t > 0.
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This is a sufficient condition, by Theorem 1 of [6] p. 278, (and also a neces-
sary one) for the existence of an operator T : L1([0,∞), dx) + L∞([0,∞), dx) →
L1([0,∞), dx)+L∞([0,∞), dx) such that T (V (f − g)) = ũ and T : Lp([0,∞), dx) →
Lp([0,∞), dx) with norm not exceeding 1 for p = 1 and ∞. Combining the previous
steps, and writing Λ∗ =

⋃∞
k=0 Λk we see that the operator S0 defined by

S0h = UTV h

satisfies S0 : Lp(µ) → Lp(µ) with norm not exceeding 1 for p = 1,∞ and also
S0 ((f − g)χΛ∗) ≥ r(f − G)χΛ∗ at almost every point of Ω. To complete the con-
struction of S for any given n ∈ N we need to choose r =

(
1 − 1

n

)
and to find a

second operator S1 : Lp(µ) → Lp(µ) with norm not exceeding 1 for p = 1,∞ such
that

S1

(
(f − g)χΩ\Λ∗

)
≥

(
1 − 1

n

)
(f −G)χΩ\Λ∗ at almost every point of Ω.(35)

Then of course

Sh := χΛ∗S0 (hχΛ∗) + χΩ\Λ∗S1

(
hχΩ\Λ∗

)
will have the required properties (22) and (23). Now Ω\Λ∗ = {ω ∈ Ω : f(ω) ≤ λ∗}
and so, if λ∗ = 0, then both of the functions (f − g)χΩ\Λ∗ and (f −G)χΩ\Λ∗ vanish
identically, i.e., we can simply take S1 = 0. If, on the other hand, λ∗ > 0, we can use
the operator Um defined above by (28). We have F = Ω\Λ∗ in that definition, and
furthermore, fχF = (f−G)χF and Um(h) = 0 for all h ∈ L1(µ). Thus, if we choose
m = n and S1 = Un, then (29) immediately gives us (35). Having constructed the
operator S we can now easily finish the proof of the theorem: Given any fixed t > 0,
there exists a sequence of functions {gn}n∈N

such that (i) 0 ≤ gn(ω) ≤ f(ω) for a.e.
ω ∈ Ω, (ii) gn ∈ L1, (iii) f − gn ∈ X and

‖gn‖L1 + t ‖f − gn‖X ≤ 1
n

+ K(t, f ;L1, X).(36)

We shall now define a new sequence {Gn}n∈N
by choosing Gn = f −min {λn, f} =

fλn
where λn ∈ [λ∗,∞] is chosen to satisfy ‖fλn

‖L1 = ‖gn‖L1 if ‖gn‖L1 < ‖fλ∗‖L1

and otherwise λn = λ∗. Applying our main step for each n, we see that conditions
(i), (ii), (iii) and (36) all hold when gn is replaced by Gn. Thus {‖Gn‖L1}n∈N

and
{‖f −Gn‖X}n∈N

are both bounded sequences and

lim sup
n→∞

‖Gn‖L1 + t lim sup
n→∞

‖f −Gn‖X ≤ K(t, f ;L1, X)(37)

By passing, if necessary, to a subsequence, we can suppose furthermore that there
exists λ∗∗ = λ∗∗(t) ∈ [λ∗,∞] such that either

λn ↗ λ∗∗(38)

or

λn ↘ λ∗∗.(39)

If (38) holds, then, using the Fatou property of X, we obtain that the pointwise
limit min {f, λ∗∗} of the norm bounded monotone increasing sequence f − Gn =
min{f, λn} is an element of X with norm

‖min {f, λ∗∗}‖X = lim
n→∞

‖min {f, λn}‖X .(40)
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Since G1 = f − min {f, λ1} ∈ L1, we can apply dominated convergence to the
monotone decreasing sequence {Gn} of non negative functions to show that

f − min {f, λ∗∗} ∈ L1 and ‖f − min {f, λ∗∗}‖L1 = lim
n→∞

‖f − min {f, λn}‖L1 .

(41)

If, on the other hand, (39) holds, then we still obtain (41) by monotone convergence,
and, instead of (40), we have simply that

min {f, λ∗∗} ∈ X and ‖min {f, λ∗∗}‖X ≤ ‖min {f, λn}‖X for all n ∈ N.

Thus in both cases we can substitute in (37) to obtain that (19) holds for λ = λ∗∗(t).
Finally, to show that (L1, X) is exactly monotone, it suffices to show that (19) also
holds for λ = λ(t) where λ(t) is a non increasing function of t. Let us define the
function ψ : [λ∗,∞] → [λ∗,∞] by setting

ψ(λ) = inf {α ∈ [λ∗, λ] : ‖f − min {f, α}‖L1 = ‖f − min {f, λ}‖L1} .

We observe that this infimum is always attained: This is obviously the case when
λ = λ∗ and so ψ(λ∗) = λ∗. Furthermore, for each λ > λ∗, we have, by monotone
convergence, that

‖f − min {f, ψ(λ)}‖L1 = ‖f − min {f, λ}‖L1 < ∞.(42)

¿From (42) we also obtain that
∫
Ω

min {f, λ}−min {f, ψ(λ)} dµ = 0 for each λ > λ∗
and so the non negative function integrand satisfies

min {f, λ} − min {f, ψ(λ)} = 0 for a.e. ω ∈ Ω.(43)

Obviously (43) also holds when λ = λ∗. We deduce that

‖min {f, λ}‖X = ‖min {f, ψ(λ)}‖X for all λ ∈ [λ∗,∞].

We can now define the function λ(t) by setting λ(t) = ψ (λ∗∗(t)). The preceding
remarks show that, for each fixed t > 0, (19) holds also for λ = λ(t). Suppose that
0 < s < t. Then, by (3),

0 ≤ ‖f − min {f, λ(t)}‖L1 − ‖f − min {f, λ(s)}‖L1

=
∫

Ω

min {f, λ(s)} − min {f, λ(t)} dµ.

On the one hand, if this integral is strictly positive, then we must have λ(s) > λ(t).
On the other hand, if it is zero, then, necessarily,

ψ(λ(s)) = ψ(λ(t)).(44)

But, since the infimum in the definition of ψ is attained, we have that ψ (ψ(λ)) =
ψ(λ) for each λ ∈ [λ∗,∞]. Consequently (44) implies that λ(s) = λ(t). Thus we see
that λ(t) is a non increasing function, which shows that (L1, X) is exactly monotone
and so completes the proof of the theorem.

6. The couple (Lpu, L
q
v) for arbitrary p, q in [1,∞] and arbitrary

weight functions u, v.

In this section we complement the remarks of Section 2 and show that the couple
(Lpu, L

q
v) on an arbitrary measure space (Ω,Σ, µ) is exactly monotone for all p, q ∈

[1,∞] and all weight functions u and v on Ω.
The case max {p, q} = ∞ is covered by Theorem 2.1 and Example 2.3. The

case min {p, q} = 1 is covered by Example 2.4 when p = q = 1 and by Example
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2.6 or Theorem 5.1 when max {p, q} > 1. (As already mentioned, the case of
general weight functions here can be deduced from the case where both u and v are
identically 1, via the mapping of Stein-Weiss (Remark1.3).)

Thus the remaining case which we have to treat is when both p and q are in
(1,∞). Although the K-functional for (Lpu, L

q
v) looks quite different when p = q as

compared to when p 
= q, and although for p 
= q, its formula is very much simpler
when u and v are identically 1, it turns out that we can just as easily treat all these
cases simultaneously by the same “calculus of variations” approach similar to that
used by Bastero, Raynaud and Rezola in [2] to obtain various exact K-functional
formulæ. We shall use some rather straightforward modifications or generalizations
of some of the proofs and results of [2].

Let f be an arbitrary non negative function in Lpu + Lqv. For some fixed t >
0, let {Gk}k∈N

be a sequence of functions in Lpu such that f − Gk ∈ Lqv and
limk→∞ ‖Gk‖Lp

u
+ t ‖f −Gk‖Lq

v
= K (t, f ;Lpu, L

q
v). We can of course (Remark 1.6)

choose the functions Gk so that they satisfy 0 ≤ Gk ≤ f . Furthermore, since p, q ∈
(1,∞), we can suppose, by passing if necessary to a subsequence, that Gk converges
weakly in Lpu to a function g = gt ∈ Lpu and f − Gk converges weakly in Lqv to a
function h = ht ∈ Lqv. These functions satisfy ‖g‖Lp

u
+ t ‖h‖Lq

v
≤ K (t, f ;Lpu, L

q
v).

Furthermore, since
∫
Ω

(g + h)φdµ =
∫
Ω
fφdµ for all φ ∈ Lpu ∩ Lqv, we have that

f = g + h and so

‖g‖Lp
u

+ t ‖f − g‖Lq
v

= K (t, f ;Lpu, L
q
v)(45)

for the particular t > 0 chosen above. Since
∫
Ω
gφdµ and

∫
Ω
(f − g)φdµ are non

negative for every non negative φ ∈ Lpu ∩Lqv we also have that g and h = f − g are
non negative almost everywhere.

Let F = {ω ∈ Ω : f(ω) > 0}. Our next step will be to show (cf. [2]) that the
function g obtained as above must satisfy

either (i) g(ω) < f(ω) for a.e. ω ∈ F or (ii) g(ω) = f(ω) for a.e. ω ∈ Ω.(46)

Suppose that (46) is false, i.e. that the sets B = {ω ∈ F : f(ω) = g(ω)} and
F\B both have positive measure. Then, since F is σ-finite, B has a subset B′ with
positive and finite measure, and furthermore, for some n ∈ N, the subset

B′
n =

{
ω ∈ B′ :

1
n

< f(ω) < n,
1
n

< u(ω) < n,
1
n

< v(ω) < n

}
also has finite positive measure. We define the function φ : R → [0,∞) by

φ(δ) =
∥∥g + δχB′

n

∥∥
Lp

u
+ t

∥∥f − g − δχB′
n

∥∥
Lq

v
.

We claim that φ is differentiable at every point δ ∈ (−1/n, 0) and, for these δ,

φ′(δ) =

∫
B′

n
(g + δ)p−1

updµ(∫
Ω

(
g + δχB′

n

)p
updµ

)1−1/p
−

t
∫
B′

n
(f − g − δ)q−1

vqdµ(∫
Ω

(
f − g − δχB′

n

)q
vqdµ

)1−1/q
.(47)

This follows of course from a standard theorem for differentiating under the integral
sign. But note that various conditions appearing in the definition of B′

n have been
imposed to ensure the validity of this theorem. To be more specific, what we need
and have used here (and will also use again later) is the following simple fact,
which follows immediately from Lagrange’s theorem and Lebesgue’s dominated
convergence theorem.
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Fact 6.1. Suppose that ρ and w are non negative measurable functions on (Ω,Σ, µ)
such that ρrwr ∈ L1(µ) for some r ∈ (1,∞). Let A ∈ Σ be such that the functions
ρr−1wrχA and wrχA are also in L1(µ). Let ψ(δ) =

∫
Ω
|ρ + δχA|r wrdµ. Then, for

each δ > − infω∈A ρ(ω), ψ is differentiable at δ and

ψ′(δ) =
∫
A

r (ρ + δ)r−1
wrdµ.(48)

¿From our assumptions about B, F\B and B′
n it follows that the one sided limit

limδ↗0 φ′(δ) exists and is strictly positive. But this is impossible, since, by (45),
we have φ(0) ≤ φ(δ) for all δ 
= 0. This contradiction proves (46).

We next claim that

either (i) g(ω) > 0 for a.e. ω ∈ F or (ii) g(ω) = 0 for a.e. ω ∈ Ω.(49)

This is proved by an exactly analogous argument to the one we have just presented
for (46). I.e., one has only to permute the rôles of Lpu and Lqv, and also the rôles of
the functions g and h = f − g.

We now establish another property of the function g = gt in the case when it
satisfies

0 < gt(ω) < f(ω) for a.e. ω ∈ F.(50)

For each n ∈ N, let Fn be the subset of F consisting of all points ω at which the
values of the functions g(ω), f(ω)− g(ω), u(ω) and v(ω) are all in the range ( 1

n , n).
Let B be any measurable subset of Fn and consider the function

φ(δ) = ‖g + δχB‖Lp
u

+ t ‖f − g − δχB‖Lq
v
.

Since of course µ(B) < ∞ we can use Fact 6.1 to show that, for all δ ∈
(
− 1
n ,

1
n

)
,

φ′(δ) =

∫
B

(g + δ)p−1
updµ(∫

Ω
(g + δχB)p updµ

)1−1/p
− t

∫
B

(f − g − δ)q−1
vqdµ(∫

Ω
(f − g − δχB)q vqdµ

)1−1/q
.

Since φ assumes a minimum value at δ = 0, it follows that

φ′(0) =
∫
B

(
gp−1up

‖g‖p−1
Lp

u

− t(f − g)q−1vq

‖f − g‖q−1
Lq

v

)
dµ = 0

for all sets B as above. This implies that

gp−1up

‖g‖p−1
Lp

u

=
t(f − g)q−1vq

‖f − g‖q−1
Lq

v

(51)

at almost every point of Fn and so also at almost every point of
⋃
n∈N

Fn = F .
We are now ready to consider the behaviour of the above functions g = gt and

h = ht = f − gt as t ranges over all possible values in (0,∞).
Let E∗ denote the set of all numbers t > 0 for which the function g = gt satisfies

(50). In view of (46) and (49) the set (0,∞)\E∗ is the union of the two disjoint sets
E0 = {t > 0 : gt(ω) = 0 for a.e. ω ∈ Ω} and Ef = {t > 0 : gt(ω) = f(ω) for a.e. ω ∈ Ω}.
Since t �→ ‖gt‖Lp

u
has to be a non decreasing function on (0,∞) (cf. (3)) we see that

either E0 is empty, or it is an interval whose left endpoint is 0. Similarly, either Ef

is empty, or it is an interval whose right endpoint is ∞.
Suppose that 0 < s < t. We claim that

gs(ω) ≤ gt(ω) for a.e. ω ∈ Ω.(52)



20 MICHAEL CWIKEL AND URI KEICH

This is obvious if s ∈ E0 or if t ∈ Ef . It is also obvious if s ∈ Ef or, alternatively,
if t ∈ E0, since then of course t ∈ Ef or s ∈ E0 respectively. Thus it remains only
to consider the case when both s and t are in E∗. Here we can apply (51) to obtain
that

gp−1
s up

(f − gs)q−1vq
=

s ‖gs‖p−1
Lp

u

‖f − gs‖q−1
Lq

v

and also
gp−1
t up

(f − gt)q−1vq
=

t ‖gt‖p−1
Lp

u

‖f − gt‖q−1
Lq

v

(53)

at almost every point of F . Now, using (3) once more (i.e. that t �→ ‖gt‖Lp
u

is non
decreasing and t �→ ‖f − gt‖Lq

v
is non increasing), we deduce from (53) that

(gs(ω))p−1

(f(ω) − gs(ω))q−1 <
(gt(ω))p−1

(f(ω) − gt(ω))q−1 for almost every ω ∈ F.(54)

For each fixed ω ∈ F we have f(ω) > 0 and so the continuous function x �→
xp−1

(f(ω)−x)q−1 is a strictly increasing map of the interval (0, f(ω)) onto (0,∞). There-
fore this function has a strictly increasing inverse on (0,∞) which can be applied
to (54) to yield that gs(ω) < gt(ω) for a.e. ω ∈ F . Since gs(ω) = gt(ω) = f(ω) = 0
for all ω /∈ F this establishes (52).

We have still not quite established that (Lpu, L
q
v) is exactly monotone, since it

could happen that the exceptional subset of measure zero Ns,t ⊂ F , which con-
tains all points ω where (52) does not hold, depends on s and t in such a way that⋃
{Ns,t : 0 < s < t} might not be contained in a set of zero measure. To overcome

this (small) problem we first consider the set N∗ =
⋃
{Ns,t : 0 < s < t, s ∈ Q, t ∈ Q}.

This is of course measurable and µ(N∗) = 0, and for each ω ∈ F\N∗ we have that
the function t �→ gt(ω) restricted to (0,∞)∩Q is non decreasing. Now let us define
Gt(ω) for each t > 0 and each ω ∈ F\N∗ by Gt(ω) = sup {gs(ω) : 0 < s ≤ t, s ∈ Q}.
It is then easy to check that ‖Gt‖Lp

u
+t ‖f −Gt‖Lq

v
= K (t, f ;Lpu, L

q
v) for all rational

and irrational points t ∈ (0,∞) and to use the decomposition {f = Gt + (f −Gt)}t>0

to show that (Lpu, L
q
v) is exactly monotone.

7. The K-divisibility constant and λ-monotone couples

According to the Brudnyi-Krugljak K-divisibility theorem ([5] p. 325), for any
given Banach couple X, there exists a constant C having the following property:
(**) If x is an arbitrary element of X0+X1 for which K(t, x;X) ≤

∑∞
n=1 φn(t) for

all t > 0, where the functions φn are all positive and concave and
∑∞

n=1 φn(1) < ∞,
then there exist elements xn ∈ X0 +X1 such that x =

∑∞
n=1 xn and K(t, xn;X) ≤

Cφn(t) for all t > 0.
We shall let γ(X) denote the K-divisibility constant for X, i.e. the infimum of

all numbers C for which (**) holds. We recall (cf. [9]) that

1 ≤ γ(X) ≤ 3 + 2
√

2(55)

for every Banach couple X.

In this section we shall investigate certain connections between the condition of
exact monotonicity for couples of lattices X and the value of γ(X). On the one
hand, when X is exactly monotone, or “close” to being exactly monotone, we shall
obtain an estimate for γ(X) which is sharper than (55). On the other hand we shall
see that if γ(X) is “small” then this implies that X has a property similar to exact



K-FUNCTIONALS FOR BANACH LATTICES. 21

monotonicity. In particular (see Corollary 7.2) every couple of lattices X satisfying
γ(X) = 1 must necessarily be “extremely close” to being exactly monotone.

The precise formulations of these results are in terms of the notion of λ-monotone
couples and almost exactly monotone couples (see Definition 1.4).

In fact every couple of Banach lattices is λ-monotone for some λ. More precisely
we have:

Theorem 7.1. Each couple X of Banach lattices of measurable functions is λ-
monotone for every λ > γ(X).

Proof. As already observed in Remark 1.6, it suffices to obtain the decompositions
f = gt + ht for the case where f ≥ 0. This can be done exactly as in the proof
of Theorem 4.1 of [10], i.e. we can set gt = ξ0(t) and ht = ξ1(t) in the notation of
[10]. Note that the estimate (ii) at the beginning of the proof in [10] corresponds
exactly to (5) above with λ = Cp(1 + ε). In our case p = 1 and it is clear that we
can take Cp = C ′

p = γ(X) and ε > 0 arbitrarily small.

Corollary 7.2. If γ(X) = 1 then X is almost exactly monotone.

Corollary 7.3. If X is either of the couples introduced in Theorem 4.1 and Remark
4.2 then γ(X) > 1.

Proof. This is an immediate consequence of Corollary 7.2 and Remark 4.3.

Remark 7.4. We can rewrite the result of Theorem 7.1 as λ(X) ≤ γ(X) if we define
λ(X) to be the infimum of all λ > 0 such that X is λ-monotone. In fact, Theorem
7.7 below will enable us to obtain an approximate reverse of this inequality so that
altogether we will have

λ(X) ≤ γ(X) ≤ 4λ(X)(56)

The rôle played by the proof of Theorem 4.1 of [10] in the proof of the preceding
theorem, points to the fact that the λ-monotonicity of each couple of lattices X is
also related to the formula to within equivalence for K(t, f ;X) stated above as (6)
(i.e. Property (**)). The proof of Theorem 4.1 of [10] shows that the constant C in
(6) can be chosen to be any number greater than 2γ(X). Our next (very simple)
result provides an alternative estimate for this constant C. Since Theorem 7.1 does
not exclude the possibility that a given couple of lattices X may be λ-monotone
also for some λ ≤ γ(X), it is possible that this alternative estimate for C may
sometimes be sharper than the one provided by Theorem 4.1 of [10].

Proposition 7.5. Let X be a λ-monotone couple of Banach lattices. Then for
each f ∈ X0 + X1 there exists an increasing family {Et}t>0 of measurable subsets
of the underlying space such that

‖fχEt‖X0 + t‖f(1 − χEt)‖X1 ≤ 2λK(t, f ;X)

for each t > 0.

Proof. This is similar to a different (and quite simple) part of the proof of Theorem
4.1 in [10]. Let f = gt+ht be the decomposition which exists according to Definition
1.4 and, for each t > 0, let Et be the set where |gt| ≥ |ht|. It is easy to check that
these sets have all the required properties.

We next present a simple lemma which will be needed for the proof of the last
main result of this section.
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Lemma 7.6. Suppose that X is a λ-monotone couple of Banach lattices. Then, for
each ε > 0 and each non negative function f ∈ X0+X1, there exists a decomposition
{f = Gt + Ht}t>0 such that

‖Gt‖X0
+ t ‖Ht‖X1

≤ λ(1 + ε)K(t, f ;X) for all t > 0(57)

and for a.e. ω in the underlying measure space Gt(ω) is a non-decreasing function
of t and Ht(ω) is a non-increasing function of t. Furthermore we can suppose that
the functions t �→ ‖Gt‖X0

and t �→ ‖Ht‖X1
are continuous on (0,∞).

Proof. Fix a non negative function f ∈ X0 + X1 and let f = gt + ht be a decom-
position having all the properties specified in Definition 1.4. We first set Gt = gt
and Ht = ht for each t of the form t = (1 + ε)n for each n ∈ N. Then we ex-
tend Gt and Ht to all of (0,∞), so that they are affine functions of t on each
interval

[
(1 + ε)n, (1 + ε)n+1

]
. To show that (57) holds, given any fixed t > 0,

we choose n ∈ Z and θ ∈ [0, 1] so that t = (1 − θ)(1 + ε)n + θ(1 + ε)n+1. Then
Gt = (1 − θ)g(1+ε)n + θg(1+ε)n+1 and Ht = (1 − θ)h(1+ε)n + θh(1+ε)n+1 . By (5) we
have that

‖Gs‖X0
+ s ‖Hs‖X1

≤ λK(s, f) for s = (1 + ε)n and s = (1 + ε)n+1.

Consequently,

‖Gt‖X0
+ (1 + ε)n ‖Ht‖X1

≤ (1 − θ)
[∥∥G(1+ε)n

∥∥
X0

+ (1 + ε)n
∥∥H(1+ε)n

∥∥
X1

]
+θ

[∥∥G(1+ε)n+1

∥∥
X0

+ (1 + ε)n
∥∥H(1+ε)n+1

∥∥
X1

]
≤ (1 − θ)λK ((1 + ε)n, f) + θλK

(
(1 + ε)n+1, f

)
.

The concavity of the function t �→ K(t, f) implies that this last expression does not
exceed λK(t, f). We deduce (57) immediately, since

‖Gt‖X0
+ t ‖Ht‖X1

≤ (1 + ε)
(
‖Gt‖X0

+ (1 + ε)n ‖Ht‖X1

)
.

It is very easy to check that Gt and Ht also have the other properties stated in the
lemma.

Our final main result in this section is the inequality

γ(X) ≤ 4λ(X)(58)

which has already been alluded to above. I.e. we must show that γ(X) ≤ 4λ for
each λ such that the couple of lattices X is λ-monotone. We can deduce this easily
from Theorem 7.7 which we shall state immediately after this paragraph. This
theorem is an analogue of Theorem 4 of [8] p. 49-50, and of Theorem 1.7 of [9] pp.
71-72, i.e. it is a variant of the so called “strong fundamental lemma” of [9]. The
estimate (58) will follow from the fact that γ(X) ≤ 4λ(1 + ε) for each λ and ε as
in the statement of Theorem 7.7, and this in turn can be deduced from Theorem
7.7 in exactly the same way as Theorem 1 of [8] is deduced from Theorem 4 of [8]
on pp. 54-55 of [8], except, of course, that the constant 8 appearing there has to be
be replaced here by 4λ. (Cf. also Remarks 1.34 and 1.36 and Proposition 1.40 of
[10].)
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Theorem 7.7. Let X = (X0, X1) be a λ-monotone Banach couple of lattices of
measurable functions and let X∼ denote the couple (X∼

0 , X∼
1 ) where X∼

j is the
Gagliardo completion of Xj in X0 + X1, j = 0, 1. Let f ∈ X0 + X1. Then for each
ε > 0 there exists a sequence of elements {un,ε}n∈Z = {un}n∈Z in X0 + X1 such
that:

un ∈ X0 ∩X1 for all but at most two values of n,∑∞
n=−∞ un = f, (convergence in X0 + X1 norm), and

∞∑
n=−∞

min
{
‖un‖X∼

0
, t‖un‖X∼

1

}
≤ 4λ(1 + ε)K(t, f ;X) for all t > 0.(59)

(In the preceding estimate we set ‖un‖X∼
j

= ∞ if un /∈ X∼
j .)

Proof. Many, but not all steps of this proof are modelled on the proof of Theorem
1.7 in Section 2 of [9]. For the benefit of the reader who may wish to refine either of
these theorems, we shall draw attention at various stages to some of the similarities
and differences between the two proofs. We first need to choose a constant r > 1.
We can of course suppose, without loss of generality, that the number ε appearing
in the statement of the theorem satisfies

1 + ε ≤ r.(60)

In fact we shall see later that the optimal value for r is 2. But we shall present
most of the steps of the proof for general r, again with a view to facilitating future
improvements. We introduce the set D(f) =

{(
‖Gt‖X0

, ‖Ht‖X1

)
: t ∈ (0,∞)

}
,

where f = Gt + Ht is the decomposition of f constructed in Lemma 7.6. This set
will play a rôle more or less analogous to that of the set D(a) introduced in [9]. (Let
us note in passing that D(f) is always non empty, whereas the set D(a) of [9] may
be empty. This case is not dealt with explicitly in [9], but it can be immediately
disposed of, since D(a) = ∅ if and only if a = 0.) Let us set

x−∞ = lim
t→0

‖Gt‖X0
, x∞ = lim

t→∞
‖Gt‖X0

,(61)

y−∞ = lim
t→0

‖Ht‖X1
and y∞ = lim

t→∞
‖Ht‖X1

.

These are approximate counterparts of the the quantities defined by the formulæ
(2.1) on p. 74 of [9]. However they do not necessarily satisfy the formulæ (2.2)
of [9]. (Note also that here we have permuted part of the notation adopted in
[9] so that y−∞ is now the “largest” and y∞ is now the “smallest” value of y for
(x, y) ∈ D(f).) The next step of the corresponding proof in [9] is to construct a
certain finite or infinite sequence of points {(xn, yn)}ν−∞<n<ν∞

in D(a). (We have
taken this opportunity to correct a minor misprint in [9], where the range of n for
this sequence is incorrectly stated to be ν−∞−1 < n < ν∞ +1.) Here, analogously,
we shall now construct a special sequence of points lying on D(f). This is done in a
way which is quite similar to the construction of the sequence {(xn, yn)}ν−∞<n<ν∞
in [9], except that in some cases we have to make some modifications when n is at one
of the “endpoints” ν−∞ and ν∞ if these are finite. Here the index n will range over
a possibly larger set which we will denote by ρ−∞ < n < ρ∞. (These modifications
are needed because of the above-mentioned possible failure of the quantities x±∞
and y±∞ to satisfy (2.2) of [9].) The actual values of the four parameters ρ−∞,
ρ∞, ν−∞ and ν∞ will be determined in the course of the construction. They can
either be integers, or ±∞. More specifically, they will satisfy −∞ ≤ ρ−∞ ≤ ν−∞ <
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0 < ν∞ ≤ ρ∞ ≤ +∞. Our sequence {(xn, yn)}ρ−∞<n<ρ∞
of points of D(f) will

correspond to an increasing sequence of points {tn}ρ−∞<n<ρ∞
in (0,∞), where we

set xn = ‖Gtn‖X0
and yn = ‖Htn‖X1

. We begin the construction by choosing some
arbitrary t0 ∈ (0,∞) and, correspondingly, (x0, y0) =

(
‖Gt0‖X0

, ‖Ht0‖X1

)
. We

also choose a constant r > 1. Then, for each n > 0, we construct (xn, yn) =(
‖Gtn‖X0

, ‖Htn‖X1

)
∈ D(f) inductively such that tn > tn−1 and

either
{

xn = rxn−1

yn ≤ 1
ryn−1

or
{

xn ≥ rxn−1

yn = 1
ryn−1

(62)

holds. Because of the continuity and monotonicity of the functions t �→ ‖Gt‖X0
and

t �→ ‖Ht‖X1
, such (xn, yn) and tn will always exist whenever the integer n satisfies

rxn−1 < x∞ and
1
r
yn−1 > y∞.(63)

If (63) holds for every positive n then we obtain an infinite sequence {(xn, yn)}∞n=0

and, accordingly, we set ρ∞ = ν∞ = ∞. On the other hand, if at some stage of the
construction we encounter an integer n > 0 which satisfies

either rxn−1 ≥ x∞ or
1
r
yn−1 ≤ y∞.(64)

then we set ν∞ = n. In such a situation there two possibilities which must be dealt
with separately. First, if

either
1
r
yn−1 ≤ y∞ or y∞ = 0(65)

then, as in [9], the construction stops at this stage, i.e. we also set ρ∞ = n and do
not define (xn, yn) and tn. The remaining possibility is that

rxn−1 ≥ x∞ and y∞ > 0.(66)

In this case we set ρ∞ = ν∞ + 1 and (in contrast to [9]) the construction has
one more step, i.e. we choose tν∞ sufficiently large so that the additional point
(xν∞ , yν∞) =

(∥∥Gtν∞

∥∥
X0

,
∥∥Htν∞

∥∥
X1

)
satisfies yν∞ ≤ (1+ ε)y∞. Now, in a similar

way, for n < 0 we go “backwards” and inductively construct the points (xn, yn) =(
‖Gtn‖X0

, ‖Htn‖X1

)
∈ D(f) such that tn < tn+1 and

either
{

xn = 1
rxn+1

yn ≥ ryn+1
or

{
xn ≤ 1

rxn+1

yn = ryn+1
(67)

holds. Again the existence of these points is guaranteed by the properties of t �→
‖Gt‖X0

and t �→ ‖Ht‖X1
whenever the negative integer n satisfies

1
r
xn+1 > x−∞ and ryn+1 < y−∞.(68)

If (68) holds for all negative integers n then we obtain an infinite sequence {(xn, yn)}−1
n=−∞

and we set ν−∞ = ρ−∞ = −∞. If, however, we encounter an integer n < 0 for which

either
1
r
xn+1 ≤ x−∞ or ryn+1 ≥ y−∞.(69)

then we set ν−∞ = n. Here again there are two possibilities which need to be
treated separately. The first occurs when

1
r
xn+1 ≤ x−∞ or x−∞ = 0(70)
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and if this happens we proceed as in [9], setting ρ−∞ = ν−∞ = n and not defining
(xn, yn) and tn. On the other hand, if

ryn+1 ≥ y−∞ and x−∞ > 0(71)

then we set ρ−∞ = ν−∞−1 and, as an additional step, choose choose tν−∞ > 0 suf-

ficiently small so that (xν−∞ , yν−∞) =
(∥∥∥Gtν−∞

∥∥∥
X0

,
∥∥∥Htν−∞

∥∥∥
X1

)
satisfies xν−∞ ≤

(1 + ε)x−∞. Note that in all cases, whether or not ν±∞ and ρ±∞ are finite, we
have defined (xn, yn) and tn for all integers n which satisfy ρ−∞ < n < ρ∞ and for
no integer n outside this range. We can now define the sequence {un}n∈Z as fol-

lows: un =


Gtn −Gtn−1 = Htn−1 −Htn if ρ−∞ + 1 < n < ρ∞
f −Gtρ∞−1 = Htρ∞−1 if n = ρ∞ < ∞
f −Htρ−∞+1 = Gtρ−∞+1 if n = ρ−∞ + 1 > −∞
0 otherwise

Observe that

∑∞
n=−∞ un = f , where the series converges in X0+X1 norm. In fact, if ρ−∞ > −∞

, then
∑0

n=ρ−∞+1 un = Gt0 , and if ρ−∞ = −∞ then
∥∥∥∑0

n=−ρ−∞
un −Gt0

∥∥∥
X0

=

limn→∞ ‖Gtn‖X0
≤ limn→∞ ‖Gt0‖X0

r−n = 0. Similarly
∑∞

n=1 un = Ht0 with
convergence in X1 norm, whether or not ρ∞ is finite.

As a first step towards proving (59) we need some preliminary estimates for
‖un‖X0 and ‖un‖X1 . This is exactly the place where the monotonicity of Gt and
Ht enables us to obtain better bounds than those which hold in the analogous proof
for a general Banach couple (cf. (2.9) and (2.10) on p. 75 of [9]). If ρ−∞+1 < n < ρ∞
then ‖un‖X0 =

∥∥Gtn −Gtn−1

∥∥
X0

≤ ‖Gtn‖X0
, so we have

‖un‖X0 ≤ ‖Gtn‖X0
= xn for ρ−∞ < n < ρ∞(72)

(i.e. we have also observed that obviously (72) holds also for n = ρ−∞+1, if ρ−∞ is
finite). Similarly ‖un‖X1 =

∥∥Htn−1 −Htn

∥∥
X1

≤
∥∥Htn−1

∥∥
X1

for ρ−∞ + 1 < n < ρ∞
and so

‖un‖X1 ≤
∥∥Htn−1

∥∥
X1

= yn−1 for ρ−∞ + 1 < n < ρ∞ + 1(73)

(where again the additional case where n = ρ∞ is obvious, when ρ∞ is finite).
Now let us fix an arbitrary t > 0 and show that (59) holds for this t. There

are three cases which must be considered. Case 1 is when there exists an integer
n∗ in the range ν−∞ + 1 < n∗ < ν∞ such that tn∗−1 ≤ t ≤ tn∗ . Case 2 is when
ν∞ < ∞ and t ≥ tν∞−1. The remaining possibility, Case 3, is when ν−∞ >
−∞ and t ≤ tν−∞+1. Let us first deal with Case 1. We use the notation mn =
min {‖un‖X0 , t‖un‖X1} and write the sum

∞∑
n=−∞

min {‖un‖X0 , t‖un‖X1} =
n∗−1∑
n=−∞

mn + mn∗ +
∞∑

n=n∗+1

mn

= I− + mn∗ + I+.

We note that, by (72),

I− =
n∗−1∑

n=ρ−∞+1

mn ≤
n∗−1∑

n=ρ−∞+1

xn = x′
ρ−∞+1 +

n∗−1∑
n=ν−∞+1

xn.(74)
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Here we are using the notation x′
ρ−∞+1 =

{
0 if ρ−∞ = ν−∞
xρ−∞+1 if ρ−∞ = ν−∞ − 1 > −∞ .

Our construction of {(xn, yn)} ensures that

xn ≤ 1
r
xn+1 whenever ν−∞ < n < ν∞ − 1.(75)

Consequently xn ≤
(

1
r

)n∗−n−1
xn∗−1 for ν−∞ < n ≤ n∗ − 1 and so

n∗−1∑
n=ν−∞+1

xn ≤
n∗−1∑

n=ν−∞+1

(
1
r

)n∗−n−1

xn∗−1 = xn∗−1
1 − r−n

∗+ν−∞+1

1 − r−1
,(76)

where we are adopting the convention that r−n
∗+ν−∞+1 = 0 if ν−∞ = −∞. If ρ−∞

is finite and equal to ν−∞ − 1, then

xρ−∞+1 = xν−∞ ≤ (1 + ε)x−∞ ≤ (1 + ε)xν−∞+1 ≤ (1 + ε) r−n
∗+ν−∞+2xn∗−1.

(77)

Combining (74), (76) and (77) gives us that

I− ≤ xn∗−1

(
1 − r−n

∗+ν−∞+1

1 − r−1
+ (1 + ε) r−n

∗+ν−∞+2

)
= xn∗−1

(
1

1 − r−1
+ r−n

∗+ν−∞+2

(
1 + ε− r−1

1 − r−1

))
(78)

≤ xn∗−1

(
1

1 − r−1
+

∣∣∣∣1 + ε− r−1

1 − r−1

∣∣∣∣) .

On the other hand, if ρ−∞ = ν−∞, whether or not this quantity is finite, a simpler
version of the preceding estimates gives us that

I− ≤ xn∗−1
1

1 − r−1
.(79)

We next apply very similar arguments to estimate I+. By (73) we have

I+ =
ρ∞∑

n=n∗+1

mn ≤ t

ρ∞∑
n=n∗+1

yn−1 = t

ν∞∑
n=n∗+1

yn−1 + ty′ρ∞−1,(80)

where y′ρ∞−1 =
{

0 if ρ∞ = ν∞
yρ∞−1 if ρ∞ = ν∞ + 1 < ∞ . Our construction of {(xn, yn)}

ensures that yn ≤ 1
ryn−1 whenever ν−∞ + 1 < n < ν∞. Consequently yn−1 ≤(

1
r

)−n∗−1+n
yn∗ whenever n∗ + 1 ≤ n < ν∞ + 1. So

ν∞∑
n=n∗+1

yn−1 ≤
ν∞∑

n=n∗+1

(
1
r

)−n∗−1+n

yn∗ = yn∗
1 − rn

∗−ν∞

1 − r−1
,(81)

where we are adopting the convention that rn
∗−ν∞ = 0 if ν∞ = ∞. If ρ∞ is finite

and equal to ν∞ + 1, then

yρ∞−1 = yν∞ ≤ (1 + ε)y∞ ≤ (1 + ε)yν∞−1 ≤ (1 + ε)rn
∗−ν∞+1yn∗(82)
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and we can combine (80), (81) and (82) to obtain that

I+ ≤ tyn∗

(
1 − rn

∗−ν∞

1 − r−1
+ (1 + ε)rn

∗−ν∞+1

)
= tyn∗

(
1

1 − r−1
+ rn

∗−ν∞+1

(
1 + ε− r−1

1 − r−1

))
≤ tyn∗

(
1

1 − r−1
+

∣∣∣∣1 + ε− r−1

1 − r−1

∣∣∣∣) .

On the other hand, when ρ∞ = ν∞, whether or not ρ∞ is finite, we obtain similarly
that

I+ ≤ tyn∗
1

1 − r−1
.

Summarizing the preceding estimates, we see that in all subcases of Case 1, i.e.
whether or not the quantities ρ±∞ and ν±∞ are equal to each other or finite,

I− + I+ ≤
(

1
1 − r−1

+
∣∣∣∣1 + ε− r−1

1 − r−1

∣∣∣∣) (xn∗−1 + tyn∗) .(83)

We observe that

xn∗−1 + syn∗ ≤ λ(1 + ε)K(s, f) for s = tn∗−1 and s = tn∗(84)

and, since the left hand side of (84) is an affine function of s and the right hand side
is a concave function of s, we obtain the same inequality for s = t. This, combined
with (83), gives

I− + I+ ≤ λ(1 + ε)
(

r

r − 1
+

∣∣∣∣ε +
r − 2
r − 1

∣∣∣∣)K(t, f).(85)

We can also see that mn∗ ≤ λ(1 + ε)rK(t, f) since either rxn∗−1 = xn∗ holds, in
which case mn∗ ≤ ‖un∗‖X0 ≤ xn∗ = rxn∗−1 ≤ λ(1+ε)rK(t, f), or otherwise ryn∗ =
yn∗−1 must hold and then mn∗ ≤ t‖un∗‖X1 ≤ tryn∗ ≤ tr ‖Ht‖X1

≤ λ(1+ε)rK(t, f).
Combining the estimate for mn∗ with (85) we obtain that, in Case 1,

∞∑
n=−∞

min {‖un‖X0 , t‖un‖X1} ≤ λ(1 + ε)
(
r +

r

r − 1
+

∣∣∣∣ε +
r − 2
r − 1

∣∣∣∣)K(t, f).(86)

We now turn to Case 2, i.e. when ν∞ < ∞ and t ≥ tν∞−1. Now we write
m̃n = min

{
‖un‖X∼

0
, t‖un‖X∼

1

}
and we shall estimate

∑∞
n=−∞ m̃n. We first observe

that, quite similarly to before, using (72) and (75), we have

Ĩ− :=
ν∞−1∑
n=−∞

m̃n ≤
ν∞−1∑
n=−∞

‖un‖X∼
0
≤

ν∞−1∑
n=ρ−∞+1

‖un‖X0 ≤ x′
ρ−∞+1 +

ν∞−1∑
n=ν−∞+1

xn

≤ x′
ρ−∞+1 +

ν∞−1∑
n=ν−∞+1

(
1
r

)ν∞−1−n
xν∞−1.
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By substituting n∗ = ν∞ in (76), (77), (78) and (79) we obtain that, whatever the
value of ρ−∞, whether or not it is finite or equal to ν−∞,

Ĩ− ≤ xν∞−1

(
r

r − 1
+

∣∣∣∣ε +
r − 2
r − 1

∣∣∣∣)
≤ λ(1 + ε)

(
r

r − 1
+

∣∣∣∣ε +
r − 2
r − 1

∣∣∣∣)K(t, f).(87)

Since now ν∞ < ∞, there are only two possibly non-zero terms in
∑∞

n=ν∞
m̃n,

namely m̃ν∞ and m̃ν∞+1, and we have to estimate these terms in the two possible
“subcases” (65) and (66). Let us first suppose that (65) holds and so ρ∞ = ν∞ and
m̃ν∞+1 = 0. One possibility here is that 1

ryν∞−1 ≤ y∞ and so

m̃ν∞ ≤ t‖Htν∞−1‖X1 = tyν∞−1 ≤ try∞ ≤ λ(1 + ε)rK(t, f).

Alternatively we must have y∞ = 0 which implies that

K(s, f) ≤ lim
τ→∞

(
‖Gτ‖X0

+ s ‖Hτ‖X1

)
= x∞ for each s > 0.

Consequently ‖f‖X∼
0

= lims→∞ K(s, f) ≤ x∞ (cf. [9] (2.2)) and

m̃ν∞ ≤ ‖uν∞‖X∼
0

=
∥∥Htν∞−1

∥∥
X∼

0
≤ ‖f‖X∼

0
≤ x∞

≤ rxν∞−1 ≤ λ(1 + ε)rK(t, f).

It remains to deal with the second “subcase” i.e. when (66) holds. Then ρ∞ =
ν∞ + 1 and so, by (72), m̃ν∞ ≤ ‖uν∞‖X0

≤ xν∞ ≤ x∞ ≤ rxν∞−1. Since t ≥ tν∞−1,
this last term is dominated by r‖Gt‖X0 . We also have that m̃ν∞+1 ≤ t ‖uν∞+1‖X1

=
t
∥∥Htν∞

∥∥
X1

≤ t(1 + ε)y∞ ≤ t(1 + ε)‖Ht‖X1 . Combining these estimates and also
using (60), we obtain that

m̃ν∞ + m̃ν∞+1 ≤ r‖Gt‖X0 + tr‖Ht‖X1 ≤ λ(1 + ε)rK(t, f)

These estimates combined with (87) show that, in all possible subcases of Case
2,

∞∑
n=−∞

m̃n ≤ λ(1 + ε)
(
r +

r

r − 1
+

∣∣∣∣ε +
r − 2
r − 1

∣∣∣∣)K(t, f).(88)

An analogous argument, whose details we leave to the reader, shows that (88)
also holds in the remaining case, namely Case 3. Thus, (cf. (86)) it holds for all
cases. We now substitute r = 2 to obtain

∞∑
n=−∞

m̃n ≤ λ(1 + ε) (4 + ε)K(t, f) for all t > 0.

This immediately gives (59), since we can of course carry out all preceding steps
of the proof with ε replaced by any smaller positive number. This completes the
proof of the theorem, and consequently, as already explained above, also establishes
(58).
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