
Minimizing total flow time in single machine environment

with release time: an experimental analysis*

Y. Guoa, A. Limb,*, B. Rodriguesc, S. Yua

aSchool of Computing, National University of Singapore, 3 Science Drive 2, Singapore, Singapore 117543
bDepartment of Industrial Engineering and Engineering Management, Hong Kong University of Science and Technology,

Clear Water Bay, Hong Kong, China
cSchool of Business, Singapore Management University, 269 Bukit Timah Road, Singapore, Singapore 259756

Received 3 April 2004; accepted 14 June 2004

Available online 28 July 2004

Abstract

We study the problem of minimizing total flow time on a single machine with job release times. This problem is

NP-complete for which is no constant ratio approximation algorithm. Our objective is to study experimentally how

well, on average, the problem can be solved. The algorithm we use produces non-preemptive schedules converted

from preemptive ones. We evaluate average solution quality for the problem to identify the characteristics of

difficult instances. Results obtained are compared with those recently obtained by other researchers. Based on

extensive experiments, we also develop an empirical model to predict solution quality using interpolation.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Extensive studies have been carried out on scheduling jobs on a single machine with various objective

functions. These problems are important because single machine environments are common and a

special case of other environments. In this work, we consider a basic, yet intractable problem from the

worst-case point of view—the problem of minimizing total flow time in a single machine environment

with job release times. In this problem, there are n independent jobs to be scheduled non-preemptively
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on a single machine. Each job has a release time rj, indicating the earliest possible time that the job can

be processed, a processing time pj, and a completion time Cj. The objective is to minimize the sum of

flow times of all jobs, where the flow time, Fj, of a job j, is defined to be the time elapsed from its release

to its completion, i.e. FjZ(CjKrj). In machine-scheduling notation (Pinedo, 1995), the problem is

denoted by 1jrjj
P

Fj: In systems involving queuing, in networks, for example, the flow time of a job

consists of both the waiting time in the queue and the job processing time on the machine so that

minimizing flow time improves service quality (Leonardi & Raz, 1997). The 1jrjj
P

Fj: problem has

many applications, for example, in network systems and parallel computing (Kellerer, Tautenhahn, &

Woeginger, 1996).

If all jobs are released at the same time, the problem reduces to the 1jrjj
P

Fj: problem, which can be

solved optimally by the well-known Shortest Processing Time (SPT) rule (Smith, 1956). The preemptive

version, 1jpmtn; rjj
P

Fj; of the problem can be solved optimally in polynomial time by the Shortest

Remaining Processing Time (SRPT) rule, as shown by Baker (1974). The solution of the preemptive

problem provides a lower bound for the objective value of the non-preemptive problem and Ahmadi and

Bagchi (1990) have shown that this lower bound dominates all other known lower bounds for the

1jrjj
P

Fj problem. With arbitrary release times, the problem becomes NP-complete (Lenstra, Rinnooy

Kan, & Brucker, 1977). Some authors (Chandra, 1979; Chu, 1992b; Deogun, 1983; Dessouky &

Deogun, 1981) have developed branch-and-bound algorithms and Chu (1992a), and Mao and Rifkin

(unpublished) have proposed approximation algorithms for 1jrjj
P

Fj problem.

The Earliest Start Time (EST) rule assigns shortest available jobs to a machine when they are released

and the Earliest Completion Time (ECT) rule assigns the job (which may not be available yet) with

earliest possible completion time to a machine. Both rules have a worst-case bound of O(n). Kellerer

et al. (1996) developed an approximation algorithm with a sublinear worst-case performance guarantee

of Oð
ffiffiffi
n

p
Þ: They also proved that unless PZNP, there exists no polynomial time approximation

algorithm for 1jrjj
P

Fj with a worst-case performance bound of Oðn1=2K3Þ for any 3O0. In other words,

no constant ratio approximation algorithm can be expected for the problem.

Another closely related NP-complete problem is 1jrjj
P

Cj: We note that an optimal solution for

1jrjj
P

Cj is also an optimal solution for 1jrjj
P

Fj; because for any instance of the problem,
P

rj is a

constant, and minimizing
P

FjZ
P

ðCjKrjÞZ
P

CjK
P

rj is equivalent to minimizing
P

Cj:

Recently, researchers have achieved better results for 1jrjj
P

Cj when compared with the 1jrjj
P

Fj

problem. For example, Phillips, Stein, and Wein (1995) developed a (16C3)-approximation algorithm

for the weighted version 1jrjj
P

wjCj: Hall, Shmoys, and Wein (1996) improved the ratio to 4. Because

of the closely related objectives, new algorithms for 1jrjj
P

Fj can be devised with algorithms for

1jrjj
P

Cj: Phillips, Stein, and wein (1998) developed a 2-approximation algorithm for the 1jrjj
P

Cj

problem which we call the PSW algorithm. This algorithm first produces preemptive schedules which

are optimal and then converts these schedules to non-preemptive ones. This method is commonly used to

produce non-preemptive schedules. In this study, we modify the PSW algorithm to solve the 1jrjj
P

Fj

problem. We ascertain whether, on average, this new algorithm yields good solutions for the 1jrjj
P

Fj

problem and determine situations in which performance is unsatisfactory.

The modified algorithm produces non-preemptive schedules from preemptive ones. Given a set of jobs

with release times and processing times, we first form a preemptive schedule using the SRPT rule. Under

this rule, the machine always picks jobs with the shortest remaining processing times among those already

released at the current time and processes these first. Each job will have a (preemptive) completion time

CP
j : Next, we form an ordered list L of jobs based on their preemptive completion time CP

j using a simple



Fig. 1. An outline of algorithm modified-PSW.
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sort. A non-preemptive schedule is then obtained if we continue to assign the first job in L to the machine

when it is freed and delete it from L. We call this algorithm the modified-PSW algorithm, which is outlined

in Fig. 1. If we let Co
j ; Cm

j ; Fo
j ; Fm

j denote the completion times and flow times of a job in the optimal

schedule and the schedule given by the modified-PSW algorithm, respectively, it is easy to see that

Cm
j =C

o
j %2 (Phillips et al., 1998) but that Fm

j =F
o
j Z ðCm

j KrjÞ=ðC
o
j KrjÞ%2 does not necessarily hold.
2. Experiment design

In order to conduct systematic experiments, we describe here a performance metric, parameters,

factors and levels and experiment procedure. We first choose a performance metric, parameters, factors

and their levels, and then describe the experiment procedure (Jain, 1991).

Performance Metric. To test whether the modified-PSW performs well, we use preemptive schedules

for 1jrj; pmtnj
P

Fj as a lower bounds. Let FL
j denote the flow time of a job in the lower bound. The

performance metric Ratio is defined to be the deviation of modified-PSW from the lower bound, i.e.

RatioZ
P

j Fm
j K

P
j FL

j

� �
=
P

j FL
j

Parameters. In the 1jrjj
P

Fj problem, there are three parameters that can influence the performance

metric. The first is the number of jobs n, which can reach hundreds of thousands. Kellerer et al. (1996)

proposed a lower bound related to n for the problem. The second is job release times. On one extreme,

when all jobs are released in a very small interval, the problem is reduced to 1jj
P

Fj; and can be solved

optimally. On the other extreme, when the jobs are released very slowly, a simple Earliest Released Date

First rule will also solve the problem optimally. Between these extremes, performance is not expected to

be as good. Without loss of generality, we assume that the smallest release time is 0. In addition, we also

assume that the job release time follows a uniform distribution. Thus, the second parameter is reduced to

the maximum release time of all jobs, denoted by R. The third parameter is the mean processing time of

jobs, m. We study the cases where the processing time is exponentially and uniformly distributed.

Factors and levels. As the purpose here is to study properties of the modified-PSW algorithm under

different scheduling environments, and there are only three parameters, we will choose all three

parameters above to be factors in the experiments. Table 1 summarizes the factors and levels used in our

following study.

Experiment procedure. This study will focus on the average performance of modified-PSW algorithm

in solving 1jrjj
P

Fj: We first study how Ratio varies with n, R, and m, respectively. At every level of



Table 1

Factors and their corresponding distributions and levels

Factor Distribution Level

n 10, 50, 100, 500, 1000, 5000, 10,000, 50,000, 100,000

R Uniform 100, 500, 1000, 5000, 100,00, 50,000, 100,000, 500,000, 1,000,000

m Exponential, uniform 1, 5, 10, 50, 100, 500, 1000, 5000, 10,000
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a given factor, 100 test cases are generated randomly. Then, based on the results, we increase the number

of levels appropriately, and conduct further experiments to test the performance of modified-PSW when

two factors are allowed to vary simultaneously. Fifty test cases are generated for each combination of

factor levels and an empirical model is developed to predict the average performance of modified-PSW

for combinations of the three factors. The accuracy of the model is tested against n, R and m.

The necessity for experiment. As theoretical bounds have already been derived by Kellerer et al.

(1996), the main purpose here is to study how, when compared with these bounds, the modified-PSW

algorithm performs, on average, for 1jrjj
P

Fj under different parameter combinations. Theoretical

analysis focuses only on the worst-case. Here, we are motivated by the applicability of the modified-

PSW to problems in practice. Further, since different values of parameters affect performance to

different extents, we implement experiments to determine how the modified-PSW algorithm responds to

parameter combinations.

Reproducibility. Since reproducibility is crucial to any experimental study, we describe here the

Random Number Generator that is used in our test case generation. A Java package, COLT, consisting of

six libraries for scientific and technical computing was used to generate numbers from exponential and

normal distributions (http://hoschek.home.cern.ch/hoschek/colt/V1.0.3/doc/index.html). We used

Ranecu to produce exponentially distributed random numbers for job processing time. Ranecu is an

advanced multiplicative linear congruential random number generator with a period of approximately

1018. We used MersenneTwister to produce uniformly distributed random numbers for job release time

and for job processing time. All test cases were run on a Pentium III (600 HZ) processor and 128 MB

memory and algorithms coded in Java and compiled and run with Java sdk1.4.0 and COLT1.0.3.
3. One-factor experiments

In this section, we describe one-factor experiments, which reveal how n, R and m affect performance

individually. One-factor experiments are insightful to the nature of the problem (e.g. whether the

performance is convex, concave, monotonically increasing or decreasing with each parameter). Further,

the results of one-factor experiments suggest directions for two-factor experiments.
3.1. Testing the effect of number of jobs on the results

To determine the effect of n on Ratio, we fixed R at 5000 and m at 10 for exponentially distributed

processing time First, we varied n on a log scale (as shown in Table 1) to obtain a general picture of the

average performance within a large range of n. Fig. 2(a) is a plot of Ratio against n. The ‘X’ marks

are the results of the modified-PSW algorithm on test instances with the given parameter settings,

http://hoschek.home.cern.ch/hoschek/colt/V1.0.3/doc/index.html


Fig. 2. (a) Plot of Ratio against n; (b) Plot of Ratio against n in the range [0, 1000].
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and the lines connect averages. We observe that the average performance is satisfactory when n is less

than 100 where Ratio is clustered between 10 and 20%. The standard deviations at these n values were

not small, however, where, for example, the largest Ratio value of about 0.35 occurred when the average

Ratio value was below 0.1. In the range of n between 100 and 1000, performance is poor as values

exceed 0.2 and Ratio reaches 0.8. Also, the standard deviation becomes large here. When n is larger than

1000, performance improves where the absolute values of Ratio are very close to 0 and standard

deviations are small. When we look in detail, we found that the worst average occurs when nZ400 and

performance is satisfactory when n exceeds 700. Fig. 2(b) is a plot of Ratio against n on a linear scale in

the range [0, 1000]. From these plots, we see that modified-PSW algorithm performs well, on average,

when n is less than 100 or n is greater than 700 (where R and m are set to 5000 and 10, respectively),

where smaller Ratio values are found for test sets with smaller standard deviations.
3.2. Testing the effect of maximum job release time R on results

To determine the effects of R on Ratio, we fixed n at 500 and m at 10 for exponentially distributed

processing time First, we varied R on log scale. Fig. 3(a) plots Ratio against R as R increases from 102 to

106. Performance is satisfactory when R is less than 103 or larger than 105. Between 103 and 105,

performance is poor with Ratio exceeding 0.2. The standard deviations of Ratio were proportional to its

absolute values. Fig. 3(b) and (c) provides magnified plots for R in the ranges of (103, 104) and (104, 105),

respectively. The worst average case occurred when R was 6000 with a Ratio value near 0.5. From these

three plots, we see that the modified-PSW performs well, on average, when R is less than 3000 or larger

than 50,000. We found that the more difficult test sets were those with R near to 104. Similar to the case

for n, smaller Ratio values usually occurred with smaller standard deviations.
3.3. Testing the effect of m on results

Finally, to test the effects of m (for exponentially distributed processing time) on Ratio, we fixed n at

500 and R at 5000. First we varied m on log scale. Fig. 4(a) plots Ratio against m as m varies from 1 to 104

on a log scale. The performance is satisfactory when m is greater than 50, and is relatively poor when m is

smaller than 50. Fig. 4(b) provides a zoom-in linear-scale plot at the m range of (1, 20). The worst

average case occurs at mZ7 and Ratio is around 0.4 but the largest standard deviation is at mZ10. From

Fig. 4, we infer that the modified-PSW algorithm performs well on average when m is greater than 20.

Similar to the cases for n and R, smaller Ratio values occurred with smaller standard deviations and at

these points the average case performance was good. Further experiments were carried out for jobs with

uniformly distributed processing time. The resulting plots are very close to those given in Figs. 2–4,

except that the worst average Ratio was reduced from approximately 0.5 to about 0.20.
4. Two-factor experiments

Having determined from one-factor experiments that performance is approximately a convex function

of each parameter n, R, and m individually, we investigated the combined effects of these factors to

provide a better understanding of the impact of problem characteristics on the algorithm used.



Fig. 3. (a) Plot of Ratio against R; (b) Plot of Ratio against R in the range [1000, 10,000]; and (c) Plot of Ratio against R in the range [10,000, 100,000].
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Fig. 4. (a) Plot of Ratio against m; (b) Plot of Ratio against m in the range [0, 20].
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4.1. Reduction of the m factor

When we examined the relationship between R and m, we noticed these factors were related We first

give two lemmas. Let X and Y denote the random variables for a job’s release time and processing time,

respectively.

Lemma 1. If X is uniformly distributed U(0, R), then a(X/m) is uniformly distributed U(0, a(R/m)), where

aO0 is a constant.

Proof. X is uniformly distributed U(0,R)5Pr{X!r)Zr/R.

Hence,

Pr
aX

m
!r

� �
Z Pr X!

mr

a

n o
Z mr=aR Z r=ðaR=mÞ (1)

Since a is a constant, Eq. (1) indicates that a(X/m) is uniformly distributed U(0, a(R/m)). ,

Lemma 2. If Y is exponentially distributed Exp(m), then a(Y/m) is exponentially distributed Exp(a),

where aO0 is a constant.

Proof. Y follows an exponential distribution ExpðmÞ5PfY !pÞZ1KeKp=u

Hence

P
aY

m
!p

� �
Z P Y !

mp

a

n o
Z 1 KeKðmp=aÞ=m Z 1 KeKp=a (2)

Since a is a constant, Eq. (2) implies that a(Y/m) is exponentially distributed Exp(a). ,

We can now state and prove the following theorem.

Theorem 1. Any instance of 1jrjj
P

Fj with factors {n, R, m} can be transformed into an equivalent

instance with factors {n, a(R/m), a}, where a is a positive constant.

Proof. First we note that by transforming R to a(R/m) and m to a, the processing time and the

release time of every job are scaled by a/m. Now, R and m are the only time-dependant parameters.

Therefore, the change of m to a and R to a(R/m) is a change of the time unit from 1 to (a/m). If we

let S1 denote the schedule for an instance {n, R, m}, and S2 denote the schedule for the instance

{n, a(R/m), a}, then since the modified-PSW algorithm produces schedules based on the relative

values of job release times and processing times, the relative order of jobs in S1 and S2 must be

the same, and therefore, Ratio values resulting from S1 and S2 should have the same distribution.

In other words, an instance with factors {n, R, m} and its transformed instance with factors

{n, a(R/m), a} are equivalent in terms of average solution quality. Finally, the transformations R

to a(R/m) and m to a results in uniform and exponential distributions, respectively, from the

Lemmas 1 and 2. ,
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4.2. Testing the combined effects of n and R on Ratio

We now study the combined effects of n and R on the average performance. The situation is

more complicated than the one-variable tests studied in previous sections for which we use 3D

graphs to illustrate test results. We used 44 different n values and 54 R values, with a total of

44*54Z2376 (n, R) pairs, and for each (n, R) pair, there were 50 randomly generated test cases.

However, the n and R values were not uniformly distributed since, from the 2D plots, we know

more test sets are selected for those n and R values where Ratio is greater than 0.1 and where the

slope of the 2D plot is large. The 3D plot represents the approximate shape of Ratio distributions.

Different views of the same 3D plot are shown where the mean processing time of jobs m is fixed

at 10.

Fig. 5(a)–(c) show plots on linear scale from three different views. The largest Ratio value is about

0.45, whereas the lowest is in the range of 0–0.05. We observe that when we draw a bottom-left to top-

right diagonal on the base plane (Fig. 5(c)), we find that the points that are sufficiently far from the

diagonal have Ratio values smaller than 0.1, and points nearer to the diagonal have larger Ratio values,

mostly above 0.2.

From Fig. 6(a)–(c), which are the same plots on log scale from different views as Fig. 5(a)–(c), we

make several other observations. First, there is a ridge-like shape in the graph (Fig. 6(b)). There is a

large area of flat and low areas, where the average performance is good, a long and high ridge, where

the average performance is poor and a steep slope connecting the low areas to the ridge. The

projection of the ridge onto the base plane is a straight line, which coincides with the diagonal

(Fig. 6(c)). This suggests that when log n and log R satisfy the linear relationship log nZk log RCb,

the average performance is likely to be poor. To explain this, we hypothesize that the average

performance is closely related to the number of preemptions during the formation of a preemptive

schedule. Intuitively, more frequent preemptions imply a bigger gap between the preemptive and the

non-preemptive schedules. On one extreme, when n is so small that log n/k log RCb, the machine

is lightly loaded and there are few simultaneous outstanding jobs, so jobs are likely to be processed

in first-come-first-serve order and thus the number of preemptions is small. On the other extreme,

when n so large that log n[k log RCb, the machine is heavily loaded and there are a large number

of simultaneous outstanding jobs, which is analogous to the case when all jobs are released at the

same time, so that SRPT performs as well as SPT and the number of preemptions is small. Between

these extremes, machine utilization is moderate but a bigger number of preemptions occur in the

optimal preemptive schedule.

In order to investigate the variation of the test results in the modified-PSW algorithm, we plotted a 3D

graph for the standard deviation of the test results in Fig. 7.

This plot also has a ridge which is lower compared with those found before. The

maximum standard deviation is approximately 0.2, and for flat areas, standard deviations are less

than 0.05.

Let k be a positive constant, we can infer the following from the experimental analysis:
(1)
 For nZo(Rk) or nZu(Rk), the average performance is expected to be within 0.1 from the optimal,

and the standard deviation is less than 0.05.
(2)
 For nZQ(Rk), the average performance is expected to be from 0.1 to 0.5 from the optimal, and the

standard deviation varies from 0.05 to 0.2.



Fig. 5. (a) Plot of Ratio against n, R; (b) Plot of Ratio against n, R; and (c) Top view of Ratio under the combined effects of n and R.
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Fig. 6. (a) Plot of Ratio against n, R; (b) Plot of Ratio against n, R; and (c) Top view of Ratio under the combined effects of n and R.
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Fig. 7. Plot of standard deviation of test results against n, R.
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5. Further comparisons

To further investigate the performance of the modified-PSW algorithm, we compared our results

with the recent work on the single machine scheduling problem by Della Croce and T’kindt (2003)

where an enhanced preemptive lower bound is derived from the well-known SRPT algorithm. This

new lower bound is compared with the SRPT lower bound in Della Croce and T’kindt (2003) using

test sets with up to 100 jobs, which were generated from Chu, 1992a,b with various parameter

settings. The authors reported a gap average of 44% between the two lower bounds using the

performance measure:

ðnew lower bound KSRPT lower boundÞ=ðoptimal KSRPT lower boundÞ (3)

In this work, since we find exact solutions rather than lower bounds, we measured the quality of

results using the Ratio performance measure defined in Section 2, which is a widely-accepted and

standard method for measuring the performance of algorithms. We generated 900 test cases in all,

following the same mechanisms given in Chu (1992a) and adopted the same set of parameters used

in Della Croce and T’kindt (2003). For each job j, integer processing times were uniformly

distributed within [1, 100] and the release times of jobs are integers uniformly distributed in the

range [1, n*50.5*p], where n is number of jobs and n*50.5 is the expected total processing time, and

p is a range factor parameter which controls the closeness of job release times (Della Croce &

T’kindt, 2003). We used the values 20, 40, 60, 80, 100 for n, and 0.2, 0.6, 1.0, 2.0, 3.0 for p, which

is the same parameter range used in Della Croce and T’kindt (2003). For each (n, p) pair, 30 test sets

were generated to give 900 test sets in total. Results are shown in Table 2.



Table 2

n p Avg. SRPT Avg. MPSW Avg. Gap (%)

20 0.20 5473.17 5936.53 8.85

20 0.60 3556.10 4111.57 18.24

20 1.00 2379.23 2865.93 20.15

20 1.50 1624.33 1871.30 15.28

20 2.00 1308.30 1439.27 9.99

20 3.00 1150.07 1234.17 6.94

40 0.20 21,952.37 22,929.00 4.51

40 0.60 12,765.67 14,118.87 11.72

40 1.00 5065.40 6135.33 21.79

40 1.50 3486.17 4037.20 15.59

40 2.00 2797.63 3068.50 9.45

40 3.00 2496.37 2668.10 7.05

60 0.20 46,378.40 48,080.50 3.68

60 0.60 26,433.83 28,875.37 9.87

60 1.00 9743.70 11,695.33 20.83

60 1.50 5383.33 6232.07 16.00

60 2.00 4207.40 4712.70 11.96

60 3.00 3697.77 3944.87 6.72

80 0.20 80,195.73 82,666.93 3.14

80 0.60 42,065.97 45,246.33 7.74

80 1.00 14,719.40 17,537.63 20.13

80 1.50 6995.47 8093.47 15.76

80 2.00 5528.23 6247.03 13.02

80 3.00 4867.00 5234.73 7.60

100 0.20 13,2480.23 13,5601.90 2.39

100 0.60 66,964.40 71,280.97 6.75

100 1.00 18,188.27 21,876.03 22.00

100 1.50 8985.73 10,457.63 16.29

100 2.00 6954.80 7719.23 11.08

100 3.00 5978.43 6383.27 6.73
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From these results, we see that MPSW gives good results for test sets used in Della Croce and

T’kindt (2003). This is because results obtained were very close to lower bounds with performance

gaps between 3 and 20%. This implies that the modified-PSW provides solutions very close to the

lower bounds. We note that the average 44% lower bound improvement reported in Della Croce and

T’kindt (2003) is of limited value using formula (3) when the SRPT bound is already close to

optimal solutions.

We note also that the range factor p had an impact on performance. It is clear that for different values

of n, the hardest problems were those with the range factor p near 1.0 since for test sets with pZ1.0 the

gap from the SRPT lower bound had values close to and above 20%. The difficulty of test sets decreased

as p decreased or increased from the value 1.0. This is not surprising if we consider what setting pZ1.0

implies in test set generation. The release time is uniformly distributed in [1, n*50.5] when pZ1, where

n*50.5 is the expected total processing time. This means, jobs in these test sets are released from the start

time to the expected finish time evenly across [1, n*50.5] causing jobs to be tightly constrained. On the

other hand, when p is smaller or larger than 1, jobs are released approximately at the same time or are



Fig. 8. Gap (%) against p when nZ100.
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sufficiently separated. Both cases are easier to schedule since simple scheduling principles such as SRPT

can be used. For these test sets, the gap is smaller as shown in Fig. 8.
6. Predictive model: development and extension

In this section, we develop a model to predict the average performance of the modified-PSW

algorithm for the 1jrjj
P

Fj problem. Although the above experiments are specific to the modified-

PSW algorithm, our previous analysis is applicable to all algorithms that produce solution by

converting preemptive schedules to non-preemptive ones, and therefore, the model developed can be

used in predicting the performance of this type of algorithm. Testing the model provided satisfactory

results even when some of the assumptions in this model (e.g. release time distribution) were

violated.
6.1. Model development

In Section 4, we showed that every instance of 1jrjj
P

Fj with factors {n, R, m} can be transformed

into an equivalent instance with factors {n, a(R/m), a} for aO0 With this, we can predict the average

performance of modified-PSW algorithm for cases with {n, R, m} by finding the average performance for

cases with {n, 10(R/m), 10}. The validity of prediction can be verified by graphically. For {n0, R0, 10},

we have

log n0 Z k log R0 Cb

After transforming {n, R, m} to {n, 10(R/m), 10}, we substitute variables into above equation to get

log n Z k log½10ðR=mÞ�Cb Z k log R Ck logð10=mÞCb

Since k, b and m are constants in each plot, we get a line with slope k and intercept k log(10/mCb).

Hence, when we plot Fig. 6(a) for each m value, ridge-projection lines will have the same slope k but

different intercepts (see Fig. 9).



Fig. 9. Top view of relative ridge locations for different m values.
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6.2. Model testing

A performance prediction model for algorithms solving the 1jrjj
P

Fj would have practical use for

decision-makers. In this section, we test the accuracy of the above empirical prediction model using

three types of problems: jobs with exponentially distributed processing time having mZ10; jobs with

exponentially distributed processing time with mZ100; and jobs with uniformly distributed processing

time with mZ10. The release time follows a uniform distribution for all three cases. For each job type,

there are 16 sampling points, each containing 50 test instances. With an interpolation function

‘interp(n, R)’, which approximates the Ratio value based on experimental data, for the first class of

instances with factor {n, R, 10}, a simple application of interp(n, R) will give an approximate value. For

the second class of problem instances, with factor {n, R, 100}, we use interp(n, R/100). The last class of

instances with uniform processing time is studied for sensitivity testing to ascertain if a violation of

model assumptions will affect accuracy. This is addressed by a direct application of interp(n, R).

The interpolation function available in MATLAB (‘interp2’) can used in matrix form all the

44!54Z2376 sampling points and their corresponding Ratio values. We randomly picked four

different n and R values for each of the three kinds of jobs in testing the accuracy of the prediction model.

In every table entry (except for table headers), the top value is the actual Ratio value obtained from

running test cases, and the bottom value is the predicted Ratio value obtained from the empirical model.

By comparing the actual Ratio from running test cases and the interpolated Ratio values, we find that
Table 3

Data for jobs with exponentially distributed processing time having mZ10

n R

826 8257 52,988 108,540

14 0.0939 0.0096 0.0005 0.0014

0.0713 0.0049 0.0026 0.0014

343 0.0104 0.2446 0.0319 0.0139

0.0116 0.2529 0.0293 0.0176

5468 0.0000 0.0005 0.0702 0.3152

0.0000 0.0005 0.1872 0.3236

21,341 0 0.0000 0.0002 0.0008

0 0 0.0002 0.0008



Table 4

Data for jobs with exponentially distributed processing time having mZ100

R

n 826 8257 52,988 108,540

14 0.2665 0.0729 0.0058 0.0117

N.A. 0.0714 0.0094 0.0030

343 0.0025 0.0138 0.4187 0.1883

N.A. 0.0116 0.4141 0.1794

5468 0.0000 0.0001 0.0004 0.0008

N.A. 0.0000 0.0003 0.0007

21,341 0 0 0.0000 0.0001

N.A. 0 0 0.0000

All entries with N.A. indicate that the values to be predicted are not available because the (n, R/10) pairs are out of the range of

the interpolation function in MATLAB.
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the prediction value is acceptably accurate: the mean difference between the two Ratio values is 0.0069

for the first class, 0.0019 for the second class, and 0.0401, for the third class. Detailed test results are

given in Tables 3–5.
7. Conclusion

In this study, we provide a modified-PSW algorithm from the 1jrjj
P

Fj problem and conducted

extensive experiments to determine the average performance of this algorithm. We also

characterized the performance of the algorithm with respect to different combinations of parameters.

It was found that performance was poor when the logarithms of n and R satisfy a linear relationship.

We provided an analysis of this and gave empirical methods for judging average solution quality

when the problem is solved by modified-PSW. In addition, we developed a model to predict the

average performance for the general case. This model is easily used and is able to provide good

predictions. We also compared our results for the problem with those given recently by Della Croce

and T’kindt (2003).
Table 5

Data for jobs with uniformly distributed processing time having mZ10

n R

826 8257 52,988 108,540

14 0.0253 0.0017 0 0

0.0713 0.0049 0.0026 0.0014

343 0.0084 0.0804 0.0085 0.0043

0.0116 0.2529 0.0293 0.0176

5468 0.0001 0.0004 0.0267 0.1062

0.0000 0.0005 0.1872 0.3236

21,341 0 0.0000 0.0002 0.0004

0 0 0.0002 0.0008
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