
Physics 446-546, Problem Set 5
(issued Nov 18, ’03, due 2 Dec ’03)

#1 (from Bialek notes, physics/0205030, p. 32)

Problem 6: Maximally informative experiments. Imagine that we are trying
to gain information about the correct theory T describing some set of phenomena.
At some point, our relative confidence in one particular theory is very high; that is,
P (T = T∗) > F · P (T 6= T∗) for some large F . On the other hand, there are many
possible theories, so our absolute confidence in the theory T∗ might nonetheless be
quite low, P (T = T∗) << 1. Suppose we follow the ‘scientific method’ and design
an experiment that has a yes or no answer, and this answer is perfectly correlated
with the correctness of theory T∗, but uncorrelated with the correctness of any
other possible theory—our experiment is designed specifically to test or falsify the
currently most likely theory. What can you say about how much information you
expect to gain from such a measurement? Suppose instead that you are completely
irrational and design an experiment that is irrelevant to testing T∗ but has the
potential to eliminate many (perhaps half) of the alternatives. Which experiment
is expected to be more informative? Although this is a gross cartoon of the scientific
process, it is not such a terrible model of a game like “twenty questions.”

(It is interesting to ask whether people play such question games following
strategies that might seem irrational but nonetheless serve to maximize informa-
tion gain [Ginzburg I., & Sejnowski, T. J. (1996). Dynamics of Rule Induction
by Making Queries: Transition Between Strategies, in 18th Annual Conference of

the Cognitive Science Society, pp. 121–125 (Lawrence Erlbaum, Mahwah NJ). See
also http://www.cnl.salk.edu/CNL/annual–reps/annual–rep95.html]. Related but
distinct criteria for optimal experimental design have been developed in the sta-
tistical literature [Fedorov, V. V. (1972). Theory of Optimal Experimental Design,

translated and edited by Studden, W. J., & Klimko, E. M. (Academic Press, New
York)].)

#2 (from Bialek notes, physics/0205030, p. 33)

Problem 7: Positivity of information.

I(D → W ) = S(W ) −
∑

D

P (D)S(W |D) (43)

=
∑

W

∑

D

P (W, D) log2

[

P (W, D)

P (W )P (D)

]

. (44)

Prove the above formula and prove that the mutual information I(D → W ), defined
in Eq. (44), is positive.
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#3 (from Bialek notes, physics/0205030, p. 35)

The problem of finding the maximum entropy given some constraint again is
familiar from statistical mechanics: the Boltzmann distribution is the distribution
that has the largest possible entropy given the mean energy. More generally, let us
imagine that we have knowledge not of the whole probability distribution P (D) but
only of some expectation values,

〈fi〉 =
∑

D

P (D)fi(D),

where we allow that there may be several expectation values known (i = 1, 2, ..., K).
Actually there is one more expectation value that we always know, and this is that
the average value of one is one; the distribution is normalized:

〈f0〉 =
∑

D

P (D) = 1.

Given the set of numbers {〈f0〉, 〈f1〉, · · · , 〈fK〉} as constraints on the probability
distribution P (D), we would like to know the largest possible value for the entropy,
and we would like to find explicitly the distribution that provides this maximum.

The problem of maximizing a quantity subject to constraints is formulated
using Lagrange multipliers. The result is that

P (D) =
1

Z
exp

[

−

K
∑

i=1

λifi(D)

]

, (53)

where Z = exp(1 + λ0) is a normalization constant.

Problem 8: Details. Derive Eq. (53). In particular, show that Eq. (53) provides
a probability distribution which genuinely maximizes the entropy, rather than being
just an extremum.

(Recall “Your Turn 6G” on p.224 of the course text, and 6.1′ on p.232, for a similar
derivation of the Boltzmann distribution.)
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#4

(a) In class, we discussed the “occasionally dishonest casino” that used two kinds
of dice: 99% were fair, but 1% were loaded so that a six came up 50% of the time.
The conditional probabilities were thus P(six|Dloaded)= 1/2, P(six|Dfair) = 1/6. If
we then pick a die at random, what are the joint probabilities P(six,Dloaded) and
P(six,Dfair)? What is the probability of rolling a six from the die we picked up?
If we rolled three sixes in a row, we saw that the posterior probability P(Dloaded|3
sixes) that it was loaded was only 3/14. How many sixes in a row would we have
to roll before concluding it was more likely to have been a loaded die?

(b)In class we also discussed the case of “the rare genetic disease” carried by only
one in a million people, and a screening test that is 100% sensitive (always correct
if you have the disease) and 99.99% specific (gives a false positive only 0.01% of the
time), and concluded it would not be sensible to take the test. For that problem,
we thus had P(D) = 10−6, P(+|D) = 1, P(+|D) = 10−4, where D,D denote diseased
and not diseased, resp., and + indicates positive on the screening test. For general
values of P(D), P(+|D), P(+|D), determine the conditional probability P(D|+) of
being diseased if the test result is positive, and characterize when it is greater than
the risk P(D) of having the disease.

#5
In class we discussed the ferromagnetic 2D Ising model on a square lattice with

partition function Z(K) =
∑

{σi=±1} exp(
∑

<ij> Kσiσj), where the <ij> sum is

over nearest neighbor pairs, and showed that Z(K) ∝ Z(L) where (e2L − 1)(e2K −
1) = 2. Generalize the argument given in class to the case of an anisotropic model,
with couplings Kh on the horizontal links and Kv on the vertical links . Discuss the
phase diagram in the Kh, Kv plane and locate the location of the transition based
on the extended duality relation. (Hint: it is now a line, rather than a single point.)

#6
In class, we discussed the Hopfield model for associative memory.
(a) Consider first the case of a neural net with N = 8 nodes and a single pattern

ξ
(1)
i = 1 for all i, i.e., the vector ~ξ(1) = (1, 1, 1, 1, 1, 1, 1, 1). Write down the matrix

wij = 1
N

ξ
(1)
i ξ

(1)
j and determine its basins of attraction for test vectors ~ζ in terms of

the coordinates of ζ.
(b) Now add a second pattern ~ξ(2) = (1, 1, 1, 1,−1,−1,−1,−1), write down wij =
1
N

∑p

µ=1 ξ
(µ)
i ξ

(µ)
j for p = 2 and determine the basins of attraction for test vectors ~ζ.

(c) Add a third pattern ~ξ(3) = (−1, 1, 1, 1, 1, 1, 1, 1,−1), again write down wij =
1
N

∑p

µ=1 ξ
(µ)
i ξ

(µ)
j now for p = 3, and determine its basins of attraction for test

vectors ~ζ.

3


