Research Statement

Dan Williams

My research interests generally revolve around buildingtesys, especially the development of cloud software,
hypervisors, and operating system kernels. My Ph.D. thesiarch at Cornell focuses on how to efficiently deploydarg
systems on clouds irrespective of whether they are publicate or a mixture of both. Also at Cornell, | researched
operating system mechanisms to support trustworthy canmmgguin particular, how to reduce the trusted computing
base (TCB). My general approach to addressing systemsrceselaallenges is based on solid understanding through
implementation and evaluation of real systems.

1. Ongoing Research: Large Cloud Deployments

While Infrastructure as a Service (IaaS) clouds have endeaga convenient method for leasing virtual machines (VMs),
deploying large enterprise-grade applications remaiffisalt and highly inefficient. For example, an IT departm#t
manages hundreds or thousands of VMs faces significanecig@é in migrating to the cloud, including:

e Under-utilization of Leased Resourcest scale, the common practice of provisioning VMs to handdalploads, or
overprovisioning, begins to result in significant unddtization of resources.

¢ Inflexibility of Cloud ServicesLarge VM deployments often require VM management tools gulaenent on
multiple—public or private—cloud providers.

| have designed, implemented, and evaluated two systeradHeess these challenges: Overdriver and the Xen-Blanket
respectively. | am also interested in pursuing future neseprojects inspired by the insights gleaned from each.

1.1 Overdriver

In large VM deployments, the traditional conservative tefyg of overprovisioning each VM with enough physical
resources to support relatively rare peak load conditieasld to significant under-utilization of resources mosthef t
time. Oversubscription promises to increase utilizatiba aost: an increased likelihood ofrerload or a condition in
which one or more VMs do not have the resources to completskantdhout encountering performance degradation.

Focusing on the mitigation ahemoryoverload because of its severe effects on performanceigrass implemented
and evaluated a system called Overdriver [9]. The key indighind Overdriver is an observation, from my own analysis
of current data center logs and realistic Web workloads rtteamory overload is largely transient: up to 88.1% of ovade®
last for less than 2 minutes. This obsereegrload continuumcontaining not only sustained but also transient overload
suggests that no one mitigation approach will be optimahfooverloads. In particular, heavyweight techniques NV
migration, are better suited to sustained overloads, valsdightweight approaches, like network memory, are bstiied
to transient overloads.

Overdriver adaptively takes advantage of these tradeoffsi@anage a full continuum of sustained and transient
overloads. On transient overloads, rather than swappimganepages to disk, overloaded VM’s memory pages are written
to (and read from) network memory. A threshold-based meshaactively monitors the duration of overload in order to
decide when an overload should be classified as sustaineal\@ktdmigration operation should occur. The thresholds are
adjusted based on VM-specific probability overload profidsich Overdriver learns dynamically. Overdriver’s agsdjzn
between network memory and VM migration reduces potenfiplieation performance degradation, while ensuring the
chance (and overhead) of unnecessary migration operagomsns low.

This research has produced important insights regardm@ntount and distribution of excess resources that must be
reserved to handle overload events. In particular, givest afsapplications and their overload characteristics, @l
degree of oversubscription exists. Applying concepts ftrardriver, large VM deployments can be safely oversubecri
in terms of memory, and the utilization of leased resouresste increased.

1.2 The Xen-Blanket

Large VM deployments require flexibility with regard to thederlying cloud infrastructure. Many common and experi-
mental tools for managing large VM deployments, including VM migration [5], page sharing [14], and Overdriveryrel



on hypervisor-level techniques not exposed to cloud usdrgliay’s clouds. Provider support for multi-cloud deplamts
is extremely limited if they exist at all.

In my research, | have proposed the concept of an extenslilel ¢8] as fundamental for migrating large VM
deployments to the cloud. | have also fully developed a pyp® extensible cloud called the Xen-Blanket [10]. The
Xen-Blanket is a system that leverages nested virtuadiaaty transform existing heterogeneous clouds into a umifor
user-centrichomogeneous offering without requiring special suppannfrunderlying cloud providers. | have deployed
the Xen-Blanket on both Xen-based and KVM-based hypersjsam public and private infrastructures within Amazon
EC2, IBM, and Cornell University.

The Xen-Blanket leverages nested virtualization to rurcaisé-layer hypervisor as a guest on top of a variety of public
or private clouds, forming Blanket layer The Blanket layer exposes a homogeneous interface toddaper guest VMs
and is completely customizable. Hypervisor-level techa&and management tools, like those described above,Ican al
be implemented inside the Blanket layer. Unlike existingted virtualization techniques (like the Turtles projel)
which require changes to the providers’ hypervisors, thenBét layer containBlanket driversthat allow it to run on
heterogeneous clouds while hiding interface details ofitigerlying clouds from guests.

The Xen-Blanket enables true multi-cloud deployment. B@naple, | have live migrated VMs to and from Amazon
EC2 with no modifications to the VMs. Furthermore, the usartic design of the Xen-Blanket affords users the flexipili
to oversubscribe resources such as network, memory, akdAdisa direct result, a Xen-Blanket image on EC2 can host
40 CPU-intensive VMs for 47% of the price per hour of 40 smadtances with matching performance.

1.3 FutureDirections

With the insights and infrastructure produced from the @xieer and Xen-Blanket projects, there are many intergstin
research challenges surrounding how to exploit multipteid$ in an efficient cloud abstraction; in other words, how to
create efficient clouds within clouds. For example, | plaintestigate the implications of a full cloud software stack
like Eucalyptus [11] or OpenStack [1], implemented on thens8tanket across multiple cloud providers. In the short
term, | plan to further reduce overprovisioning for memarygiouds and address network incompatibilities that anse i
multi-cloud environment.

Memory Clouds Overprovisioning of memory occurs because of difficultiegpredicting the memory usage of VMs.
Truly elastic resources, such as storage, do not requiiqgbian: an abstraction of infinite storage is presented)evh
a VM pays for what it actually uses. | am interested in purguhre idea of truly elastic memory orraemory cloudin
which elastic memory behaves like elastic storage. Withimarg cloud, VMs see a virtually unlimited amount of memory
and pay for only what they use. The underlying hypervisgelsoftware must maintain the illusion of infinite memory
without VMs perceiving that some of the memory may not bellobachniques like those explored in Overdriver will be
essential, and emerging architectures with extremelyifiést-node communication, such as BlueGene, may fa@litat
implementation of an efficient memory cloud abstraction.

Virtual Networkingin Clouds The Xen-Blanket grants hypervisor-level control over catagion, memory and storage
resources in today’s clouds. However, this abstractionssfficient for large deployments that require control cer
network. For example, VMs require a specific IP address, ohAN& may be required to isolate certain types of traffic. |
am in the process of building and evaluating a system thatese virtual network within the Xen-Blanket layer, inbisi

to VMs. Every VM running on the Blanket layer is connected teirdual switch in the Xen-Blanket. Virtual switches
are connected to each other with layer 2 tunnels that fornvariay network that may span multiple clouds. Therefore,
all VMs on the virtual network can communicate with each othigh layer 2 protocols while maintaining their network
configuration. This affords cloud deployments unprecestgfiexibility: VMs on different clouds can share a VLAN; they
can live migrate from one cloud to another; and new or emgrgéetwork features like OpenFlow can be supported on the
virtual network even if no physical switches support it. @imgy work is examining how to create a scalable overlay to
support the virtual network.

2. Prior Research: The Nexus Operating System

The Nexus [13] is a new operating system designed to suppstitorthy computing. | was involved in building the Nexus
from scratch, making significant code contributions in gwerajor kernel subsystem including memory management,
thread management, interrupt delivery, device suppod storage. My research focused on ensuring that the Nexus was
designed to be trustworthy, in particular, by maintainirgrall trusted computing base (TCB). My research contriimsti
shrink the TCB of traditional operating systems in two areas

First, the storage system of traditional operating syst&ma the TCB. In particular, the disk contents must be
trusted because the OS cannot even detect a simple attadkich @ disk image is duplicated and replayed while the



machine is powered down. | designed, implemented, and &eala storage system to offer integrity and confidentiality
protection—even across reboots—and eliminate the needigsbdisk contents. It contains an abstraction called Secur
Storage Regions (SSRs) that leverage limited TrusteddptatiModule (TPM) storage resources to provide integrityd an
confidentiality- protected, replay-proof, persistentatg. In this research, | applied the technique of using Merksh
trees [12] as a low-cost mechanism to protect the integfithata. | also investigated the optimal selection of bloz&gor
Merkle hash trees [6] and derived an analytical model thatidees the cost of incremental updates to a Merkle hash tree
given the total size of a memory region to be protected andtingber of modified memory locations in each transaction.
Using this model, the SSR subsystem can numerically detertiie blocksize that minimizes the cost of performing
updates to the tree.

Second, device drivers constitute over half of the sourck adf many operating system kernels, with a bug rate up
to seven times higher than other kernel code [4], yet tyhidain in the kernel with supervisor privilege. Even in user
space, device drivers execute hardware /O operations amdidninterrupts, allowing them to cause device behavit th
compromises the integrity or availability of the kernel dner programs. | designed, implemented, and evaluatedra use
space driver subsystem that removes drivers from the TCRitying them without supervisor privileges and constrains
their interactions with hardware devices [7]. The key comgat that | built in the device subsystem is a trusted refaren
validation mechanism (RVM) [2] that mediates all interantbetween device drivers and devices. The RVM invokes a
device-specific reference monitor to validate interacibatween a driver and its associated device, thereby egshe
driver conforms to a device safety specification (DSS), Widefines allowed and, by extension, prohibited behaviors.
My research also produced a domain-specific language tesxphe DSS, which defines a state machine that accepts
permissible transitions by a monitored device driver, amiis& compiler to translate each DSS into a reference monitor
that implements the state machine. Every operation by thieeldriver is vetted by the reference monitor, and openatio
that would cause an illegal transition are blocked. By fundatally reducing the TCB, the Nexus architecture provides
insight into building trustworthy systems.

References
[1] OpenStackhttp://www.openstack.org/, Oct. 2010.

[2] J. P. Anderson. Computer security technology plannituglys—\Vol. 1l. Technical Report ESD-TR-73-51 Vol. II, Eleonic
Systems Division, AFSC, L. G. Hanscom Field, Bedford, MApS&972.

[3] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Hat;EA. Gordon, A. Liguori, O. Wasserman, and B.-A. Yassour.eTh
turtles project: Design and implementation of nested alization. InProc. of USENIX OSDMancouver, BC, Canada, Oct. 2010.

[4] A. Chou, J.-F. Yang, B. Chelf, S. Hallem, and D. Engler. émpirical study of operating system errors.Aroc. of ACM SOSP
Banff, Canada, Oct. 2001.

[5] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Lichp& Pratt, and A. Warfield. Live migration of virtual maols. In
Proc. of USENIX NSDIBoston, MA, May 2005.

[6] D. Williams and E. G. Sirer. Optimal parameter selection for efficientoy integrity verification using merkle hash trees. In
Proc. of the IEEE NCA Trustworthy Network Computing Worksi@ambridge, MA, Aug. 2004.

[7] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B. Schneider. @ewdriver safety through a reference validation
mechanism. IfProc. of USENIX OSDISan Diego, CA, Dec. 2008.

[8] D. Williams, E. Elnikety, M. Eldehiry, H. Jamjoom, H. Huang, and H. Weaipoon. Unshackle the cloud! Rroc. of USENIX
HotCloud Portland, OR, June 2011.

[9] D. Williams, H. Jamjoom, Y.-H. Liu, and H. Weatherspoon. Overdriverntiang memory overload in an oversubscribed cloud.
In Proc. of ACM VEENewport Beach, CA, Mar. 2011.

[10] D. Williams, H. Jamjoom, and H. Weatherspoon. The Xen-Blanket: Viiteabnce, run everywhere. BubmissionOct. 2011.

[11] Eucalyptus Systems, Inc. Eucalyptus open-sourcedctmmputing infrastructure - an overviewittp://wuw.eucalyptus.
com/pdf /whitepapers/Eucalyptus_Overview.pdf, Aug. 2009.

[12] R. C. Merkle. Protocols for public key cryptosystems.Proc. of IEEE Symposium on Security and Priva®gkland, CA, Apr.
1980.

[13] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. WalBhWilliams, and F. B. Schneider. Logical attestation: An authorizatio
architecture for trustworthy computing. Rroc. of ACM SOSRCascais, Portugal, Oct. 2011.

[14] C. A. Waldspurger. Memory resource management in VMWESX server. IfProc. of USENIX OSDIBoston, MA, Dec. 2002.



