
Lecture 18:
Sparse Direct Methods

David Bindel

1 Nov 2011



Logistics

I Project 2 in
I Can submit up to next Monday with 1 point penalty...
I ... but be careful it doesn’t pile up against other work

I Project 3 posted (parallel all-pairs shortest paths)



More life lessons from Project 2?

I Start early so you have time to get stuck and unstuck.
I Understand when rounding is a culprit (and when not).
I Test frequently as you work.
I Check against a slow, naive, obvious calculation.
I Synchronization is expensive!



Enter Project 3

The all pairs shortest path problem:

Input: An adjacency matrix for an unweighted graph:

Aij =

{
1, edge between i and j
0, otherwise

Output: A distance matrix

Lij = length of shortest path from i to j

or Lij = 0 if i and j are not connected.



Shortest paths and matrix multiply

Two methods look like linear algebra:
I Floyd-Warshall (O(n3), similar to Gaussian elimination)
I Matrix multiply (O(n3 log n), similar to matrix squaring)

Project 3: parallel repeated squaring for all-pairs shortest path
I Given an OpenMP implementation – time it!
I Write naive MPI implementation using MPI_Allgatherv

I Write a better version with nonblocking send/receives



The repeated squaring algorithm

I lsij ≡ shortest path with at most 2s hops
I Initial step is almost the adjacency matrix:

l0ij =


1, edge from i to j
0, i = j
∞, otherwise

I Update: ls+1
ij = mink{lsik + lskj}

I Have shortest paths when Ls = Ls+1 (at most dlg ne steps)



Project 3 logistics

I Goals:
I Get you some practice with MPI programming
I And understanding performance tradeoffs!

I May be useful to go back to HW 2 for references
I Please start earlier this time so that you can ask questions!
I If there’s a time tradeoff, final project is more important.



Reordering for bandedness

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 460

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 460

Natural order RCM reordering

Reverse Cuthill-McKee
I Select “peripheral” vertex v
I Order according to breadth first search from v
I Reverse ordering



From iterative to direct

I RCM ordering is great for SpMV
I But isn’t narrow banding good for solvers, too?

I LU takes O(nb2) where b is bandwidth.
I Great if there’s an ordering where b is small!



Skylines and profiles

I Profile solvers generalize band solvers
I Skyline storage: if storing lower triangle, for each row i :

I Start and end of storage for nonzeros in row.
I Contiguous nonzero list up to main diagonal.

I In each column, first nonzero defines a profile.
I All fill-in confined to profile.
I RCM is again a good ordering.



Beyond bandedness

I Bandedness only takes us so far
I Minimum bandwidth for 2D model problem? 3D?
I Skyline only gets us so much farther

I But more general solvers have similar structure
I Ordering (minimize fill)
I Symbolic factorization (where will fill be?)
I Numerical factorization (pivoting?)
I ... and triangular solves



Reminder: Matrices to graphs

I Aij 6= 0 means there is an edge between i and j
I Ignore self-loops and weights for the moment
I Symmetric matrices correspond to undirected graphs



Troublesome Trees

One step of Gaussian elimination completely fills this matrix!



Terrific Trees

Full Gaussian elimination generates no fill in this matrix!



Graphic Elimination

Eliminate a variable, connect all neighbors.



Graphic Elimination

Consider first steps of GE

A(2:end,1) = A(2:end,1)/A(1,1);
A(2:end,2:end) = A(2:end,2:end)-...

A(2:end,1)*A(1,2:end);

Nonzero in the outer product at (i , j) if A(i,1) and A(j,1)
both nonzero — that is, if i and j are both connected to 1.

General: Eliminate variable, connect remaining neighbors.



Terrific Trees Redux

Order leaves to root =⇒
on eliminating i , parent of i is only remaining neighbor.



Nested Dissection

I Idea: Think of block tree structures.
I Eliminate block trees from bottom up.
I Can recursively partition at leaves.
I Rough cost estimate: how much just to factor dense Schur

complements associated with separators?
I Notice graph partitioning appears again!

I And again we want small separators!



Nested Dissection

Model problem: Laplacian with 5 point stencil (for 2D)
I ND gives optimal complexity in exact arithmetic

(George 73, Hoffman/Martin/Rose)
I 2D: O(N log N) memory, O(N3/2) flops
I 3D: O(N4/3) memory, O(N2) flops



Minimum Degree

I Locally greedy strategy
I Want to minimize upper bound on fill-in
I Fill ≤ (degree in remaining graph)2

I At each step
I Eliminate vertex with smallest degree
I Update degrees of neighbors

I Problem: Expensive to implement!
I But better varients via quotient graphs
I Variants often used in practice



Elimination Tree

I Variables (columns) are nodes in trees
I j a descendant of k if eliminating j updates k
I Can eliminate disjoint subtrees in parallel!



Cache locality

Basic idea: exploit “supernodal” (dense) structures in factor
I e.g. arising from elimination of separator Schur

complements in ND
I Other alternatives exist (multifrontal solvers)



Pivoting

Pivoting is a tremendous pain, particularly in distributed
memory!

I Cholesky — no need to pivot!
I Threshold pivoting — pivot when things look dangerous
I Static pivoting — try to decide up front

What if things go wrong with threshold/static pivoting?
Common theme: Clean up sloppy solves with good residuals



Direct to iterative

Can improve solution by iterative refinement:

PAQ ≈ LU

x0 ≈ QU−1L−1Pb
r0 = b − Ax0

x1 ≈ x0 + QU−1L−1Pr0

Looks like approximate Newton on F (x) = Ax − b = 0.
This is just a stationary iterative method!
Nonstationary methods work, too.



Variations on a theme

If we’re willing to sacrifice some on factorization,
I Single precision + refinement on double precision residual?
I Sloppy factorizations (marginal stability) + refinement?
I Modify m small pivots as they’re encountered (low rank

updates), fix with m steps of a Krylov solver?


